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ABSTRACT Multiparent populations (MPP) have become popular resources for complex trait mapping
because of their wider allelic diversity and larger population size compared with traditional two-way
recombinant inbred (RI) strains. In mice, the collaborative cross (CC) is one of the most popular MPP and is
derived from eight genetically diverse inbred founder strains. The strategy of generating RI intercrosses
(RIX) from MPP in general and from the CC in particular can produce a large number of completely
reproducible heterozygote genomes that better represent the (outbred) human population. Since both
maternal and paternal haplotypes of each RIX are readily available, RIX is a powerful resource for studying
both standing genetic and epigenetic variations of complex traits, in particular, the parent-of-origin (PoO)
effects, which are important contributors to many complex traits. Furthermore, most complex traits are
affected by .1 genes, where multiple quantitative trait locus mapping could be more advantageous. In this
paper, for MPP-RIX data but taking CC-RIX as a working example, we propose a general Bayesian variable
selection procedure to simultaneously search for multiple genes with founder allelic effects and PoO effects.
The proposed model respects the complex relationship among RIX samples, and the performance of the
proposed method is examined by extensive simulations.
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Mosthumangeneshave functionalmousecounterparts, andgenomesof
both organisms are organized similarly. Thus, mouse serves as a good
model organism for complex human diseases. Recombinant inbred (RI)
mice are among the major mouse resources in biomedical and genetic
research.However, traditionalmouse RI lines are derived fromonly two
inbredparental strains,with limitedanumberof linesavailable, resulting
in a low percentage (15%) of genetic variation across all mouse inbred

strains (Yuan et al. 2011) and extensive blind spots where a sizable
proportion of the genome is identical by descent. These limitations
make traditional RI insufficient for studying complex traits. With the
need for more powerful resources, multiparent populations (MPP) (de
Koning andMcIntyre 2017), a set of inbred lines usingmultiple lines as
founders, can overcome the limitations of traditional RI lines and have
become an innovative tool for fine quantitative trait locus (QTL) map-
ping. In the past 15 yr, different kinds of MPP have been established in
plants and animals, such as nested association mapping design (Yu
et al. 2008) and multiparent advanced generation intercross (MAGIC)
populations (Cavanagh et al. 2008; Kover et al. 2009; Huang et al. 2015;
Ladejobi et al. 2016) in plants, and theDrosophila Synthetic Population
Resource (King et al. 2012) in animals. The mouse MPP include the
collaborative cross (CC) (Complex Trait Consortium 2004), in which a
genetically diverse set of eight inbred strains were selected as breeding
founders (Iraqi et al. 2008) to generate a large number of RI lines. The
eight founder strains were predicted to represent �90% of the genetic
variation presented in laboratory mice (Threadgill and Churchill 2012).
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The CC thus greatly overcomes the limitations of the traditional mouse
RI lines, and is the only mammalian resource with high genome-wide
genetic variation that is uniformly distributed across a large, heteroge-
neous, and infinitely reproducible population (Threadgill et al. 2011).

Through the generation of RI intercrosses (RIX) of RI lines, a large
number of potential “outbred” RIX samples can be generated. That is,
given L RI lines, LðL2 1Þ or LðL2 1Þ=2 genetically distinct reciprocal
or nonreciprocal F1 individuals, or RIX, can be produced. An example
of using CC-RIX to illustrate a distinct response to Ebola virus infec-
tion, by Rasmussen et al. (2014), was summarized by the editor: “the
CC-RIXmice could prove valuable for preliminary screens of candidate
therapeutics and vaccines.” Since all parental RI lines are isogenic at
each locus, genotypes of RIX can be imputed in advance from those of
their parental RI lines. Additional advantages of RIX can be found in
Threadgill and Churchill (2012), in particular, its power in support of
analysis of parent-of-origin (PoO) effects, where effects of certain alleles
are different depending on whether those alleles are inherited mater-
nally or paternally. PoO makes a significant contribution to the heri-
tability of most complex traits (Mott et al. 2014). In addition, genomic
PoO effects provide a great model to study epigenetic regulation of gene
expression (Barlow 2011).

