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Abstract

Background: Wild birds are an important but to some extent under-studied reservoir for emerging pathogens. We used
unbiased sequencing methods for virus discovery in shorebird samples from the Delaware Bay, USA; an important feeding
ground for thousands of migratory birds.

Findings: Analysis of shorebird fecal samples indicated the presence of a novel astrovirus and coronavirus. A sanderling
sample yielded sequences with distant homology to avian nephritis virus 1, an astrovirus associated with acute nephritis in
poultry. A ruddy turnstone sample yielded sequences with homology to deltacoronaviruses.

Conclusions: Our findings highlight shorebirds as a virus reservoir and the need to closely monitor wild bird populations for
the emergence of novel virus variants.
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Introduction

Wild birds have been recognized as important reservoir hosts

harboring and amplifying emerging zoonotic viruses such as avian

influenza A viruses [1] and West Nile virus [2]. In the northeastern

USA, the Delaware Bay area is crucial for the annual migration of

shorebird and gull species that feed on the horseshoe crab eggs

found in abundance thanks to the coinciding spawning season (for

review see [3]). Avian influenza virus isolation rates from

shorebirds and gulls during spring migration are significantly

higher in this area than in other surveillance sites [3,4,5]. This

observation prompted us to assess the ability to detect other, novel

viruses in shorebirds during the spring migration.

Materials and Methods

Sample Collection
Shorebird fecal samples of apparently healthy birds were

collected in May 2004 from Reed’s beach, Delaware Bay, New

Jersey, USA, held at 4uC for shipment (#96 h) and upon arrival at

the laboratory stored at 280uC until further processing. Permis-

sion to enter restricted access beaches and obtain fecal droppings

was granted annually by the State of New Jersey, Department of

Environmental Protection, Division of Fish and Wildlife, Endan-

gered and Nongame Species Program. The surveillance program

was also approved by the St. Jude Children’s Research Hospital

IACUC protocol #546.

Pyrosequencing
Nucleic acid was extracted by using QIAamp Viral RNA Mini

Kit (Qiagen, Hilden, Germany), treated with DNaseI (Ambion,

Austin, TX, USA) and reverse transcribed using Superscript II kit

(Invitrogen, Carlsbad, CA, USA) with random octamer primers

linked to an arbitrary specific anchor sequence [6]. The cDNA

was RNase H-treated prior to random amplification by the

polymerase chain reaction (PCR). The resulting products were

purified using MinElute (Qiagen, Hilden, Germany), pooled and

ligated to linkers for sequencing on a GSL FLX Sequencer (454

Life Sciences, Branford, CT, USA). After primer and adaptor

trimming, length filtering, masking of low complexity regions and

subtraction of ribosomal and host sequences, sequence reads were

assembled using Newbler Assembler (v 2.3, 454 Life Sciences) and

analyzed at nucleotide (nt) and amino acid (aa) level by using

homology search programs Blastn [7] and Fastx [8] against NCBI

Refseq and GenBank databases (http://www.ncbi.nlm.nih.gov).
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Specific PCR and Assessment of Bird Species
Sequence-specific PCR was conducted with HotStar polymer-

ase (Qiagen) and random hexamer-primed cDNA (Superscript II,

Invitrogen). Amplified products were subjected to direct dideoxy

sequencing (Genewiz, South Plainfield, NJ, USA). The bird species

from which samples were obtained was identified by the nested

PCR method of Cheung et al. that targets the mitochondrial

cytochrome oxidase I (COI) gene [9].

Phylogenetic Analysis
Assessment of phylogenetic relationships was performed using

programs of the MEGA 5 software package (http://www.

megasoftware.net). Multiple sequence alignments were generated

with ClustalW, and phylogenetic trees constructed based on the

neighbor joining method using a Poisson correction model to

calculate distance; bootstrap values were calculated based on 1000

pseudoreplicates.

