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Abstract
The bacterium Escherichia coli exhibits remarkable genomic and phenotypic variation, with

some pathogenic strains having evolved to survive and even replicate in the harsh intra-

macrophage environment. The rate and effects of mutations that can cause pathoadapta-

tion are key determinants of the pace at which E. coli can colonize such niches and become

pathogenic. We used experimental evolution to determine the speed and evolutionary

paths undertaken by a commensal strain of E. coli when adapting to intracellular life. We

estimated the acquisition of pathoadaptive mutations at a rate of 10−6 per genome per gen-

eration, resulting in the fixation of more virulent strains in less than a hundred generations.

Whole genome sequencing of independently evolved clones showed that the main targets

of intracellular adaptation involved loss of function mutations in genes implicated in the

assembly of the lipopolysaccharide core, iron metabolism and di- and tri-peptide transport,

namely rfaI, fhuA and tppB, respectively. We found a substantial amount of antagonistic

pleiotropy in evolved populations, as well as metabolic trade-offs, commonly found in intra-

cellular bacteria with reduced genome sizes. Overall, the low levels of clonal interference

detected indicate that the first steps of the transition of a commensal E. coli into intracellular

pathogens are dominated by a few pathoadaptive mutations with very strong effects.

Introduction
Bacterial populations have an enormous potential to adapt to their environments. This is
inferred from studies of molecular evolution and variation that find signatures of selection in
many genes [1,2]. The remarkable pace of bacterial adaptation can also be directly demon-
strated in the laboratory by following evolution in real time, over many generations, in
controlled environments with specific selection pressures [3–5]. Many studies of microbial evo-
lution in real time involve studying adaptation to simple abiotic environments consisting of
single or multiple sugars [6,7], characterizing compensation to the costs of deleterious muta-
tions, such as antibiotic resistance genes in drug free environments [8,9], or studying adapta-
tion in spatially structured environments [10–12]. Complex environments, in which multiple,
more natural, selective pressures are present, have received far less attention [13]. The vast
majority of these experiments demonstrate the acquisition of adaptive mutations at high rates,
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with swift genetic and phenotypic changes. One way to quantify these evolutionary parameters
is by following the dynamics of neutral markers in evolving clonal populations, where rapid
and large allele frequency changes indicate the occurrence of a high rate adaptive mutations
with strong selective effects [14–16].

Rapid adaptation is also detected in pathogen populations colonizing humans during infec-
tion [17]. In these natural environments, where bacteria are likely to encounter many different
types of cells, key antagonistic interactions are imposed by the host innate immune system.
Overcoming these interactions is often part of the transition from commensalism to pathogen-
esis [18,19]. Different strains of E. coli can be either commensals or versatile pathogens, and
even switch between the two, and there is increasing evidence that some pathogenic strains
evolved from commensal E. coli [20,21]. Several natural E. coli pathovars have been studied,
some of which use common mechanisms to increase their virulence. Many of such virulence
traits are encoded in pathogenicity islands (blocks of genes found in a pathogen but not in
related nonpathogenic strains [22,23]), plasmids or prophages, highlighting the importance of
successful horizontal gene transfer in pathogen adaptation to new niches. In addition to gene
acquisition, gene loss can also contribute to the emergence and diversity of existing E. coli
pathovars [24], as well as other genome modifications which may lead to increased bacterial
pathogenesis in the absence of horizontal transfer. These are usually called pathoadaptative
mutations [25]. For instance, the knockout of hemB, an hemin biosynthetic gene, in Staphylo-
coccus aureus, which leads to increased ability to persist intracellularly, constitutes a pathoa-
daptive mutation and mutations in hemL of E. coli, encoding glutamate-1-semialdehyde
aminotransferase, can also confer pathogenic properties [Ramiro, Costa and Gordo, submit-
ted]. Another common pathoadaptive mutation is the loss of the genemucA, which in Pseudo-
monas aeruginosa increases its ability to evade phagocytosis and resist to pulmonary clearance
[26]. In another remarkable example, Koli and colleagues [27] showed that two genetic changes
in commensal E. coli K-12 were sufficient to reprogram its cellular transcription and render it
invasive in eukaryotic cells, both in vivo and ex vivo. Macrophages (MFs), one of the major cell
types of the innate immune system, are a typical intracellular niche for certain E. coli pathovars,
including Shigella, enteroinvasive E. coli (EIEC) and adherent-invasive E. coli (AIEC). The for-
mer, for instance, is commonly found in patients of Crohn’s disease, can adhere to intestinal
epithelial cells and invade and survive in epithelial cells and macrophages [28]. Characteriza-
tion of these pathoadaptive mutations is therefore important to understand the emergence of
bacterial pathogenesis. We have previously studied the short-term adaptation of E. coli to
recurrent encounters with macrophages and found that mucoid clones, which carry IS1 inser-
tions into the regulatory region of yrfF and that overproduce colanic acid, repeatedly evolved
[29].

Here, we use experimental evolution to study E. coli adaptation to the intra-macrophage
environment and to dissect the possible initial adaptive steps for a bacterium to adopt such a
lifestyle. We used an established two-marker system to study bacterial adaptation in vitro and
to determine the rate and fitness effects of pathoadaptive mutations. We then characterized
phenotypically the bacteria that evolved and used whole genome sequencing to determine the
most likely pathoadaptive evolutionary paths for the first steps in the transition into an intra-
cellular environment.