During the past 20 yr, QTL mapping methods, including analysis of
variance (ANOVA), interval mapping (Lander and Botstein 1989), com-
posite interval mapping (Jansen and Stam 1994; Zeng 1994), and multiple
interval mapping (Kao and Zeng 1997; Kao et al. 1999), have been well
developed using experimental crosses, such as backcross, F2, and RI (see
Broman (2001) for reviews), and many excellent open software packages,
such as QTLCart (Basten et al. 1999), MapManager (Manly and Olson
1999), and R/qtl (Broman et al. 2003), are freely available online. For diallel
data obtained from theCC founder strains, Lenarcic et al. (2012) employed
a general Bayesian model for decomposing phenotypic variance into bi-
ologically intuitive components. Crowley et al. (2014) also applied a Bayes-
ian method to a diallel cross of the eight founder strains to estimate
genome-wide genetic and PoO effects (not QTL mapping) on responses
to haloperidol, an antipsychotic drug. Zhang et al. (2014) proposed a
general single QTL Bayesian framework for MAGIC data to coherently
estimate haplotype and diplotype effects of founder alleles. Similarly, for
MAGIC data, Wei and Xu (2016) developed a single QTL mapping
method with a random-effects model by treating the founder allelic effects
of each locus as random, and scanning the entire genome one locus at a
time using a likelihood ratio test. For RIXmice, a mixed-effects model was
developed for modeling the unbalanced relatedness among them (Tsaih
et al. 2005; Zou et al. 2005). Gong andZou (2012) proposed amoreflexible,
nonparametric single QTLmappingmethod for detecting QTLwith time-
varying coefficients. Hallin et al. (2016) applied a random-effects model to
map single QTL by partitioning the variance of growth traits across dif-
ferent environments of yeast strains into additive, dominance, and pairwise
epistatic components. However, many complex traits are affected by .1
gene, and multiple QTL mapping may be more powerful than locus-by-
locus analysis. For CC-RIX data, Yuan et al. (2011) constructed a mixed-
effects model to simultaneously map multiple QTL, but treated the eight
CC founder alleles as standard biallelic single-nucleotide polymorphisms
(SNPs). For many complex traits, it is arguable that modeling the effects
of the eight founder alleles could lead to improved mapping power
(Collaborative Cross Consortium 2012; Vered et al. 2014). In addition,
for complex traits where PoO effects are suspected, modeling such effects
may further improve QTL mapping power (Lawson et al. 2013) and un-
derstanding of etiologies of complex traits (Threadgill and Churchill 2012).

In this paper, for MPP-RIX data, we develop a Bayesian variable
selection procedure to simultaneouslymapmultiple genes with founder
alleliceffects andPoOeffects.WedemonstrateourmethodwithCC-RIX

data, but themethod is general enough for otherMPP-RIXpopulations.
We place parameter-expanded Gaussian (PeG) priors on both the
random founder allelic effects and PoO effects for variable selection.

The paper is organized as follows. In the Statistical Method section, we
first introduce the CC-RIX experiment, then propose a random-effects
model and describe a Bayesian variable selection procedure. In the Simu-
lation Study section, we perform extensive simulation to examine the pro-
posed method. Summary comments are given in the Discussion section.

STATISTICAL METHOD
The CC-RIX panel is the RI intercross of CC lines. For L CC RI lines, a
total of LðL2 1Þ reciprocal CC-RIX and LðL2 1Þ=2 nonreciprocal
CC-RIX can be generated [see Figure 1 of Zou et al. (2005), Yuan
et al. (2011)]. Let n be the total number of CC-RIX samples and p be
the total number of genetic markers. Further, let the phenotype of
individual i (the dependent variable) be yi ði ¼ 1;⋯; nÞ:
Model
In order to account for the unbalanced relatedness between the CC-RIX
mice andmodel the eight founder alleles and PoO effects, we extend the
mixed additive random-effects model of Gong and Zou (2012) and
Yuan et al. (2011) as follows:

yi ¼ mþ
Xp
j¼1

gQjx
T
ijbj þ

Xp
j¼1

gPjz
T
ij jj þ

XL
l¼1

ailal þ ei (1)

where gQj and gPj are binary {0, 1} variables used to decide whether
the jth QTL and PoO should be included in or excluded from the
model and m is the overall mean; bj ¼ ðbj1;⋯;bj8ÞT and the kth
element of xTij equals 2, 1, or 0, depending on whether CC-RIXi

inherits 2, 1, or 0 copies of the kth founder allele (k = 1, ⋯, 8) at
the jth candidate locus; ail ¼ # of parents of CC-RIXi that are equal
to CC-RIl: Let A be an n · L matrix whose ði; lÞth element equals ail:
Clearly,

