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Abstract

Rationale: New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including
sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional
response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help
distinguish diseases with similar clinical presentations.

Objectives: To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and
tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases.

Methods: We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary
tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after
treatment, and in purified leucocyte populations.

Measurements and Main Results: An Interferon-inducible neutrophil-driven blood transcriptional signature was present in
both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis
signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an
over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and
pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a
significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung
diseases and controls.

Conclusions: Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible
transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were
also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the
heterogeneity of their profiles and their transcriptional response to treatment.
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Introduction

Approximately nine million new cases of active tuberculosis

(TB), and 1.4 million deaths from TB, are estimated to occur

globally each year [1]. Prompt diagnosis is vital to avoid treatment

delay, hence the ability to discriminate TB from other pulmonary

conditions which can present similarly to TB, such as sarcoidosis,

or have an acute (community acquired pneumonia) or chronic

(primary lung cancer) presentation is important.

TB and sarcoidosis are widespread multisystem diseases that

preferentially involve the lung and often present in a similar

clinical, radiological and histological manner. Distinguishing these

diseases therefore can require an invasive biopsy. Granuloma

formation is fundamental to both conditions and although the

pathogen Mycobacterium tuberculosis is recognised as the aetiological

cause of TB, what underlies sarcoidosis is unknown [2]. The

pathways involved in granulomatous inflammation are also poorly

understood and there is little understanding of disease-specific

differences. TB and sarcoidosis can also display a similar

presentation to acute pulmonary infectious diseases such as

community acquired pneumonia and chronic lung disorders such

as primary lung cancer.

Given the complexity of these diseases a systems biology

approach may help unravel the principal host immune responses.

Peripheral blood has the capacity to reflect pathological and

immunological changes elsewhere in the body, and identification

of disease associated alterations can be determined by a blood

transcriptional signature [3]. In support of this concept, we

recently demonstrated an interferon (IFN)-inducible blood signa-

ture in patients with pulmonary TB from London and South

Africa [4], which has now been validated in three independent

studies in Africa [5,6] and Indonesia [7]. Blood gene expression

profiling has also been successfully applied to other infectious and

inflammatory disorders, such as systemic lupus erythematosus

(SLE), to help understand disease mechanisms and improve

diagnosis and treatment [3]. Two recent studies have used blood

transcriptional profiling for the comparison of pulmonary TB and

sarcoidosis; both studies found the diseases had similar transcrip-

tional responses, which involved the overexpression of IFN-

inducible genes [8,9]. However these studies did not examine

other similar pulmonary diseases raising the question of whether

these transcriptional signatures also reflected other pulmonary

disorders.

The main objective of our study was to improve our

understanding of the immunopathogenesis underlying sarcoidosis

and TB by comparing the blood transcriptional responses in

pulmonary TB patients to that found in pulmonary sarcoidosis,

pneumonia and lung cancer patients. We also compared the blood

transcriptional responses before and after treatment in each

disease, and examined the transcriptional responses seen in the

different leucocyte populations of the granulomatous diseases.

In addition we investigated the association in sarcoidosis

between clinical activity and the observed blood transcriptional

heterogeneity.

Methods

Study Population and Inclusion Criteria
The majority of the TB patients were recruited from Royal Free

Hospital NHS Foundation Trust, London. The sarcoidosis

patients were recruited from Royal Free Hospital NHS Founda-

tion Trust, St Mary’s Hospital Imperial College NHS Trust,

Barnet and Chase Farm NHS Trust in London, the Oxford

Sarcoidosis Clinic, Churchill Hospital in Oxford, and the

Avicenne Hospital in Paris. The pneumonia patients were

recruited from Royal Free Hospital, London. The lung cancer

patients and 5 of the TB patients in the Test Set were recruited by

the Lyon Collaborative Network, France. All patients were

recruited consecutively over time such that the Training Set was

recruited first followed by the Test Set, Validation Set and lastly

Table 1. Summary of participant numbers in each cohort.

Pulmonary Granulomatous
Diseases Other Pulmonary Diseases TOTAL

TB Sarcoidosis Pneumonia Lung cancer Healthy controls

Training Set 16 25 8 8 38 95

Test Set 11 25 6 8 52 102

Validation Set 8 11 23 42

TOTAL 35 61 14 16 113 239

doi:10.1371/journal.pone.0070630.t001
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the patients’ samples that were used in the cell purification.

Additional blood gene expression data were obtained from

pulmonary and latent TB patients recruited and analysed in our

earlier study which were then re-analysed in this study when

comparing responses before and after TB treatment [10].

The inclusion criteria were specific for each disease. Pulmonary

TB patients: culture confirmed Mycobacterium tuberculosis in either

sputum or bronchoalveolar lavage; pulmonary sarcoidosis: diag-

nosis made by a sarcoidosis specialist, granuloma’s on biopsy,

compatible clinical and radiological findings (within 6 months of

recruitment) according to the WASOG guidelines [11]; commu-

nity acquired pneumonia patients: fulfilled the British Thoracic

Society guidelines for diagnosis [12]; lung cancer patients:

diagnosis by a lung cancer specialist, histological and radiological

features consistent with primary lung cancer; healthy controls:

their gender, ethnicity and age were similar to the patients,

negative QuantiFERON-TB Gold In-Tube (QFT) (Cellestis) test.