Materials and Methods

Ethics statement
All experiments involving animals were approved by the Institutional Ethics Committee at the
Instituto Gulbenkian de Ciência (project nr. A009/2010 with approval date 2010/10/15),
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following the Portuguese legislation (PORT 1005/92) which complies with the European Direc-
tive 86/609/EEC of the European Council. Endpoints to euthanize the animals were defined
prior to the experiment. The specific signs used to make the decision of euthanizing the ani-
mals were: weight drop of 20% and/or body temperature decrease below 28°C (for two conse-
cutive days). Despite the frequent monitoring of the animals’ health (at least two times a day),
the aforementioned signals were not observed in any of the animals and, therefore, there was
no need to perform euthanasia.

Strains and media
The murine macrophage cell line RAW 264.7 (Sigma-Aldrich) was maintained in RPMI
1640-GlutaMAX I (Gibco) supplemented with 1 mM Sodium Pyruvate (Invitrogen), 10 mM
HEPES (Invitrogen), 100 U/ml penicillin/streptomycin (Gibco), 50 μM 2-mercaptoethanol
solution (Gibco), 50 μg/ml Gentamicin solution (Sigma) and 10% heat-inactivated FBS (stan-
dard RPMI complete medium). Culture conditions were at 37°C in a 5% CO2 atmosphere.

All bacterial cultures were grown in the same conditions as the macrophage line but using
only 100μg/mL of streptomycin (RPMI-Strep medium) instead of the three antibiotics present
in RPMI complete medium. The same medium was used for the infection assays of MFs with
bacteria. The Escherichia coli strains used were MC4100-YFP and MC4100-CFP (MC4100,
galK::CFP/YFP, AmpR StrepR), which express constitutively either the yellow (yfp) or the cyan
(cfp) alleles of GFP integrated at the galK locus in MC4100 (E. coli Genetic Stock Center
#6152) [15]. Unlike certain pathogenic E. coli strains, our commensal strain is a derivative of
K12 which is not able to replicate within macrophages [27].

Evolution Experiment
The evolution experiment was started from two single colonies of either MC4100-YFP or
MC4100-CFP grown in RPMI-Strep in the same conditions as the cell line. The two bacterial
cultures were mixed in equal proportion (5x103 colony forming units (cfu) each) and used to
infect the activated MFs, in 20 replicates.

Before the infection MFs were centrifuged at 201 g for 5 min and re-suspended in RPMI-S-
trep. After this step ~ 105 cells per well were used to seed a 24-well microtiter plate and incu-
bated over-night at 37°C with 5% CO2. Subsequently, activation was done by adding 2 μg/ml of
CpG-ODN 1826 (5´TCCATGACGTTCCTGACGTT 3´—Sigma) [30] and incubating at 37°C
with 5% CO2 for 24h. Following activation, cells were washed and infected with 104 bacteria
mix (multiplicity of infection (MOI) = 1 cfu: 10 MFs). After infection we centrifuged the plates
at 201 g for 5min (to increase the contact between MFs and bacteria) and then incubated at
37°C with 5% CO2 for 24h [31]. Next we discarded the extracellular bacteria, washed the MFs
with RPMI-Strep two times and added 100μg/mL of Gentamicin solution or 1h at 37°C with
5% CO2 [32]. Gentamicin penetrates poorly the macrophages and therefore whereas intracellu-
lar bacteria are protected from the bactericidal action of the antibiotic the extracellular are
killed [33]. After washing out the gentamicin with PBS 1X, cells were lysed using a 0.1%
Triton-X–PBS solution for 15 minutes [34]. Intracellular bacteria were collected, washed
with PBS 1X and counted by flow cytometry using LSR Fortessa cytometer (BD Biosciences).
From approximately 106 intracellular bacteria collected, we pooled 104 and infected a new
batch of activated MFs, in the same manner as described previously. This procedure was
repeated for 26 days, a period after which fixation of one of the fluorescent markers could be
observed for most of the replicate experiments, an indication of adaptation. This propagation
protocol allows ~ 7 generations per day, calculated by Log2 (Nf/Ni), where Nf is the number of
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intracellular bacteria 24h post-infection, and Ni is the bacterial inoculum used to infect the
macrophages [29].

Fitness measurements
Fitness increases of the evolved populations were estimated by competitive fitness assays in the
presence or in the absence of MFs. A sample of 30 clones carrying the fluorescence marker
which achieved the highest frequency in a given population was competed against the ancestral
strain labeled with a different marker. These samples of clones were assumed to be representa-
tive of the population. The competition assays for each evolved population were done in tripli-
cate in the same conditions as the evolution experiment, for two passages—48h. The neutrality
of the fluorescent marker was tested by competition of the two ancestral strains (9 replicates).

Relative fitness, expressed as a selection coefficient, was estimated by calculating the slope of
the natural logarithm of the ratio of evolved over ancestral bacteria per generation of ancestral
bacteria [35].

Whole genome re-sequencing and mutation prediction
Ancestral genome. The sequence reads were mapped to the reference strain Escherichia

coli K12 MG1655 BW2952 (reference NC_012759.1). The extra mutations carried by the two
ancestors in relation to the reference are described in [29].