Results and Discussion

We applied an unbiased pyrosequencing approach for analyzing

total RNA extracts of fecal samples collected at Reed’s beach,

Delaware Bay, New Jersey, USA, from apparently healthy

shorebirds to assess potential microbial burden. Samples from

eight individual birds, that included semipalmated sandpipers,

sanderlings and ruddy turnstones, were extracted for total RNA,

reverse transcribed and amplified by random PCR before the

purified PCR products were pooled and processed for sequencing

on the 454 pyrosequencing platform. Sequencing yielded 182,358

reads with a mean length of 320 nt (NIH Short Read Archive

accession number SRP035900). After filtering for ribosomal and

host sequences, the remaining 4171 sequences were processed to

assemble possible contiguous sequences and then analyzed at nt

and deduced aa level. Three sequences of 357, 468 and 474 nt

length showed homology to members of the coronavirus (CoV)

family and two sequences of 436 and 445 nt showed homology to

avian astroviruses (AstV). In addition we detected reads with

distant homology to tetnoviruses (2 reads) and marnavirus (1 read);

viruses of insects and algae, respectively, that were in view of the

limited sample material not further followed. No other sequences

with significant homology to viral records in GenBank (release

175) were detected using an e-value cut-off of 0.001 for Blastn and

Fastx.

The presence of the detected astro- and coronaviral sequences

in individual samples that made up the pool of 8 used for

pyrosequencing was confirmed by PCR assays using primers

specific for the identified sequences (Table S1). Two of the eight

samples pooled for pyrosequencing were confirmed to contain

either CoV or AstV sequences. The CoV-positive fecal sample

originated from a ruddy turnstone (Arenaria interpres) and the AstV-

positive sample from a sanderling (Calidris alba), as determined by

mitochondrial cytochrome oxidase I (COI) sequence analysis.

The sanderling derived AstV-related sequences assembled to an

approximately 600 nt long continuous sequence that mapped to

the middle region of the non-structural polyprotein 1a open

reading frame (ORF). Analysis of a PCR product obtained with

Figure 1. Phylogenetic analysis of sanderling astrovirus partial ORF1a sequence (198 aa, marked with a circle) and selected AstV
sequences (indicated by their Genbank accession numbers in brackets). Bootstrap values based on 1000 pseudoreplicates are indicated at
the respective nodes; scale bar indicates substitutions per site. The division of the family into Mamastrovirus genus and Avastrovirus genus is
indicated by shaded boxes. HAstV, human AstV; OAstV, ovine AstV; MAstV, mink AstV; CAstV, chicken AstV; TAstV, turkey AstV; DAstV, duck AstV.
doi:10.1371/journal.pone.0093395.g001
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primers matching that sequence (GenBank accession number

JX548301) indicated approximately 41% identity at aa level to

avian nephritis virus 1 (ANV-1). Closer inspection of the recovered

AstV sequence indicated similarity to trypsin-like peptidase family

pfam13365 and to peptidase S7 superfamily pfam 00949 between

aa residues 121–164 with conservation of the potential catalytic

triad in the serine protease domain, including Histidine-24,

Aspartic acid-61 and Serine-125 [10].

AstVs are small non-enveloped viruses with positive-sense,

single-stranded RNA genomes. The family Astroviridae is divided

into mammalian and avian AstVs (Figure 1) ([11,12], http://
www.iah-virus.org/astroviridae/avastrovirus). In addition to yet

unassigned chicken AstVs, a novel wood pigeon AstV and feral

pigeon AstVs were recently identified in Norway that appear to be

highly divergent from ANV-1, their closest relative [13]. To gain

further insight into the evolutionary relationship to other AstVs, a

phylogenetic analysis of sanderling AstV was conducted based on a

common 198 aa ORF1a sequence aligned to representative

members of the family. The analysis indicated that sanderling

AstV formed together with ANV-like AstV a branch distinct from

other avian AstVs, namely those of duck, chicken and turkey

origin (Figure 1). Because sequence information of ORF1a is only

available for ANV-1 and pigeon ANV but not for the novel pigeon

AstVs reported from Norway, we cannot determine whether

sanderling AstV groups with the subgroup of pigeon AstVs

suggested by Kofstad and Jonassen [13]. Attempts to obtain

additional sequence flanking the 600 bp region failed. This may

reflect compromised nucleic acid quality in the sample material in

Figure 2. Phylogenetic analysis of ruddy turnstone CoV partial polymerase sequence (168 aa, marked with a circle) and selected
CoV sequences (indicated by their Genbank accession numbers in brackets). Bootstrap values based on 1000 pseudoreplicates are
indicated at the respective nodes; scale bar indicates substitutions per site. The division of the CoVs into alpha, beta, gamma and delta groups is
indicated by shaded boxes. Breda virus, a torovirus from the subfamily Torovirinae, family Coronaviridae was used as an outlier. FIPV, feline infectious
peritonitis virus; TGEV, transmissible gastroenteritis CoV; BtCoV, bat CoV; PEDV, porcine epidemic diarrhea virus; SARS, severe acute respiratory
syndrome; MHV, mouse hepatitis virus; PHEV, porcine hemagglutinating encephalomyelitis virus; HCoV, human CoV; BCoV, bovine CoV; TCoV, turkey
CoV; IBV, infectious bronchitis virus.
doi:10.1371/journal.pone.0093395.g002
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addition to possible primer failure due to high sequence

divergence.