The exclusion criteria for all patients and healthy controls included

significant other medical history (including any immunosuppres-

sion such as HIV infection), aged below 18 years or pregnant.

Patients were recruited between September 2009 and March

2012. Patients were recruited before commencing treatment unless

otherwise stated.

Ethics Statement
This study was approved by the Central London 3 Research

Ethics Committee (09/H0716/41) and CPP Sud-Est IV, France,

CCPPRB, Pitié-salpétrière Hospital, Paris. All participants gave

written informed consent.

IFNc Release Assay Testing
The QFT Assay (Cellestis) was performed according to the

manufacturer’s instructions.

Gene Expression Profiling
3ml of whole blood were collected into Tempus tubes (Applied

Biosystems/Ambion) by standard phlebotomy, vigorously mixed

immediately after collection, and stored between 220 and 280uC
before RNA extraction. RNA was isolated using 1.5ml whole

blood and the MagMAX-96 Blood RNA Isolation Kit (Applied

Biosystems/Ambion) according to the manufacturer’s instructions.

250 mg of isolated total RNA was globin reduced using the

GLOBINclear 96-well format kit (Applied Biosystems/Ambion)

according to the manufacturer’s instructions. Total and globin-

reduced RNA integrity was assessed using an Agilent 2100

Bioanalyzer (Agilent Technologies). RNA yield was assessed using

a NanoDrop8000 spectrophotometer (NanoDrop Products,

Thermo Fisher Scientific). Biotinylated, amplified antisense

complementary RNA (cRNA) targets were then prepared from

200–250ng of the globin-reduced RNA using the Illumina

CustomPrep RNA amplification kit (Applied Biosystems/Am-

bion). 750 ng of labelled cRNA was hybridized overnight to

Illumina Human HT-12 V4 BeadChip arrays (Illumina), which

contained more than 47,000 probes. The arrays were washed,

blocked, stained and scanned on an Illumina iScan, as per

manufacturer’s instructions. GenomeStudio (Illumina) was then

used to perform quality control and generate signal intensity

values.

Cell Purification and RNA Processing for Microarray
Whole blood was collected in sodium heparin. Peripheral blood

mononuclear cells (PBMCs) were separated from the granulo-

cytes/erythrocytes using a LymphoprepTM (Axis-Shield) density

gradient. Monocytes (CD14+), CD4+ T cells (CD4+) and CD8+ T

cells (CD8+) were isolated sequentially from the PBMCs using

magnetic antibody-coupled (MACS) whole blood beads (Miltenyi

Biotec, Germany) according to manufacturer’s instructions.

Neutrophils were isolated from the granulocyte/erythrocyte layer

Figure 1. Pulmonary granulomatous diseases display similar transcriptional signatures that are distinct from pneumonia and lung
cancer. 1446-transcripts were differentially expressed in the whole blood of the Training Set healthy controls, pulmonary TB patients, pulmonary
sarcoidosis patients, pneumonia patients and lung cancer patients. The clustering of the 1446-transcripts were tested in an independent cohort from
which they were not derived from, the Test Set. The heatmap shows the transcripts and Test Set patients’ profiles as organised by the unbiased
algorithm of unsupervised hierarchical clustering. A dotted line is added to the heatmap to help visualisation of the main clusters generated by the
clustering algorithm. Transcript intensity values are normalised to the median of all transcripts. Red transcripts are relatively over-abundant and blue
transcripts under-abundant. The coloured bar at the bottom of the heatmap indicates to which group the profile belongs.
doi:10.1371/journal.pone.0070630.g001
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after red blood cell lysis followed by CD15+ MACS beads

(Miltenyi Biotec, Germany). RNA was extracted from whole blood

(59 Prime PerfectPure Kit) or separated cell populations (Qiagen

RNeasy Mini Kit). Total RNA integrity and yield was assessed as

described above. Biotinylated, amplified antisense complementary

RNA (cRNA) targets were then prepared from 50 ng of total RNA

using the NuGEN WT-OvationTM RNA Amplification and

Encore BiotinIL Module (NuGEN Technologies, Inc). Amplifed

Figure 2. Three dominant clusters of the 1446 differentially expressed transcripts are associated with distinct biological pathways.
Each of the three dominant clusters of transcripts is associated with different study groups in the Training Set. The top transcript cluster is over-
abundant in the pneumonia and cancer patients and significantly associated with IPA pathways relating to inflammation (Fisher’s exact with
Benjamini Hochberg FDR = 0.05). The middle transcript cluster is over-abundant in the TB and sarcoidosis patients and significantly associated with
IFN signalling and other immune response IPA pathways (Fisher’s exact with Benjamini Hochberg FDR = 0.05). The bottom transcript cluster is under-
abundant in all the patients and significantly associated with T and B cell IPA pathways (Fisher’s exact Benjamini Hochberg FDR = 0.05).
doi:10.1371/journal.pone.0070630.g002

The Blood Transcriptome of Pulmonary Diseases

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e70630



RNA was purified using the Qiagen MinElute PCR purification

kit (Qiagen, Germany). cRNA was then handled as described

above.