Clone analysis. In the last time point of the evolution experiment, we isolated a clone
from each evolved population carrying the fluorescent marker with higher frequency. In the
populations where both markers reached similar frequencies at the last time point, one clone
from each marker subpopulation was isolated. Each of these clones was then grown in 10mL of
RPMI at 37°C. DNA isolation from these cultures was subsequently obtained according to
[36].

The DNA library construction and sequencing was carried out by the in-house genomics
facility. Each sample was paired-end sequenced using an Illumina MiSeq Benchtop Sequencer.
Standard procedures produced data sets of Illumina paired-end 250bp read pairs. Genome
sequencing data have been deposited in the NCBI Read Archive http://www.ncbi.nlm.nih.gov/
sra (accession no. SRP066892). The mean coverage per sample was ~35x. Mutations were iden-
tified using the BRESEQ pipeline [3]. To detect potential duplication events we used ssaha2
[37] with the paired-end information. This is a stringent analysis that maps reads only to their
unique match (with less than 3 mismatches) on the reference genome. Sequence coverage
along the genome was assessed with a 250 bp window and corrected for GC% composition by
normalizing by the mean coverage of regions with the same GC%. We then looked for regions
with high differences (>1.4) in coverage. Large deletions were identified based on the absence
of coverage. For additional verification of mutations predicted by BRESEQ, we also used the
software IGV (version 2.1) [38].

Phenotypic characterization of evolved clones
Growth in single carbon sources. The same samples of clones from the populations

which were tested in the competition assays were used to estimate the growth curves in differ-
ent carbon sources. Two media were used: M9 Minimal Media (MM) supplemented with malt-
ose 0.4% or with glucose 0.4%. The growth curve assays were performed on a Bioscreen C
microplate reader, using a volume of 150μL per sample and an inoculum of ~104 CFUs. Plates
were incubated at 37°C with shaking before each optical density measurement (OD at 600nm).
All growth measurements were repeated at least twice.
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Fitness of effect of fhuAmutant under oxidative stress. To test if the mutation on the
fhuA gene conferred some advantage to the evolved bacteria in specific selective pressures char-
acteristic of the macrophage intracellular environment, we grew ancestral and mutant clones
under oxidative and iron limitation stresses. We combined different concentrations of Fe3+

(Iron (III) Chloride hexahydrate, Alfa Aesar #A16231) with the ferrichrome siderophore (Fer-
richrome Iron-free, Santa Cruz Biotechnology # sc-255174) and added hydrogen peroxide
(H2O2) (Hydrogen Peroxide solution 30% (w/w), Sigma # H1009). Ferrichrome captures iron
III and the resulting complex is imported into the cell by the FhuA outer membrane trans-
porter. Excess iron inside the cell may be detrimental in the presence of H2O2, due to the Fen-
ton reaction. In the KO mutant of fhuA, ferrichrome-dependent uptake of iron does not occur,
which could provide an advantage to the bacteria when exposed to oxidative stress.

The mutant used for this experiment was the sequenced clone of population C (fhuA KO
and selC IS), which was compared to an ancestral clone.

The two clones were first grown in M9Minimal Media supplemented with 0.4% Glycerol in
an orbital shaker at 37°C with 230rpm, to an OD600nm of 1 (stationary phase). The cultures
were then diluted and grown again in the same conditions until they reached an OD600nm of
0.4–0.6 (exponential phase). After normalization to the same O.D, samples were diluted 100x,
divided in equal parts and centrifuged at 3220 g for 30 minutes, before being re-suspended in
the same growth media either supplemented, or not, with Fe3+ and Ferrichrome at two differ-
ent concentrations: 0μM Fe3+ + 100μM Ferrichrome and 100μM Fe3+ + 1000μM Ferrichrome.
Samples were acclimatized at 37°C with agitation for ~15 minutes before the addition of H2O2

to a final concentration of 2 mM. Samples were then left at 37°C without agitation and col-
lected after 1h, washed in PBS 1X and plated on LB agar. Plates were incubated for 16h at 37°C,
followed by CFU counting.

Analysis of rfaI conservation in other E. coli strains. A list of all sequenced strains of E.
coli was retrieved from the European Bioinformatics Institute database (www.ebi.ac-uk/
genomes, accessed on April 2014). The meta-information for all the strains (i.e., laboratory ori-
gin, pathogen or commensal) was manually curated by accessing several different public micro-
bial databases. The fasta sequences were retrieved for each of the genes comprising the rfa
locus in Escherichia coli BW2952 (rfaBCDFGIJLPQSYZ and waaAU) and then BLASTed
against the sequenced genomes of the genus Escherichia and Shigella (74 genomes in total),
using Biopython. If, for a given strain, the query was returned as empty, we considered the
gene to be absent. Otherwise, the gene was present but with varying degree of conservation,
although not below 82% similarity.

In vivo test for increased pathogenesis. C57/BL6 mice, aged 7–10 weeks (in house sup-
plier, Instituto Gulbenkian de Ciência) were given food (RM3A(P); Special Diet Services, UK)
and water ad libitum, and maintained with a 12 hour light cycle at 21°C. The animals were
infected intra-peritoneally with 2x107 CFUs of either the ancestral clone or evolved clone I
(carrying two IS insertions in fhuA and rfaI) diluted in 100μl of PBS. Furthermore, as a control,
in each experimental block we injected a group of 2–3 mice with 100 ml of saline (these animals
did not display any signs of disease). Mice were followed for 4 days post infection and their
weights and temperatures were monitored daily. The infections were performed in two blocks,
with n = 3 mice per bacterial strain per block. A linear mixed effect model, with bacterial strain
and day post-infection as factors and mouse as a random effect, was used to determine if signif-
icant increases in weight loss occurred in an infection with the evolved clone.