PL
l¼1ail [ 2 for all i = 1, 2,⋯, n, since each CC-RIX has two

and only two parents. Therefore, bjkðj ¼ 1;⋯; pÞ represents the kth
founder allelic effect of locus j, and alðl ¼ 1;⋯; LÞ represents the
random polygenic effect of founder strain l. We let al follow
Nð0;s2

aÞ ðl ¼ 1; 2;⋯; LÞ; and the random error ei follow Nð0;s2
e Þ

ði ¼ 1; 2;⋯; nÞ:
At a given locus, PoO effects can only be estimated from individuals

with heterogeneous genotypes, since for those with homozygote geno-
types, the parental contributions cannot be distinguished. Label the
eight-founder alleles A, B, C, D, E, F, G, and H by numbers 1–8, and let
the kth element of z ij ¼ ðzij1;⋯; zij8ÞT be equal to 1 or 21 if the
maternal or paternal allele of the ith subject at the jth locus equals
the kth founder allele, and 0 otherwise. For those CC-RIX samples with
a homozygous genotype at a given locus, such as AA or BB, we let
z ij9 ¼ 01·8: Therefore, jj ¼ ðjj1;⋯; jj8ÞT represents the PoO effects of
the jth locus.

Model (1) can be expressed by the following matrix form:

y ¼ mþ
Xp
j¼1

gQjxjbj þ
Xp
j¼1

gPjz jjj þ Aaþ e (2)

where y ¼ ðy1;⋯; ynÞT ; m ¼ m1n; xj ¼ ðx1j;⋯; xnjÞT ;
z j ¼ ðz1j;⋯; znjÞT ; a ¼ ða1;⋯;aLÞT ; e ¼ ðe1;⋯; enÞT ; and
1n ¼ ð1;⋯; 1ÞT :

To enable selection of QTL and PoO effects, we reexpress the eight-
dimensional vectorsbj and jj as the expanded parameters ~bj and ~jj for
j ¼ 1;⋯; p; respectively, such that ~bj ¼ gQjbj and ~jj ¼ gPjjj: This
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parameter-expansion idea was first proposed by Kuo and Mallick
(1998) and has an advantage in selecting important variables and
shrinking coefficients.

In the above model (2), the observed data are y; marker genotypes
x ¼ ðx1;⋯; xpÞ; PoO information matrix z ¼ ðz1;⋯; zpÞ, and paren-
tal CC-RI information matrix A: The unobserved variables include m,
b ¼ ðbT

1 ;⋯;bT
p ÞT ; j ¼ ðjT1 ;⋯; jTp Þ; a; s2

e ; s
2
a, and the indicators

gQ ¼ fgQ1;⋯; gQpg and gP ¼ fgP1;⋯; gPpg. We assign the follow-
ing conjugate Gaussian priors to the jth QTL and jth PoO effects as:

bj � N8

�
0;s2

QjI8
�

and jj � N8

�
0;s2

PjI8
�

for j ¼ 1;⋯; p:

For convenience, we name the above hierarchical priors for QTL and
PoO coefficients as PeG priors in the sequel. We assign conjugate
noninformation hyper-priors to the variance parameters

P
�
s2
Qj

�
}

1

s2
Qj
; P

�
s2
Pj

�
}

1

s2
Pj
; P

�
s2
a

�
}
�
s2
a

�d21
and

P
�
s2
e

�
}

1
s2
e

where dð0, d# 1=2Þ is used to ensure that the posterior distribution
is proper (ter Braak et al. 2005). The above PeG priors are equivalent
to “spike and slab” point mass mixture Gaussian priors (Mitchell and
Beauchamp 1988; George and McCulloch 1993) for the expanded
parameters

~bj � gQjd0 þ
�
12 gQj

�
N8

�
0;s2

QjI8
�

for j ¼ 1;⋯; p:

and

~jj � gPjd0 þ
�
12 gPj

�
N8

�
0;s2

PjI8
�

for j ¼ 1;⋯; p:

It is well known that these priors can achieve variable selection.
However, compared with mixture priors, the PeG priors can employ
a block Gibbs sampler to update the two blocks of parameters, one for
bs and js (corresponding to the selected predictors) and one for bu

and ju (corresponding to the unselected predictors) in turn, and
therefore can dramatically reduce computational time, especially for
high-dimensional data with large p.