Raw Data Processing
Raw data were processed using GeneSpring GX version 11.5

(Agilent Technologies) and the following was applied to all

analyses. After background subtraction each probe was attributed

a flag to denote its signal intensity detection p-value. Flags were

used to filter out probe sets that did not result in a ‘present’ call in

at least 10% of the samples, where the ‘present’ lower cut

off = 0.99. Signal values were then set to a threshold level of 10,

log2 transformed, and per-chip normalised using 75th percentile

shift algorithm. Next per-gene normalisation was applied by

dividing each messenger RNA transcript by the median intensity

of all the samples. All statistical analysis was performed after this

stage. Raw microarray data has been deposited with GEO

(Accession number GSE42834). All data collected and analysed in

Figure 3. Active sarcoidosis signatures are similar to TB but distinct from non-sarcoidosis which resembles healthy controls. 1396-
transcripts are differentially expressed in the whole blood of the Training Set after applying the analysis across six groups to include the two
phenotypes of sarcoidosis patients. (A) The 1396 transcripts and Training Set patients’ profiles are organised by unsupervised hierarchical clustering.
A dotted line is added to the heatmap to clarify the main clusters generated by the clustering algorithm. Transcript intensity values are normalised to
the median of all transcripts. (B) Molecular distance to health of the 1396 transcripts in the Training and Test sets demonstrates the quantification of
transcriptional change relative to the controls. The mean, SEM and p-values are displayed (ANOVA with Tukey’s multiple comparison test).
doi:10.1371/journal.pone.0070630.g003
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Figure 4. Modular analysis shows similar pathways associated with TB and sarcoidosis, differing from pneumonia and cancer. (A)
Gene expression levels of all transcripts that were significantly detected compared to background hybridisation (15212 transcripts, p,0.01) were
compared in the Training Set between each patient group: TB, active sarcoidosis, non-active sarcoidosis, pneumonia, lung cancer, to the healthy
controls. Each module corresponds to a set of co-regulated genes that were assigned biological functions by unbiased literature profiling. A red dot
indicates significant over-abundance of transcripts and a blue dot indicates significant under-abundance (p,0.05). The colour intensity correlates
with the percentage of genes in that module that are significantly differentially expressed. The modular analysis can also be represented in graphical
form as shown in (B)–(E), including both the Training and Test Set samples. The mean, SEM and p-values are displayed (ANOVA with Tukey’s multiple
comparison test). (B) The percentage of genes significantly overexpressed in the 3 IFN modules for each disease. (C) The fold change of the
expression of the genes present in the IFN modules compared to the controls. (D) The percentage of genes significantly overexpressed in the 5
inflammation modules for each disease. (E) The fold change of the expression of the genes present in the inflammation modules compared to the
controls.
doi:10.1371/journal.pone.0070630.g004

Figure 5. Comparison analysis of the diseases compared to matched controls reveals the four most significant pathways.
Differentially expressed genes were derived from the Training Set by comparing each disease to healthy controls matched for ethnicity and gender:
TB = 2524, active sarcoidosis = 1391, pneumonia = 2801 and lung cancer = 1626 transcripts ($1.5 fold change from the mean of the controls, Mann
Whitney with Benjamini Hochberg FDR = 0.01). (A) IPA canonical pathways was used to determined the most significant pathways (i-iv) associated
with each disease relative to the other diseases (Fisher’s exact with Benjamini Hochberg FDR = 0.05). The bottom x-axis and bars of each graph
indicates the log (p-value) and the top x-axis and line indicates the percentage of genes present in the pathway. The genes in the EIF2 signalling
pathway are predominately under-abundant genes however the genes in the other three pathways are predominantly over-abundant relative to the
controls. Pathways above the blue dotted line are significant (p,0.05). (B) The IFN signalling IPA pathway is overlaid onto each disease group.
Coloured genes are differentially expressed in that disease group compared to their matched controls (Fisher’s exact FDR = 0.05). Red genes represent
over-abundance and green under-abundance. The pathway for TB is shown enlarged so the detail of the genes can be seen, it is also shown again in
a much smaller scale besides the other diseases so that a visual comparison can be more easily made.
doi:10.1371/journal.pone.0070630.g005
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Figure 6. Unlike TB and pneumonia, successful treatment of sarcoidosis was associated with increased transcriptional activity. (A)
Modular analysis. Gene expression levels of all transcripts that were significantly detected compared to background hybridisation in at least 10% of
samples (p,0.01) were compared between the healthy controls and each of the following the patient groups: pre-treatment pneumonia, post-
treatment pneumonia patients and pre-treatment sarcoidosis, inadequate treatment response sarcoidosis and good-treatment response sarcoidosis
patients. A red dot indicates significant over-abundance of transcripts and a blue dot indicates under-abundance (p,0.05). The colour intensity
correlates to the percentage of genes in that module that are significantly differentially expressed. MDTH demonstrates the quantification of
transcriptional change after treatment in the 1446-transcripts relative to controls. The mean, SEM and p-values are displayed (ANOVA with Tukey’s
multiple comparison test). (B) Pneumonia patients. (D) Sarcoidosis patients. (C) TB patients from the Bloom et al study carried out in South Africa, the
controls in this study were participants with latent TB.
doi:10.1371/journal.pone.0070630.g006
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Figure 7. IFN-inducible gene expression is most abundant in the neutrophils in both TB and sarcoidosis. The expression of IFN-
inducible genes were measured in purified leucocyte populations from whole blood. (A) Heatmap shows the expression of IFN-inducible transcripts,
from the Berry et al 2010 study, for each disease group normalised to the controls for that cell type. (B) The mean expression fold change in the TB
samples of the same IFN-inducible transcripts. (C) The mean expression fold change in the sarcoidosis samples of the same IFN-inducible transcripts.
(D) The mean expression fold change in the TB samples of all the genes present in the three IFN modules compared to the controls. (E) The mean
expression fold change in the sarcoidosis samples of all the genes present in the three IFN modules compared to the controls. Graphs show mean
and SEM.
doi:10.1371/journal.pone.0070630.g007
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Table 2. 144 transcripts.