Avian AstVs are associated with enteric diseases in poultry

[10,14,15], nephritis in chicken and turkeys [16,17] and fatal

hepatitis in ducklings [18]. ANV-like viruses as well as antibodies

against them have been detected in both chicken and turkeys

[17,19,20], suggesting that these viruses may successfully infect

and replicate in different poultry species. The discovery of pigeon

ANV that is related to chicken ANV supports the likelihood of

cross-infection between pigeons and chicken [21,22]. Additional

evidence for interspecies transmission among avian AstVs was

provided by the identification of guinea fowl AstV, that is related

to turkey AstV type 2 [23], and the subsequent experimental

infections conducted with both viruses in both avian species [24].

Sanderling AstV may potentially also be capable of infecting other

avian species beyond its wild bird reservoir.

The sequences recovered from a ruddy turnstone mapped to

ORF1ab, spike glycoprotein gene and the 39 end of CoV genomes.

Analysis of the 438 nt PCR-amplified spike glycoprotein gene

sequence (GenBank accession number JX548305) suggested

homology to the CoV S2 glycoprotein multidomain (pfam

01601). Further sequence analysis at aa level revealed 79%

identity to magpie-robin CoV HKU18 and sparrow CoV

HKU17, both identified in Hong Kong [25]. Analysis of the

amplified 450 nt ORF1ab fragment (GenBank accession number

JX548303) indicated approximately 70% identity at aa level to

common-moorhen CoV HKU21, also detected in Hong Kong

[25]. Analysis of the amplified 312 nt fragment (GenBank

accession number JX548302) mapping partly to the 39 untrans-

lated region (UTR) also revealed relatedness to the CoVs recently

identified by Woo and others [25] by showing 90% identity with

white-eye CoV HKU16 39UTR nt 200–312. A portion of the

312 nt fragment maps to the region potentially coding for

nonstructural accessory proteins Ns7c or Ns7d.

CoVs are enveloped RNA viruses with large, positive-sense

single-stranded genomes. Members of the family Coronaviridae

cause enteric, respiratory and central nervous system (CNS)

diseases in a wide range of animal species [26,27]. The subfamily

Coronavirinae has been divided into four groups (Figure 2). Recent
studies have revealed the presence of diverse, novel gamma and

delta-CoVs in wild birds from Hong Kong [25,28], Cambodia

[28] and from the Bering Strait area [29]. Since full-length

genomic sequences are not available for all of them, we assessed

the relationship between those CoVs and ruddy turnstone CoV by

amplifying a fragment of the polymerase (pol) gene with

degenerate primers described by Muradrasoli et al. [29]. Phylo-

genetic analysis of the amplified 508 nt pol sequence (GenBank

accession number JX548304) agreed with that of the partial spike,

ORF1ab and 39end (NS7c-like) sequences and showed a relation

to the delta-CoV clade (Figure 2). The pol sequence of ruddy

turnstone CoV shares approx. 86% aa identity with common-

moorhen CoV HKU21 from Hong Kong [25], and is less related

to the IBV-like viruses from the Bering Strait area that fall into the

gamma-CoV cluster. As with Sanderling AstV, attempts to obtain

additional sequences from ruddy turnstone CoV were unsuccess-

ful.

Our findings indicate the importance of surveying wild bird

populations for circulating viruses; the discovery of novel shorebird

CoV and AstV sequences in a small sample set demonstrates the

potential diversity of novel avian viruses yet to be identified. The

phylogenetic relation of sanderling AstV to ANV-1 may indicate a

potential for interspecies transmission between wild birds and

poultry also suggested by others [21,22,23,24]. The CoV

sequences reported here along with recent discoveries by others

[28,29] imply a vast diversity among circulating avian CoVs and a

high prevalence in wild birds [28]. Finally, the Delaware Bay area

could serve as a useful surveillance site for such novel avian viruses,

in addition to influenza viruses. Due to the high volume of birds

feeding during migration periods, the area may provide a niche for

the emergence and spread of novel virus variants.
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