For indicator variables gQj and gPj; we specify Bernoulli priors with
inclusion probability 0,hQj , 1 and 0,hPj , 1 for j ¼ 1;⋯; p; re-
spectively. To be more flexible, we further apply hierarchical uniform
priors to hQj and hPj :

hQj � U½0; 1�; and hPj � U½0; 1�; for j ¼ 1;⋯; p:

Lastly, we specify a flat prior on m as PðmÞ} 1:

Block Gibbs sampling algorithm for posterior
computation
The specific priors above result in known marginal conditional distri-
butions for all variables. The blockwise Gibbs sampling algorithm that
we employ can be summarized as follows:

First,we initiates2
a;s

2
e ;s

2
Q ¼ fs2

Q1;⋯;s2
Qpg;s2

P ¼ fs2
P1;⋯;s2

Ppg;
hQ ¼ fhQ1;⋯;hQpg, and hP ¼ fhP1;⋯;hPpg from uniform
distribution Uð0; 1Þ; then sample other parameters b; j; a, and in-
dicators gQ and gP from their priors. We then perform the following
block Gibbs sampling procedures. Superscripts ðtÞ and ðt þ 1Þ signify
the Markov chain Monte Carlo (MCMC) iterations, and t ¼ 0 refers
to the initial iteration.

Figure 1 ROC curves. (A–C) for cases 1, 2, and 3, respectively, and (D–F) for cases 1�; 2�, and 3�; respectively. The legends “POE”, “Mixed”,
“Yuan” and “LMM” represent our proposed model (2), the mixed model (3), Yuan’s model (5), and the LMM model (4), respectively.
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Step 1. Updating m: mðtþ1Þ is drawn from the normal distribution.

N

0
BBB@
1
n
1n9

0
@y2

Xp
j¼1

g
ðtÞ
Qjxjb

ðtÞ
j 2

Xp
j¼1

g
ðtÞ
Pj z jj

ðtÞ
j 2AaðtÞ

1
A;

s
2ðtÞ
e

n

1
CCCA

Step 2. Updating b : we divide the long vector bðtÞ into two blocks
bsðtÞ ¼

�
ðbðtÞ

s1 Þ9;⋯; ðbðtÞ
sm1
Þ9
�
9 and buðtÞ ¼

�
ðbðtÞ

u1 Þ9;⋯; ðbðtÞ
um0

Þ9
�
9

corresponding to the selected (gðtÞ
Qj ¼ 1) and unselected

(gðtÞ
Qj ¼ 0) predictors, respectively. We then sample

bðtþ1Þ
uh

ðh ¼ 1;⋯;m0Þ from their priors, i.e., the eight-dimen-
sional multivariate normal distribution with zero mean and co-
variance matrix s

2ðtÞ
Q;uh I8; and sample bðtþ1Þ

sh ðh ¼ 1;⋯;m1Þ from
the eight-dimensional multivariate normal distribution with mean

1
.
s2ðtÞ
e ΣðtÞ

bsh
ðxshÞ9

�
y2mðtþ1Þ1n 2

X
j, h

g
ðtÞ
Q;sjxsjb

ðtþ1Þ
sj

2
X

j. h
g
ðtÞ
Q;sjxsjb

ðtÞ
sj 2

Xp

j¼1
g
ðtÞ
Pj z jj

ðtÞ
j 2AaðtÞ

�

and covariance matrix ΣðtÞ
bsh

¼ s
2ðtÞ
Q;shðs

2ðtÞ
Q;sh=s

2ðtÞ
e ðxshÞ9xsh þ I8Þ21:

Step 3. Updating j : similar to Step 2, we divide jðtÞ into two parts,
jsðtÞ ¼ ððjðtÞs1 Þ9;⋯; ðjðtÞsm1

Þ9Þ9 and juðtÞ ¼
�
ðjðtÞu1 Þ9;⋯; ðjðtÞum0

Þ9
�
9

corresponding to the selected (gðtÞ
Pj ¼ 1) and unselected

(gðtÞ
Pj ¼ 0) predictors, respectively. Then jðtþ1Þ

uh
ðh ¼ 1;⋯;m0Þ is

sampled from their priors, i.e., the eight-dimensional multivari-
ate normal distribution with zero mean and covariance matrix
s
2ðtÞ
P;uh I8; and jðtþ1Þ

sh ðh ¼ 1;⋯;m1Þ is sampled from the eight-
dimensional multivariate normal distribution with mean

1
.
s2ðtÞ
e ΣðtÞ

jsh
ðzshÞ9

�
y2mðtþ1Þ1n 2

Xp

j¼1
g
ðtÞ
Qjxjb

ðtþ1Þ
j

2
X

j, h
g
ðtÞ
P;sjzsjj

ðtþ1Þ
sj 2

X
j. h

g
ðtÞ
P;sjzsjj

ðtÞ
sj 2AaðtÞ

�

and covariance matrix ΣðtÞ
jsh

¼ s
2ðtÞ
P;shðs

2ðtÞ
P;sh=s

2ðtÞ
e ðzshÞ9zsh þ I8Þ21:

Step 4. Updating a : aðtþ1Þ is drawn from the multivariate normal
distribution with mean

1
.
s2ðtÞ
e ΣðtÞ

a A9
�
y2mðtþ1Þ1n2

Xp

j¼1
g
ðtÞ
Qj xjb

ðtþ1Þ
j 2

Xp

j¼1
g
ðtÞ
Pj z jj

ðtþ1Þ
j

�

and covariance matrix ΣðtÞ
a ¼ s

2ðtÞ
a ðs2ðtÞ

a =s
2ðtÞ
e A9Aþ ILÞ21:

Step 5. Updating s2
Qjð1# j# pÞ : s2ðtþ1Þ

Qj is sampled from the scale-

inverted x2 distribution,
���bðtþ1Þ

j

���2.x2
8:

Step 6. Updating s2
Pjð1# j# pÞ : s2ðtþ1Þ

Pj is sampled from the scale-

inverted x2 distribution,
���jðtþ1Þ

j

���2.x2
8:

Step 7. Updating s2
a : the random-effects variance s2ðtþ1Þ

a is sampled

from the scale-inverted x2 distribution,
��aðtþ1Þ��2.x2

L22d:

Step 8. Updating s2
e : the residual variance s

2ðtþ1Þ
e is sampled from

the scale-inverted x2 distribution,���y2mðtþ1Þ1n2
Xp

j¼1
g
ðtÞ
Qj xjb

ðtþ1Þ
j 2

Xp

j¼1
g
ðtÞ
Pj z jj

ðtþ1Þ
j

2Aaðtþ1Þ
���2.x2

n

Step 9. Updating gQjð1# j# pÞ : g
ðtþ1Þ
Qj is sampled from

the Bernoulli distribution with success probability

pQðtÞj ¼ h
ðtÞ
Qj=

�
h
ðtÞ
Qj þ ð12h

ðtÞ
Qj ÞpQðtÞj0

�
; where

pQðtÞj0 ¼ exp

�
21

.
2s2ðtþ1Þ

e

�
2
�
KQðtÞ

j

�9
xjb

ðtþ1Þ
j

2
�
b
ðtþ1Þ
j

�9�
xj9xj

�
b
ðtþ1Þ
j

�	
;

and

KQðtÞ
j ¼ y2mðtþ1Þ1n 2

X
k, j

g
ðtþ1Þ
Qk xkb

ðtþ1Þ
k 2

X
k. j

g
ðtÞ
Qkxkb

ðtþ1Þ
k

2
Xp

j¼1
g
ðtÞ
Pj z jj

ðtþ1Þ
j 2Aaðtþ1Þ:

Step 10. Updating gPjð1# j# pÞ : g
ðtþ1Þ
Pj is sampled from

the Bernoulli distribution with success probability
pPðtÞj ¼ h

ðtÞ
Pj =

�
h
ðtÞ
Pj þ ð12h

ðtÞ
Pj ÞpPðtÞj0

�
; where

pPðtÞj0 ¼ exp

�
21

.
2s2ðtþ1Þ

e

�
2
�
KPðtÞ

j

�9
z jj

ðtþ1Þ
j

2
�
j
ðtþ1Þ
j

�9�
z j9z j

�
j
ðtþ1Þ
j


	
;

and

KPðtÞ
j ¼ y2mðtþ1Þ1n 2

Xp

j¼1
g
ðtþ1Þ
Qj xjb

ðtþ1Þ
j

2
X

k, j
g
ðtþ1Þ
Pk zkj

ðtþ1Þ
k 2

X
k. j

g
ðtÞ
Pkzkj

ðtþ1Þ
k 2Aaðtþ1Þ:

Step 11. Updating hQjð1# j# pÞ : hðtþ1Þ
Qj is sampled from the beta

distribution Betað1þ g
ðtþ1Þ
Qj ; 22 gQj

ðtþ1ÞÞ:
Step 12. Updating hPjð1# j# pÞ : hPj

ðtþ1Þ is sampled from the beta
distribution Betað1þ g

ðtþ1Þ
Pj ; 22 g

ðtþ1Þ
Pj Þ:

Data availability
Supplemental Material, File S1 contains five supplemental figures. The
MATLAB code used to analyze the simulated data is provided in File S2.

SIMULATION STUDY
In this section,we run extensive simulations to evaluate theperformance
of the proposedBayesianmethod.We apply the loop design in Zou et al.
(2005) and Yuan et al. (2011) by ordering the L CC-RI lines randomly
and forming them into a circle, and then mating each CC-RI line
(clockwise) with the next three CC-RI lines after it (i.e., CC-RI1 mated
with CC-RI2; CC-RI3, and CC-RI4; CC-RI2mated with CC-RI3,
CC-RI4, and CC-RI; and so on). For L ¼ 100; in this way, we can
generate a total of n ¼ 300 CC-RIX samples. Parental CC-RI geno-
types are simulated in R/qtl (Broman et al. 2003). All the simulation
results are based on total 100 replications for each simulation setup.

In model (2), we set the overall mean m = 1, the variance of random
errors s2

e ¼ 1; the polygenic effect variance s2
a ¼ 1, and d ¼ 1023:

Nineteen chromosomes each with a length of 70 cM are simulated,
on which total p = 133, 266, and 1330 evenly spaced markers (resulting
in 10-, 5-, and 1-cM intervals between nearby markers on each chro-
mosome, named cases 1–3) are generated, corresponding to three
marker density cases. Among the total p simulated markers, we ran-
domly select five markers, and let the first three markers have QTL
effects the last three markers have PoO effects. That is, the first two

602 | Y. Liu et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300483/-/DC1/FileS1.docx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300483/-/DC1/FileS2.zip


genes only have QTL effects, and the last two only have PoO effects.
However, the middle-selected marker has both QTL and PoO effects.
The corresponding variances of QTL or PoO effects of the selected
markers are all set to 1.

To better assess the performance of our method in situations where
multiple nearby SNPs jointly affect the outcome, for cases 1–3, we now
let the number of causal SNPs in each of the first two QTL be 2 instead
of 1. Specifically, we randomly select two nearby SNPs for each of the
first two simulatedQTL and denote the alleles of the two SNPsA and a.
Based on the haplotype frequencies fAA; fAa; faA, and faa (without loss of
generality, we assume that fAA $ fAa$ faA$ faa), we create three hap-
lotype allelic groups, where haplotypeAA is group 1,Aa is group 2, and
the other two are group 3, and set the genetic effects of the three groups
to 1, 2, and 3, respectively. The three new simulation setups are labeled
as cases 1� to 3�:

For each simulated data point, we generate a single long chain with
20,000 cycles, of which the first 10,000 cycles are discarded as burn-in,
resulting in a total of 10,000 samples for post-MCMC analysis. All the
analysis is done in MATLAB, and the MATLAB source code is sub-
mitted as supplemental material (File S2).