E. coli Intracellular Adaptation to Macrophages

PLOS ONE | DOI:10.1371/journal.pone.0146123 January 11, 2016 5 / 18

http://www.ebi.ac-uk/genomes
http://www.ebi.ac-uk/genomes


Results and Discussion

Dynamics of E. coli adaptation to intracellular life
We followed the evolutionary dynamics and adaptation of twenty independent populations of
E. coli during repeated exposure to the intracellular environment of MFs. The bacterial popula-
tions were all founded from an equal mix of two ancestral clones, which were isogenic except
for a distinct neutral fluorescent marker. Under the hypothesis that periodic selection will
dominate the pathoadaptive process, the occurrence and spread of a strong beneficial mutation
in one of the clones with a given fluorescent marker will cause the extinction of all other clones
and hence the loss of diversity at the marker locus [8,39]. A more complex pattern may emerge
if adaptive mutations are very common and cause clonal interference [15], which may slow the
loss of neutral variation [13], or if coexisting interdependent ecotypes emerge [16,40].

In our experimental evolution protocol, MFs (105/ml) were infected with E. coli for 24
hours, after which all extracellular bacteria were killed with gentamicin. 104 bacteria sampled
from the intracellular environment of MFs were then used to infect new uninfected MFs. The
evolution experiment was followed for 26 days and the occurrence of adaptive mutations was
detected through the observation of rapid and consistent changes in the frequency of the neu-
tral marker (Fig 1A and 1B). After 10 days of propagation, consistent changes in frequency
started to be detected in some populations and by day 15 most of the populations showed sig-
nificant deviations from the initial marker frequency (15 out of 20 populations showed devia-
tions above 10%), suggesting that beneficial mutations had spread through the populations
(Fig 1A and 1B). During the 26 days of evolution, in only one of the populations (O) the

Fig 1. Evolutionary dynamics of the populations evolved within macrophages.Dynamics of frequency of neutral marker in the 20 replicate evolving
lines (in (A) lines A to J; in (B) lines K to T) and variation in population size along the evolution experiment (in (C) lines A to J; in (D) lines K to T).

doi:10.1371/journal.pone.0146123.g001
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deviation from the initial marker frequency was less than 10%. A significant increase in the
total number of bacteria after infection was also detected after 100 generations in all the lines
evolved (Fig 1C and 1D and S1 Table). The increase in carrying capacity (K) of the evolving
populations tends to be observed in synchronicity with the changes in the marker frequency,
indicating that this fitness trait is being modified by occurring adaptive mutations.

Pathoadaptation occurs at a high rate and involves strong effect
mutations
The rapid and consistent changes in the frequency of each of the fluorescent alleles imply the
occurrence of strong beneficial mutations. Assuming a simple model of positive selection we
can estimate their rate and effect through the deviations of the neutral markers [15,41]. We
have estimated these key evolutionary parameters using two different approaches: Marker
Divergence Analysis [8,15], which summarizes the neutral marker dynamics using two param-
eters: the effective mutation rate (Ue) and the effective selection coefficient (Se), by fitting simu-
lations to the marker dynamics. This method, which assumes all mutations generated within
a replicate population to have a given fixed effect, has been shown to perform acceptably for
scenarios of low clonal interference [14] and summarizes the adaptive dynamics of all the pop-
ulations by a single value of Ue and Se. The second method, Optimist [41], determines the like-
lihood that the frequency of a neutral marker results from a given number of haplotypes,
arising at a given time and segregating with a particular effect. For each particular replicate
population, the number of haplotypes that best explains the marker frequency dynamics is cho-
sen by the lowest Akaike Criteria, resulting in a distribution of the number of haplotypes, as
well as their effects, for all the replicate populations.

From the dynamics in Fig 1A and 1B, the best estimates of Ue and Se were 1.6x10
-6 (muta-

tions per genome per generation) and 0.26, respectively. Using the method implemented in
Optimist, we find a mean increase in fitness of mutations of 0.09 (see Table 1 for the estimated
parameters and S1 Fig for the corresponding simulated dynamics that best fit the experimental
data). These estimates of the rate and strength of fitness effects of adaptive mutations can be
compared with those obtained in bacterial adaptation to other environments, and using similar
methods of inference. E. coli rates of adaptation to compensate for the costs of antibiotic resis-
tance were found to lay in the range of 10−7, and mean s in the range of 5 to 15%, dependent on
the strain that evolved [8,41]. Using a different experimental system with more neutral mark-
ers, [9] estimated higher rates of compensatory mutations to resistance U~10−5, with mean
effects of 2.5 and 3.6% dependent on the resistance mutation. It is becoming well established
that the distribution of effects of adaptive mutations markedly depends on the genetic back-
ground. For E. coli strains with the same genetic background as the ones used here, but adapt-
ing to a simpler environment (Luria-Bertani rich medium) Hegreness et al [15] found Ue =
2x10-7 and Se = 0.05. These estimates are considerably smaller than the estimates found here,
when the strain faces harsher conditions. Since the same strain and the same method of estima-
tion were used in our experiment, the comparison of the combined estimates demonstrates
that the evolutionary parameters strongly depend on the environment. They furthermore sup-
port the idea that in more stressful environments, where strong biotic interactions prevail,
higher rates and effects of adaptive mutations are to be expected [42].