Symbol FC Exp. Symbol FC Exp. Symbol FC Exp.

C1QB 10.6 UP LOC653610 1.9 UP PLAC8 1.6 UP

LOC100133565 6.4 UP CST7 1.9 UP BAGE5 1.6 UP

TDRD9 5.3 UP LILRB4 1.9 UP DUSP3 1.6 UP

ABCA2 5.3 UP MSL3L1 1.9 UP SLC22A4 1.6 UP

SMARCD3 5.3 UP HIST1H2BG 1.9 UP LOC645159 1.6 UP

CACNA1E 5.1 UP OSM 1.9 UP IL4R 1.6 UP

HP 4.2 UP LILRA5 1.9 UP FLJ32255 1.6 UP

NTN3 4.2 UP GPR97 1.9 UP HIST2H2AA3 1.6 UP

LOC100008589 3.3 UP HIST2H2AC 1.9 UP PLAC8 1.6 UP

CARD17 3.3 UP LILRA5 1.8 UP SH3GLB1 1.6 UP

LOC441763 3.2 UP TLR5 1.8 UP PLSCR1 1.6 UP

ERLIN1 3.1 UP LOC728417 1.8 UP IFI35 1.6 UP

SLPI 3.1 UP MSL3 1.8 UP TAOK1 1.6 UP

SLC26A8 2.9 UP HPSE 1.8 UP MCTP1 1.6 UP

AIM2 2.8 UP RGL4 1.8 UP CEACAM1 1.6 UP

INCA 2.8 UP CYP1B1 1.8 UP B4GALT5 1.6 UP

OPLAH 2.7 UP HIST2H2AA3 1.8 UP COP1 1.6 UP

LPCAT2 2.6 UP AGTRAP 1.8 UP PROK2 1.6 UP

Sep-04 2.5 UP PFKFB3 1.8 UP IFI30 1.6 UP

DISC1 2.5 UP GNG8 1.8 UP FCER1G 1.5 UP

ZFP91 2.5 UP LTB4R 1.8 UP ZNF438 1.5 UP

UBE2J2 2.4 UP H2AFJ 1.8 UP EEF1D 1.5 UP

KREMEN1 2.4 UP LILRA5 1.8 UP MIR21 1.5 UP

ALPL 2.3 UP ABCA1 1.8 UP NGFRAP1 1.5 UP

LOC100008589 2.3 UP SULT1B1 1.8 UP PGS1 1.5 UP

KCNJ15 2.2 UP GYG1 1.7 UP KIF1B 1.5 UP

C19orf59 2.2 UP IFITM1 1.7 UP C16orf57 1.5 UP

FCGR1A 2.2 UP SVIL 1.7 UP ANKRD33 1.5 UP

SPATA13 2.2 UP DGAT2 1.7 UP MXD4 21.5 DOWN

ADM 2.2 UP MEFV 1.7 UP ZSCAN18 21.6 DOWN

CDK5RAP2 2.2 UP PIM3 1.7 UP MEF2D 21.6 DOWN

SNORA73B 2.2 UP MTRF1L 1.7 UP BHLHB2 21.7 DOWN

TncRNA 2.1 UP MAZ 1.7 UP CLC 22.3 DOWN

PPAP2C 2.1 UP HIST2H2AA4 1.7 UP FCER1A 22.5 DOWN

IFITM3 2.1 UP LOC728519 1.7 UP SRGAP3 22.6 DOWN

FCGR1B 2.1 UP SMARCD3 1.7 UP FLJ43093 22.8 DOWN

JMJD6 2.1 UP LOC641710 1.7 UP CCR3 22.9 DOWN

HIST1H3D 2.1 UP HIST2H2BE 1.7 UP EMR4 23 DOWN

LMNB1 2 UP ITPRIPL2 1.7 UP ZNF792 23.1 DOWN

S100A12 2 UP FKBP5 1.7 UP C10orf33 23.5 DOWN

FCGR1C 2 UP IFNAR1 1.6 UP CACNG6 23.8 DOWN

LOC653591 2 UP LY96 1.6 UP P2RY10 24.2 DOWN

LOC100132394 2 UP GPR109A 1.6 UP GATA2 24.6 DOWN

SLC26A8 2 UP DHRS13 1.6 UP EMR4P 26.6 DOWN

ANXA3 2 UP IL18R1 1.6 UP ESPN 27 DOWN

NLRC4 1.9 UP GPR109B 1.6 UP EMR4 29.3 DOWN

LILRA6 1.9 UP AGTRAP 1.6 UP

The 144 transcripts are differentially expressed genes between the TB and active sarcoidosis profiles in the Training Set (significance analysis of microarray q,0.05, fold
change $1.5). FC = Fold change TB versus active sarcoidosis. Exp. = Regulation of expression.
doi:10.1371/journal.pone.0070630.t002
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the experiments adhere to the Minimal Information About a

Microarray Experiment (MIAME) guidelines.

Data Analysis
GeneSpring 11.5 was used to select transcripts that displayed

expression variability from the median of all transcripts (unsuper-

vised analysis). A filter was set to include only transcripts that had

at least twofold changes from the median and present in $10% of

the samples. Unsupervised analysis was used to derive the 3422-

transcripts. Applying a non-parametric statistical filter (Kruskal

Wallis test with a FDR (Benjamini Hochberg) = 0.01), after the

unsupervised analysis, generated the 1446-transcript and 1396-

transcript signatures. The two signatures differed only in which