For comparison, we fit each simulated data point with the following
three models.

The same model as (2), but without the PoO terms

y ¼ mþ
Xp
j¼1

gQjxjbj þ Aaþ e (3)

All thepriors are set tobe the sameas their counterparts inmodel (2). For
convenience, we subsequently call model (3) the “mixed model”.

Linear mixed-effects model (LMM) for single
gene mapping

y ¼ xjbj þ z jjj þ Aaþ e; 1# j# p: (4)

Here, randomeffectsa � Nð0;s2
aILÞ and randomerrors e � Nð0;s2

e InÞ;
and the random effects a are also assumed to be independent of the
random errors e as before. Moreover, bj ¼ ðbj1;⋯;bj8Þ9 and
jj ¼ ðjj1;⋯; jj8Þ9 are the fixed QTL and PoO effects, respectively,
of the jth tested locus. Given the constraints that

P8
k¼1xijk ¼ 2 andP8

k¼1zijk ¼ 0 for i ¼ 1;⋯; n; j ¼ 1;⋯; p; we force the intercept m in
model (4) to be 0 to overcome the identifiability problem, and jointly
test the effects of the jth locus as:

H0j : bj1 ¼ bj2 ¼ ⋯ ¼ bj8;& jj1 ¼ jj2 ¼ ⋯ ¼ jj8:

In contrast toH1j, some of the equations in H0j are not satisfied. After
obtaining the maximum likelihood estimates of the parameters in
model (4), we perform a test with the following log-odds ratio (LOD):

LODj ¼ log10
L1j
L0j

which is equivalent to the log-likelihood ratio test, whereL0j andL1j are
the likelihood of model (4) under null hypothesis H0j and alternative
hypothesis H1j; respectively. Since the above hypothesis test is per-
formed p times, it is necessary to find an appropriate significance
threshold to control the multiple testing, which can be obtained, for
example, by modified permutation procedures (Zou et al. 2005).

However, in our comparison, we evaluate the receiver operating char-
acteristic (ROC) curve, which only requires the use of LOD scores.

Yuan’s Bayesian method

yi ¼ mþ
Xp
j¼1

zijaj þ
XL
l¼1

ailal þ ei (5)

Here, aj is the effect of the jth putative QTL with zij ¼
ffiffiffi
2

p
mij, where

mijði ¼ 1;⋯; n; j ¼ 1;⋯; pÞ equals 21, 0, or 1 if the putative QTL
genotype is aa; Aa, orAA; respectively. The other parameters are set the
same as those in the mixed model. The prior of aj is set toNð0;s2

j Þ; 1#
j # p in Yuan et al. (2011).

To compare the methods, ROC curves (Fawcett 2006), where true
positive rates (also known as sensitivity) are plotted against false pos-
itive rates (also known as 1-specificity) evaluated at various threshold
cut-offs. To estimate the sensitivity (the proportion of positives that are
correctly identified as such) and specificity (the proportion of negatives
that are correctly identified as such), we define false and true positive
findings as follows. If a detected locus falls no more than 10 cM apart
from any simulated genes, we call it a true positive finding, otherwise a
false positive finding. Then, combining the outputs of each model for
the 100 data sets, we can calculate the corresponding sensitivity and
specificity. Specifically, for the jth marker, we record the LOD scores,
LODj, for the LMMmodel; the maximum posterior frequency between
gQj and gPj for our proposed method; the posterior frequency gQj for
the mixed model; and the posterior mean of s2

j for Yuan’s model. The
corresponding area under the ROC curve (AUC) is also calculated for
each of the four models, and the results are presented in Table 1.
Generally speaking, a model with a higher AUC value indicates on
average a better performance compared with those with lower AUC
scores (Fawcett 2006).