Competitive fitness assays reveal two distinct strategies of
pathoadaptation
The changes in frequency of each fluorescent allele suggested a strong effect of the beneficial
mutations that occurred. To support this inference and directly estimate the strength of these
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mutations, we performed competitive fitness assays, in the presence of macrophages, of evolved
clones against the ancestral strain marked with a different fluorescence. Fig 2 shows that all
populations exhibit a significant fitness increase and are therefore better adapted to the envi-
ronment with macrophages. The mean competitive fitness increase observed was 7%, with a
minimum of 5% and a maximum of 12% (Fig 2, blue bars). These values are in close agreement
with those estimated from the changes in marker frequency alone and assuming the simplest
model of positive selection (mean of 9% with a minimum of 4% and a maximum of 15% (see
Table 1 and S2 Table). Although there is a slight overestimation of the fitness effects inferred

Table 1. Inferred selective effects of beneficial haplotypes.

Population # of Mutations W Mut#1 Time Mut#1 W Mut#2 Time Mut#2

A 2 0.101 28 0.073 28
B 1 0.054 0

C 1 0.109 63
D 1 0.063 14

E 1 0.056 7

F 2 0.091 21 0.134 35

G 2 0.123 7 0.099 14

H 2 0.134 42 0.109 42
I 2 0.090 7 0.094 42

J 1 0.071 28

K 2 0.141 63 0.121 63

L 0

M 1 0.027 0

N 1 0.053 0
O 2 0.054 14 0.063 35

P 2 0.073 0 0.060 7

Q 2 0.112 35 0.111 77

R 2 0.101 35 0.103 77
S 2 0.151 56 0.124 63

T 2 0.043 7 0.089 98

The number of mutations inferred for a specific population is indicated in the 2nd column. W mut#1 and T mut#1 (3rd and 4th columns) indicate,

respectively, the inferred fitness improvement and time of appearance (in generations) of the first mutant. W mut#2 and T mut#2 (5th and 6th columns)

indicate the same inferred parameters for the second mutant. Cells with values in italic bold indicate a mutation inferred in the CFP background.

doi:10.1371/journal.pone.0146123.t001

Fig 2. Fitness measures of evolved clones. In blue, the competitive fitness of evolved populations in the
presence of MΦ: evolved clones (a sample of 30 from each indicated population) were competed against the
ancestral clone (1:1). In orange, competitive fitness assay in the absence of MΦ. Error bars correspond to
2SE.

doi:10.1371/journal.pone.0146123.g002
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by the marker deviations, they can be explained by a number of reasons. Firstly, and contrary
to what is assumed by the model, selection in such complex environments might not be con-
stant, leading to non-linear effects of beneficial mutations. Secondly, theoretical approaches are
known to overestimate the effects of mutations when there is more than one mutation (i.e.,
cases of higher clonal interference) [14,41]. Finally, the AIC criteria (see methods) might be
too stringent in selecting models that postulate an increased number of haplotypes, which will
lead to stronger effect mutations. Nevertheless, both fitness measures are in agreement that the
most likely form of selection taking place in this environment involves sweeps of beneficial
mutations of strong effects.

One possible trait that could be expected to evolve as an adaptation to the selective pressure
imposed in this experiment would be an increased ability to grow in the abiotic environment
external to the macrophages (RPMI). If a variant with increased fitness in RPMI would emerge,
then its frequency outside macrophages could increase and dominate the population; a likely
scenario if such a mutant did not have any cost inside macrophages nor in the external envi-
ronment as it becomes conditioned by those cells. To determine whether the evolved popula-
tions increased in fitness in RPMI, i.e. in the absence of macrophages, we performed
competitive fitness assays against the ancestor in the medium alone (Fig 2, orange bars).The
results show that in 3 out of 14 populations there is, indeed, a significant fitness increase in the
abiotic environment, suggesting that increasing growth in RPMI can be beneficial in the pres-
ence of macrophages. We note that during the evolution the abiotic environment outside mac-
rophages is likely to change, so a mutant which is beneficial in RPMI may change its advantage
as this medium becomes conditioned by the presence of macrophages. The results also show a
correlation between the changes in fitness in the absence of macrophages to the increase in fit-
ness in their presence (Pearson r = 0.688, P = 0.0065, Fig 2). In half of the populations (A,F,G,
K,N, R and S) a clear trade-off was detected (Fig 2). For these cases, accumulation of mutations
with significant advantage in the presence of macrophages led also to a decreased competitive
ability in their absence. This indicates a specialization in the transition to intracellular life.
Together, the results suggest different adaptive strategies adopted by similar bacteria adapting
independently to the same environment, but with distinct genetic mechanisms evolved to cope
with the same antagonistic interaction.