groups the statistical filter was applied across; 1446, five groups

(TB, sarcoidosis, pneumonia, lung cancer and controls) and 1396,

six groups (TB, active sarcoidosis, non-active sarcoidosis, pneu-

monia, lung cancer and controls).

Differentially expressed genes for each disease were derived by

comparing each disease to a set of controls matched for ethnicity

and gender within a 10% difference. GeneSpring 11.5 was used to

select transcripts that were $1.5 fold different in expression from

the mean of the controls and statistically significant (Mann

Whitney unpaired FDR (Benjamini Hochberg) = 0.01). Compar-

ison Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, Inc.,

Redwood, CA) was used to determine the most significant

canonical pathways associated with the differentially expressed

genes of each disease relative to the other diseases (Fisher’s exact

FDR(Benjamini Hochberg) = 0.05). The bottom x-axis and bars of

each comparison IPA graph indicated the log(p-value) and the top

x-axis and line indicated the percentage of genes present in the

pathway.

Molecular distance to health (MDTH) was determined as

previously described [13], and then applied to different transcrip-

tional signatures. Transcriptional modular analysis was applied as

previously described [14]. The raw expression levels of all

transcripts significantly detected from background hybridisation

were compared between each sample and all the controls present

in that dataset. The percentage of significantly expressed genes in

each module were represented by the colour intensity (Student t-

test, p,0.05), red indicates overexpression and blue indicates

underexpression. The mean percentage of significant genes and

the mean fold change of these genes compared to the controls in

specified modules were also shown in graphical form. MDTH and

modular analysis were calculated in Microsoft Excel 2010.

GraphPad Prism version 5 for Windows was used to generate

the graphs.

Differentially expressed genes between the Training Set TB

patients and active sarcoidosis patients were derived using

Significance Analysis of Microarrays (SAM) (q,0.05) and $1.5

fold expression change [15]. SAM was used due to the increased

sensitivity of this non-parametric test compared to Mann-Whitney

allowing more differentially expressed transcripts to be identified

between TB and active sarcoidosis. Class prediction was

performed within GeneSpring 11.5 using the machine learned

algorithm support vector machines (SVM). The model was built

using sample classifiers ‘TB’ or ‘not TB’. The SVM model should

be built in one study cohort and run in an independent cohort to

prevent over-fitting the predictive signature. This was possible for

all the cohorts from our study. Where the study cohorts used a

different microarray platform the SVM model had to be re-built in

that cohort. To reduce the effects of over-fitting the same SVM

parameters were always used. The kernel type used was linear,

maximum iterations 100,000, cost 100, ratio 1 and validation type

N-fold where N = 3 with 10 repeats. The receiver operating curve

(ROC) and area under the curve (AUC) were calculated using

Microsoft Excel 2010.