From Table 1, it is clear that our proposed method outperforms the
other three methods for all cases, regardless of whether there is a single
causal SNP or multiple causal SNPs in each QTL. Yuan’s method fails
in all the simulated cases, which is expected as the method only models
biallelic SNP effects instead of the founder allelic effects that we simu-
late. The LMM model outperforms the mixed model, in particular
when the marker density is sparse. This phenomenon is further con-
firmed by Figure 1, where the ROC curves of the proposed method are
always higher than the ROC curves of the other three methods; the
ROC curves of Yuan’s model fall along the 45-degree line, indicating its
low power for mapping genes with founder allelic effects. The ROC
curves of the LMM model fall between those of our proposed model
and the mixed model in cases 1 and 2, and cases 1� and 2�; but cross

n Table 1 Simulation settings and AUC values

Case ISa p AUCP
b AUCM

c AUCY
d AUCL

e

1 10 133 0.9642 0.8499 0.5155 0.9436
2 5 266 0.9722 0.9022 0.5029 0.9463
3 1 1330 0.9915 0.9489 0.5000 0.9525
1� 10 133 0.9499 0.6885 0.5085 0.9264
2� 5 266 0.9624 0.9056 0.4998 0.9238
3� 1 1330 0.9908 0.9393 0.5040 0.9482
a
Interval space (IS; cM) between nearby markers.

b
AUC values of our proposed model (2).

c
AUC values of the mixed model (3).

d
AUC values of Yuan’s model (5).
e
AUC values of the LMM model (4).
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with the ROC curves of themixedmodel in cases 3 and 3�: Figure 1 and
Table 1 show that themapping precisions of all the methods increase as
the number of markers increases, as expected.

Figure 2 presents the Manhattan plots of the four models based on
the average estimate of a total of 100 replications across the whole
genome for case 1. Clearly, our proposed method is the winner in
mapping genes with founder allelic effects (marked by an asterisk)
and PoO effects (marked by a circle). The Manhattan plots for cases
2 and 3, and cases 1�; 2�, and 3�, are included in Figures S1–S5 in File
S1, respectively, and show similar patterns.

DISCUSSION
The CC (Threadgill and Churchill 2012), a panel of newly emerged
multiparent RI mouse strains, was developed, similar to otherMPPs, to
provide greater genetic diversity than the traditional RI populations
and thereby to improve our power of understanding of complex traits.
CC-RIX, F1 crosses that are generated from parental CC RI lines (Zou
et al. 2005) can serve as excellentmousemodels formapping genes with
both traditional genetic effects and epigenetic effects, such as imprint-
ing. This study extends the model of Gong and Zou (2012) and Yuan
et al. (2011) and, to the best of our knowledge, it is the first use of
Bayesian variable selection methods to jointly map multiple QTL with
both founder allelic effects and PoO effects for MPP-RIX data, in
particular, CC-RIX data.

In this article, it is assumed that the RI lines are equally distanced
from each other in terms of genetic distance which is a sensible
assumption given the funnel design used for generating CC RI lines.
However, we do observe that some RI lines sharemore or fewer founder
alleles than expected. Our limited simulation shows that such genetic
unbalance has a negligible effect on mapping genes, but this issue
deserves further investigation.Alternatively, as genotypesof theparental
RI lines are available, we could modify the design matrices xj; z j, and A
in model (1) and replace them with local and genome-wide similarity
matrices as done in sequence kernel association tests (SKAT) (Ionita-
Laza et al. 2013) and genome-wide complex trait analysis (GCTA)

(Yang et al. 2011). In addition, in our model we assume additive foun-
der allelic effects. This assumption can be easily relaxed to allow genes
with both additive and dominance effects (Woods et al. 2012; Zhang
et al. 2014). Because dominant genetic effects are orthogonal to PoO
effects, missing the dominant genetic effects does not cause any bias in
the PoO effects estimate.

One of the drawbacks of Bayesian methods is their computational
cost, especially for datawith large numbers of samples andmarkers.Our
model employs a block Gibbs sampler, which dramatically reduces
computational time. However, further improvements may be possible.
For example, instead of modeling each marker separately, we could
jointly model multiple nearby markers and reduce the magnitude of p.
Similar ideas have been proposed for genome-wide association study
data (Wu et al. 2010; Lu et al. 2015). This approach is also biologically
meaningful, since for some complex traits multiple causal SNPsmay be
located in a single region, and our simulations (cases 1�–3�) have
shown that the proposed method is powerful in mapping regions with
multiple causal SNPs. However, grouping nearbymarkers or SNPsmay
offer further help in improving mapping power, which deserves more
thorough investigation.
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