Genetic basis of the intracellular adaptation reveals common
evolutionary paths
Given the dynamics of neutral markers observed (see Fig 1A and 1B), the short duration of the
experiment (~175 generations) and the estimates of only a few of beneficial mutations being
responsible for the adaptive process (see Table 2), we predict that each population is dominated
by a single clone with one or two mutations. In order to unravel the number of genetic changes
that occurred and to reveal the underlying evolutionary paths taken by the populations, we per-
formed whole genome sequencing of independently evolved clones. The evolved strains and
their ancestor were sequenced to a minimum of 16x coverage on the Illumina Miseq platform.
Table 2 shows the genetic changes detected and Fig 3 their position along the chromosome.
Overall, 25 different mutational targets were detected amongst the adapted clones. As expected,
each clone carries an average of 2 mutations. Most of the mutations occurred in coding regions
and 14 out of 34 in total involved insertions of transposable elements IS1, IS5 and IS186. The
first two have been found to transpose at higher rates than other elements [43] and are there-
fore more likely to contribute to adaptation. Among the gene targets for the mutations
detected, two occurred in 4 and 8 clones (fhuA and rfaI, respectively) and one occurred in
two independently evolved clones (tppB). Parallelism is a hallmark of adaptation since the
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probability that mutations in the same gene increase in frequency by random chance in at least
two independent lines, over such a short period, is very low [44,45]. Given the parallelism
observed involving the gene targets rfaI and fhuA, we can safely assume that these changes are
adaptive. Furthermore, the change hitting the coding region of tppB (either through an inser-
tion or by a small deletion) in two independent clones, together with it being the sole detected

Table 2. Mutations identified in the sequenced clones.

Clone (Coverage) Genome Position Gene Mutation Annotation S Tradeoff without MΦs

A YFP (36x) 2649245 yfjL/yfjM +GCACTATG intergenic (-258/+102 nt) 7% Yes

3293960 panF T!G L395R (CTG!CGG)

3689096 rfaI IS5 + 4bp coding (312/1020 nt)

B CFP (35x) 1603229 tppB IS1 + 5 bp coding (378/1503 nt) 11% No

C CFP (73x) 169014 fhuA G!A W511* (TGG!TAG) 12% No

3722624 selC IS1 + 8bp non coding (47/95 nt)

D YFP (20x) 168462 fhuA +A coding (980/2244 nt) 6% No

2039547 yegI Δ3 bp coding (1944-1946/1947 nt)

3809621 gidB C!T R139H (CGC!CAC)

E YFP (93x) 3070100 yqiC Δ1 bp coding (91/291 nt)

168929 fhuA IS1 + 8bp coding (1447/2244 nt)

F YFP (16x) 3219882 ispB/sfsB G!A intergenic (131/-197 nt) 7% Yes

608471 glnS Δ5 bp coding (396-400/1665 nt)

3689096 rfaI IS5 + 4bp coding (312/1020 nt)

G CFP (40x) 3758025 dgoT A!C I21S (ATC!AGC) 7% Yes

3689065 rfaI IS1 + 8bp coding (343/1020 nt)

H YFP (20x) 2541599 hscA Δ3 bp coding 8% No

3689096 rfaI IS5 + 4bp coding (312/1020 nt)

I YFP (148x) 167493 fhuA IS1 + 8bp coding (11/2244 nt)

3689096 rfaI IS5 + 4bp coding (312/1020 nt)

J YFP (346x) 3971199 fdoG Δ6 bp coding (2311-2316/3051 nt) 7% No

K YFP (28x) 3689096 rfaI IS5 + 4bp coding (312/1020 nt) 5% Yes

N CFP (34x) 75049 glnH/dps A!T intergenic (-295/+109 nt) 5% Yes

4410884 yjgJ G!A M1I (ATG!ATA)

1769910 yeaR IS186 + 10bp coding (122/360 nt)

3688872 rfaI IS5 + 3bp coding (536/1020 nt)

O CFP (35x) 1129729 cvrA Δ1 bp coding (296/1737 nt)

3223632 yrbD IS1 + 11bp coding (9/522 nt) / intergenic (-1/+4)

P CFP (29x) 70580 araC T!C V65V (GTT!GTC) 7% No

1072984 ycfS G!A O180L (CCG!CTG)

1247732 puuP C!T C110Y (TGT!TAT)

3708996 spoT Δ6 bp coding (247-252/2115 nt)

Q YFP (34x) 1602868 tppB Δ1 bp coding (17/1503 nt) 10% No

S YFP (29x) 1404545 ydcU C!T P221L (CCG!CTG) 6% Yes

3689096 rfaI IS5 + 4bp coding (312/1020 nt)

T CFP (30x) 4546582 prfC A!C E221A (GAA!GCA)

Coverage for each clone is indicated in the first column. The 6th column (S) indicates the selective effect of the evolved clones in the presence of

macrophages, compared to the ancestor, and the 7th column indicates whether there is a selective tradeoff (i.e., fitness in the absence of macrophages is

lower than ancestor).

doi:10.1371/journal.pone.0146123.t002
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mutation (B CFP and Q YFP) suggests that loss-of-function of tppB, coding for a proton-
dependent transporter of di- and tri-peptides could be an important pathoadaptive mutation.

Loss of rfaI leads to a strong selective sweep during adaptation to
macrophages
In 47% of the evolved populations, mutations in rfaI (all of them IS insertions presumably lead-
ing to gene inactivation) were detected, suggesting this to be a preferential target and, therefore,
one with high beneficial effect. We followed the emergence of this adaptive mutation in one of
the adapted populations (population I), by targeted PCR for the presence of IS5 element in
rfaI, as this element had been identified in the evolved clone sequenced from this population.
Fig 4 shows that the mutation could be detected by day 6, with a frequency 4.1% (SE 0.04) and
rapidly swept to fixation, being detected in all tested clones (n = 60) at day 26. We could
directly estimate its selective effect, from its initial change in frequency, to be 0.09 (see inset of
Fig 4).