Univariate and multivariate regression analysis were calculated

using STATA 9 (StataCorp 2005. Stata Statistical Software:

Release 9. College Station, TX; StataCorp LP). In the multivariate

regression analysis where there were missing data points (serum

ACE and HRCT disease activity) to prevent list-wise deletion

dummy variable adjustment was used.

Table 3. Class prediction of 144 transcripts from the Training Set.

Present study Training Set
TB vs non-TB (controls,
sarcoid, cancer, pneumonia)

Present study Test Set
TB vs non-TB (controls, sarcoid,
cancer, pneumonia)

Present study Validation Set
TB vs non-TB (controls &
sarcoid)

Maertzdorf et al
TB vs non-TB (controls
& sarcoid)

Sensitivity 88% 82% 88% 88%

Specificity 94% 91% 92% 97%

Class prediction was performed using support vector machines (SVM). The 144 transcripts derived from the Training Set were used to build the SVM model, the model
was then run in the other two cohorts and the external cohort (Maertzdorf et al).
doi:10.1371/journal.pone.0070630.t003

Table 4. Class prediction of 100 Agilent transcripts from the Maertzdorf et al study.

Present study Training Set
TB vs non-TB (controls,
sarcoid, cancer, pneumonia)

Present study Test Set
TB vs non-TB (controls, sarcoid,
cancer, pneumonia)

Present study Validation
Set TB vs non-TB
(controls & sarcoid)

Maertzdorf et al
TB vs non-TB
(controls & sarcoid)

Sensitivity 56% 45% 75% 88% (as stated in their
publication)

Specificity 96% 92% 92% 97% (as stated in their
publication)

Class prediction was performed using support vector machines (SVM). The 100 Agilent transcripts from the Maertzdorf et al study translated to 76 recognised genes
using the DAVID gene converter. The SVM model was built in the Training Set and run in the Test and Validation Sets.
doi:10.1371/journal.pone.0070630.t004
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The power calculations were conducted using the Power

Analysis and Sample Size Software (PASS) 2008.

Results

Blood Transcriptional Profiles are Similar in the
Pulmonary Granulomatous Diseases, TB and Sarcoidosis
but Distinct from Pneumonia and Lung Cancer

Cohorts of TB and sarcoidosis, community acquired pneumonia

and lung cancer patients, and healthy controls are shown in

Table 1 and Figures S1–S3, and appropriately matched demo-

graphically and clinically (Tables S1-2). The study power was

calculated for a training set (standard deviation = 0.4, 3,000 probes

truly differentially expressed, fold change of $1.5, two sample t-

test with FDR of 0.05). Eight to 40 patients per group provide a

power of greater than 0.85 for each probe (calculated using PASS

2008) with minimal benefit of increasing the sample size.

Unbiased analysis demonstrated that the TB and sarcoidosis

blood transcriptional profiles clustered together but distinctly from

pneumonia and cancer, which themselves clustered together

(Training Set; 3422 transcripts, Figure S4A). Statistical filtering

generated 1446 differentially expressed transcripts (Training Set,

Figure S4B). This clustering pattern was verified in an indepen-

dent cohort (Test Set, Figure 1), and was not influenced by

ethnicity or gender (data not shown). Pathway analysis (IPA)

revealed that the TB and sarcoidosis samples were associated with

over-abundance of interferon (IFN) signalling and immune

response pathways (Figure 2). Pneumonia and lung cancer samples

were associated with over-abundance of pathways linked with

inflammation. All diseases showed an under-abundance of T and

B cell pathways.

Heterogeneity of Transcriptional Profiles in Sarcoidosis
Patients Correlates with Clinical Phenotype

Transcriptional profiles of the sarcoidosis patients clustered

either with TB patients or with healthy controls (1446 transcripts,

Figure 1). Patients were thus assessed for disease activity (labelled

as either active or non-active) by a pre-defined decision tree of a

composite of clinical parameters reflecting a snapshot profile of

disease activity at that time-point (Figure S5; Table S3). 1396-

transcripts were found to be differentially expressed using this

sarcoidosis classification. Again active sarcoidosis patients clus-

tered with the TB patients, whereas non-active sarcoidosis patients

clustered with the controls (1396 transcripts, Figure 3A). This was

validated in the independent cohorts Test and Validation Sets

(Figure S6A & B; Table S4A, S4B).

Application of the Molecular distance to health (MDTH)

algorithm [13] to all the disease groups showed that the non-active

sarcoidosis MDTH score was not quantitatively significantly

different from the controls, whereas the active sarcoidosis MDTH

score was (Figure 3B). The TB scores were significantly higher

than the active sarcoidosis scores, and the pneumonia scores were

significantly higher than the lung cancer scores, with pneumonia

and TB having the highest MDTH scores. Collectively, this

suggests a quantitative as well as qualitative difference in blood

transcriptional signatures.

Three Data Mining Strategies Show that TB and Active
Sarcoidosis are Dominated by IFN-inducible Genes,
Whereas Pneumonia and Lung Cancer are Dominated by
Inflammatory Genes

We further investigated the biological pathways associated with

each disease group, using modular analysis, [14], IPA, and

annotation of the top differentially expressed genes for each

disease group. Modular analysis, which takes into account all

genes differentially expressed against controls, verified that TB and

active sarcoidosis showed significant overexpression of the IFN

modules compared to the other pulmonary disease groups

(Figure 4A; Training Set; Figure S7, Test Set), whereas pneumonia

and cancer patients showed significant overexpression of the

inflammation modules (Figure 2). TB patients showed a significant

quantitative increase in the number of IFN-inducible genes and

their degree of expression, compared to the active sarcoidosis

patients (Figures 4B, 4C). Pneumonia and lung cancer showed a

significant increase in the number of genes present in the

inflammation modules and their degree of expression, in

comparison to TB and active sarcoidosis (Figures 4D, 4E).

Pneumonia patients showed an increased number of genes present

in the neutrophil module (Figure S8), correlating with blood

neutrophil count (Spearman’s correlation, r = 0.42, p,0.0001).

Comparison IPA, using genes that were differentially expressed

between each disease group and a matched set of controls,

revealed the most significant pathways when comparing across the

diseases ($1.5 fold change from the controls, Mann Whitney

Benjamini Hochberg p,0.01; TB = 2524, active sarcoido-

sis = 1391, pneumonia = 2801 and lung cancer = 1626 transcripts).

The top four significant pathways were related to protein synthesis

(EIF2 signalling), the immune response, IFN signalling, pattern

recognition receptors recognising bacteria and viruses, and antigen

presentation (Figure 5A and Table S11). Under-abundance of the

EIF2 signalling pathway was driven by the pneumonia patients.

Other genes related to protein synthesis (ribosomal proteins and

other eukaryotic initiation factors) and the unfolded protein

response (a stress response to excessive protein synthesis), were also

significantly under-abundant in the pneumonia patients e.g.

PERK, CHOP, ABCE1 (data not shown). The statistical

significance (bottom x-axis, bar graph, Figure 5A) and percentage

of genes (top x-axis, line graph, Figure 5A) of the three immune

response pathways were driven predominantly by the TB and

active sarcoidosis patients, again demonstrating the similarity of

the biological pathways underlying these diseases. However the

Table 5. Class prediction of 50 genes from the Koth et al study.

Present study Training Set
TB vs non-TB (controls,
sarcoid, cancer, pneumonia)

Present study Test Set
TB vs non-TB (controls,
sarcoid, cancer, pneumonia)

Present study Validation
Set TB vs non-TB
(controls & sarcoid)

Maertzdorf et al
TB vs non-TB
(controls & sarcoid)

Sensitivity 75% 45% 50% Not shown in their publication

Specificity 92% 87% 92% Not shown in their publication

Class prediction was performed using support vector machines (SVM). The 50 genes from the Koth et al study were used to build the last SVM model in the Training Set
and run in the Test and Validation Sets.
doi:10.1371/journal.pone.0070630.t005
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IFN-signalling pathway was more significant (Figure 5A) and

contained a higher number of genes in TB than active sarcoidosis

(Figure 5B).

The top 50 over-abundant differentially expressed transcripts

for each disease correlated with the findings from the modular and

IPA analysis where TB and active sarcoidosis were dominated by

IFN-inducible genes e.g. IFITM3, IFIT3, GBP1, GBP6,

CXCL10, OAS1, STAT1, IFI44L, FCGR1B (Table S5). Again

these were greater in number in TB than sarcoidosis. The top 50

over-abundant transcripts in pneumonia were dominated by

antimicrobial neutrophil-related genes e.g ELANE, DEFA1B,

MMP8, CAMP, DEFA3, DEFA4, MPO, LTF. The genes

FCGR1A, B and C were over-abundant in the top 50 transcripts

of all four pulmonary diseases. A 4-set Venn diagram of the

differentially expressed genes demonstrated unique genes for each

disease group (Figure S9 and Table S6), with over three times the

number of unique TB genes than unique active sarcoidosis genes.

The TB unique genes comprised immune responses genes

significantly associated with the IFN-signalling pathway and

antigen presentation. The unique pneumonia genes were associ-

ated with an under-abundance of pathways related to protein

synthesis. The unique lung cancer genes were associated with

over-abundance of inflammation related pathways and under-

abundance of T cell pathways. Overlapping genes common to all

four disease groups were significantly associated with under-

abundance of T and B cell pathways.

TB and Pneumonia Patients after Treatment Showed a
Diminishment of Transcriptional Profiles Whereas
Sarcoidosis Patients Responding to Glucocorticoids
Showed a Significant Increase in Transcriptional Activity

We next examined the transcriptional response to treatment.

Pneumonia patients, followed-up at least 6 weeks after their

hospital discharge, showed a good clinical response to standard

antibiotic treatment (Table S7A) and a diminishment in their

transcriptional profiles to the level of controls by modular analysis

(all detectable transcripts) and MDTH (1446-transcripts)

(Figure 6A & 6B). The MDTH of the 1446-transcripts derived

in the present study of different lung diseases, was also diminished

in the blood of South African TB patients upon completion of

treatment, reverting to the signature of latent TB controls

(Figure 6C) and supporting our previous report [10].