We also found a strong correlation between the presence in a clone of a mutation in rfaI
and a competitive tradeoff (i.e., benefit in the presence of macrophages, but disadvantage in

Fig 3. Genomic maps of the mutations detected in the sequenced evolved clones.Red inverted triangles represent insertions of IS elements, blue lines
mark single nucleotide polymorphisms and green triangles denote small insertions (pointing downwards) or deletions (pointing upwards). All events have
either the aminoacid changes associated (for SNPs), the IS element inserted or the small number of base pairs deleted or inserted.

doi:10.1371/journal.pone.0146123.g003
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their absence) of the populations where that clone mutation emerged (p<0.01, Pearson corre-
lation). rfaI is a glycosyltransferase and part of the lipo-polysaccharide (LPS) synthesis machin-
ery present in bacteria. LPS are unique and complex glycolipids that provide characteristic
components in the outer membranes of bacteria and as such are a critical component of their
interaction with cells from the immune system [46]. The rfa locus itself is composed of 15 dif-
ferent genes, which are responsible for generating different parts of the LPS structure [47]. rfaI
is involved in the outer part of the core oligosaccharide, connecting the lipid A (inner part) and
the O-antigen (outer part) of LPS. Since the strain used in this study is devoid of O-antigen, the
outer part of the core is the LPS terminal section, and it is likely acting as one of the main inter-
faces between the bacterial cell and the cells from the immune system. Modifications in the
LPS structure, and the outer core in particular, are known to modify the behavior of bacterial
cells regarding adhesion to epithelial cells and biofilm formation in enterohemorrhagic E. coli
[48,49], and intracellular invasion of different serovars of Salmonella enterica [50]. Moreover,
mutations in the outer core structure of Brucella abortus can induce pro-inflammatory
responses and enhanced macrophage activation [51]. Interestingly, many genes in the rfa locus
itself are a target for bacterial persistence in E. coli [52], and the operon seems to be poorly con-
served in a vast group of E. coli pathovars, with several pathogenic (and non-pathogenic)
strains missing many of its genes (including rfaI) (see Analysis of rfaI conservation in other E.
coli strains (section) in Material and Methods). This suggests that, in these strains, the rfa
genes could be a common mutational target. Together, both our results and these observations
seem to indicate an important role of the LPS structure both in the interaction with the
immune system and in the transition to a pathogenic lifestyle, implying the changes in rfaI
detected in 8 independently evolving populations as a recurrent pathoadaptive target.

Fig 4. Invasion of an adaptive mutation at the rfaI locus. The blue line shows the selective sweep leading
to the fixation of an IS5 insertion likely causing gene loss of function. In the inset an estimate of the selection
coefficient (s) of this mutation is given. s is the slope of the logarithm of the ratio between the number of
clones carrying the mutation and those with the wild-type allele.

doi:10.1371/journal.pone.0146123.g004
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fhuA pathoadaptive mutant is beneficial under the combined pressure of
iron limitation and oxidative stress
The beta barrel protein FhuA is involved in the active transport of ferric siderophores across
the outer membrane of Gram-negative bacteria [53]. Iron homeostasis is crucial to the lives of
both bacteria and macrophages therefore both cells have exquisite mechanisms to achieve
physiological levels of iron and to keep it in a safe intracellular non-toxic form. Although oxi-
dative stress can be generated by aerobic respiration, it is also one of the microbicidal pressures
generated by the macrophages in the harsh phagosomal environment. Superoxide and hydro-
gen peroxide (O2

- and H2O2) are moderately reactive oxygen species, however, upon interac-
tion with iron, the highly reactive hydroxyl radical (OH-) can be created (Fenton reaction)
(reviewed in [54]). Since phagocytosed bacteria can face high levels of oxidative stress inside
macrophages we tested the survival of a fhuAmutant in different conditions regarding the
presence/absence of H2O2 (2mMH2O2) and different concentrations of Ferrichrome plus Fe3+.
Ferrichrome is a siderophore which binds iron III and enables it to be transported through the
FhuA outer membrane transporter. We find that in the presence of Ferrichrome alone
(100μM) or complexed with Fe3+ (100μM Fe3+, 1000μM Ferrichrome), survival of the fhuA
mutant is indistinguishable from that of ancestral bacteria (Fig 5A). A similar result was
obtained in the presence of H2O2 (Fig 5B). A fitness advantage of the evolved clone was how-
ever detected in an environment comprising oxidative stress in conjunction with Ferrichrome,
or with Ferrichrome and Fe3+. Under these conditions the survival of fhuAmutant clones is
significantly increased in relation to that of ancestral bacteria (P = 0.001 and P = 0.008 respec-
tively) (Fig 5C). The difference between the mutant and the ancestor is observed even in the
absence of Fe3+ supplementation. This could be justified by the fact that bacteria are able to
grow under limited amounts of this element, which is present under most biological conditions
[55].

These results therefore indicate that this mutation may have evolved to decrease the amount
of OH- inside the bacterial cells.

An in vitro evolved double mutant of rfaI and fhuA shows increased
pathogenic potential in vivo
We tested for increased virulence of one of the MF adapted clones. This clone carries two of
the mutations that repeatedly emerged during the evolution: an insertion into rfaI and an
insertion into fhuA (clone I Fig 3). By infecting mice in the intra-peritoneal cavity with either
the ancestral strain or the double mutant we find that, although mouse survival is similar for
both strains, the weight loss caused by the infection of the evolved strain was significantly
higher (P = 0.046 for strain and P = 0.003 for time, in a linear mixed effects model, with
mouse as a random effect and strain and day of infection as factors, see S2 Fig). Given that the
increased pathogenic potential of the double mutant was significant but not very strong we did
not test each of the single mutants. Besides weight loss, a common phenotype to assay pathoge-
nicity in vivo, we also measured temperature, but found no significant difference.

Pathoadaptation to macrophages can lead to metabolic trade-offs
Bacteria fully adapted to intracellular life tend to have small genomes [56]. Amongst the species
of E. coli, Shigella strains have undergone a considerable amount of genome reduction [57].
During its evolution from an extracellular inhabitant of the mammalian gut to an intracellular
pathogen, Shigella accumulated a plethora of pseudogenes, with genes coding for carbon utili-
zation, cell motility, transporter or membrane proteins more likely to become inactivated [58].
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While part of this gene loss may be the outcome of intensified genetic drift and inefficient selec-
tion, it can also be the result of positive selection for loss of anti-virulent functions, constituting
adaptive losses in the intracellular niche [56,59]. Such losses may entail antagonistic effects in
extracellular environments. We tested the adapted clones for differences in their ability to grow
on single carbon sources and found that some exhibited a strong metabolic trade-off when
growing on either glucose or maltose (Fig 6). We found that all the clones carrying the pathoa-
daptive loss of rfaI failed to reach high carrying capacity on minimal media with either of the
sugars. In contrast, the mutants with pathoadaptive mutations in tppB, involved in the trans-
port of peptides, showed increased growth in maltose (Fig 6, red lines). Interestingly, subse-
quent mutations on the rfaImutant background restore the ability to grow to similar levels as
the ancestor, showing that the pleotropic effects of such pathoadaptation can be compensated
to better grow on both poor and rich media.

Conclusions
Characterizing the evolutionary and genetic mechanisms underlying the transition from com-
mensal to pathogenic lifestyle is paramount in understanding the particularities of what makes

Fig 5. Bacterial survival under iron and or oxidative stress. Log10(Number of bacteria after 1h)- Log10 (Number bacteria at 0h) in the environments: (A)
Effect of Fe3+ depletion tested in minimal media supplemented with the indicated concentrations of Fe3+ and Ferrichrome; no significant difference between
evolved and ancestral clones could be detected (T-test, P = 0.8 and P = 0.6, n = 5) (B) Effect of H2O2 stress tested in minimal media supplemented 2mM of
H2O2; no significant difference between evolved and ancestral clones (T-test, P = 0.8, n = 10). (C) Fitness advantage of evolved clone is detected under both
selective pressures, i.e. minimal media supplemented with the Fe3+, Ferrichrome and 2mM of H2O2 (T-test, P = 0.016, P = 0.02, n = 5)

doi:10.1371/journal.pone.0146123.g005

Fig 6. Growth curves of evolved populations and the ancestral strain in minimal media with maltose
or glucose (0.4%). Each color on the growth curves represents similar patterns amongst the populations.

doi:10.1371/journal.pone.0146123.g006
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pathogens dangerous and often fatal to their hosts. Here, we followed the evolution of a com-
mensal strain of E. coli under the selective pressure imposed by the intracellular niche of MFs
to identify the most probable paths of this adaptation. All evolved populations show an
increased ability to survive in the presence of macrophages, as the result of acquisition of strong
beneficial mutations, which we estimate and measure to be around 7 to 10%, on average. The
characterization of their genetic basis unveiled mutation that were highly likely to be pathoa-
daptive mutations, namely those involving changes in LPS, crucial in the interaction with the
immune system, and in iron metabolism, essential for both protecting against high levels of
toxicity and to acquire the necessary resources to survive. Given the strong pressure imposed
in our experimental system, our results show that commensal bacteria are able to acquire adap-
tations to increase their intracellular survival at a fast pace. Importantly, the adaptive mutations
identified in this study suggest possible new therapeutic targets to counteract pathogenic intra-
cellular parasites.

Supporting Information
S1 Fig. Inferred Evolutionary Dynamics. Simulated dynamics of the model of positive selec-
tion [41] with the parameters that provide the best fit to the data of changes in marker frequen-
cies (displayed as points). Each color represents an independently evolved population.
(PDF)

S2 Fig. rfaI and fhuA double mutants increase weight loss in mice. The change in weight of
mice (as a percentage) after intra-peritoneal infection with ancestral or evolved (clone I) bacte-
ria.
(PDF)

S1 Table. Increase in bacterial loads along the experiment. The majority of lines show a sig-
nificant increase in bacterial loads. The slope of Log10(CFUs) along the 26 days of evolution,
from a linear regression, is indicated in the 1st column and P value of slope indicated in the 2nd

column.
(XLSX)

S2 Table. Correspondence between experimental and inferred fitness. The experimental val-
ues measured through competitive fitness assays are indicated with their errors (2SE), along
with the fitness inferred through the marker dynamics of the respective population. In the
majority of populations (with the exceptions of populations B, K and S), the two measures are
either in agreement or the inferred fitness is slightly overestimated (see the main text for dis-
cussion).
(PDF)
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