Sarcoidosis patients showed a variable clinical response after

initiation of immunosuppressive treatment as determined by their

practising physician (Table S7B); if their treatment was increased

on clinic follow-up the patient was categorised as having an

‘inadequate treatment response’; continuing the same treatment or

reducing treatment categorised the patient as having a ‘good

treatment response’ (Table S7B). Sarcoidosis patients with a ‘good

treatment response’ showed a significantly increased transcrip-

tional activity in inflammatory transcripts although IFN-inducible

transcripts remained unchanged, which was not seen in sarcoidosis

patients with an ‘inadequate treatment response’ (Figure 6A & 6B).

The top 50 overexpressed inflammatory genes in the ‘good

treatment response’ sarcoidosis patients included anti-inflamma-

tory genes e.g IL1R2, DUSP1, IL18R, C-FOS, IkBa and MAPK1

(Table S8).

IFN-inducible Genes are Most Abundant in Neutrophils in
Both TB and Sarcoidosis

Analysis of purified blood cell populations revealed that

neutrophils displayed the highest abundance of IFN-inducible

genes (Figure 7A, B & D; Tables S9 & 10); and monocytes showed

a higher abundance of IFN-inducible genes than lymphocytes in

sarcoidosis as well as TB patients (Figure 7A-E). The findings in

the TB patients were in keeping with our earlier study [4].

TB Patients Can be Distinguished from the Other
Pulmonary Diseases and Healthy Controls

Comparison of the TB transcriptional profiles to the most

similar group, active sarcoidosis, revealed that 144 transcripts were

differentially expressed, including IFN-inducible genes (Table 2;

Training Set; significance analysis of microarray q,0.05, fold

change $1.5). Using the machine learning algorithm, support

vector machines (SVM), these 144 transcripts showed good

sensitivity (above 80%) and specificity (above 90%), in all three

independent cohorts from our own study (Training, Test and

Validation Sets) and also when tested in an external cohort from

the Maertzdorf et al study [9] (Table 3, Figures S10 & S11a).

However, 76 of 100 transcripts, recognised as genes by NIH

DAVID Gene ID Conversion Tool, proposed by Maertzdorf et al.

to distinguish TB and sarcoidosis, showed a much lower sensitivity

(45–56%), although similar specificity (above 90%), when tested in

our three independent cohorts (Table 4 & Figure S11b). Fifty

genes shown to be differentially expressed in TB and sarcoidosis by

Koth et al. [8] also resulted in lower sensitivity (75–45%), although

similar specificity (above 87%), when tested in our three

independent cohorts (Table 5 & Figure S11c). It is possible class

prediction was affected by the different microarray platforms used

in each study; however, the external validation of our 144

transcripts (Illumina) in the Maertzdorf et al study (Agilent)

provides further evidence for the discriminative accuracy of the

144 transcripts. There were few overlapping transcripts between

our study, the Maertzdorf et al study and the Koth et al study; this

may reflect the lack of validation of the transcript lists derived in

both the Maertzdorf and Koth et al studies (Figure S10).

Discussion

We show an IFN-inducible blood transcriptional signature in

patients with the pulmonary granulomatous diseases, TB and

sarcoidosis, which is distinct from other lung diseases representing

acute and chronic conditions, pneumonia and lung cancer, which

were dominated by an inflammatory signature. Sarcoidosis

transcriptional profiles revealed heterogeneity correlating with

clinical disease activity. The IFN-inducible transcripts appeared to

be dominant in the neutrophils in sarcoidosis as well as TB.

Treated-TB and pneumonia patients showed significant diminish-

ment of their transcriptional activity, however, the treatment-

responsive sarcoidosis patients revealed a significantly more active

transcriptional profile dominated by inflammatory transcripts.

We previously reported an IFN-inducible blood transcriptional

signature in patients with pulmonary TB, which correlated with

extent of radiographic disease, diminished upon treatment [4,10],

and now confirmed in other studies [5,6,7]. Similar blood

transcriptional profiles dominated by IFN-signalling in TB and

sarcoidosis patients, using publicly available data (7) and smaller

patient cohorts [8,9], have since been reported. We now

demonstrate an IFN-inducible blood transcriptional signature in

TB and sarcoidosis patients using larger cohorts of independently

recruited participants and new findings of a distinct signature from

pneumonia and lung cancer. The heterogeneity of sarcoidosis

blood transcriptional profiles was explained by a significant

correlation with the clinical activity phenotype, not reported

previously [8,9,16], but in accordance with the known clinical

heterogeneity of sarcoidosis patients [11,17]. Lockstone et al.,

demonstrated a correlation between expression profiles of lung

The Blood Transcriptome of Pulmonary Diseases

PLOS ONE | www.plosone.org 13 August 2013 | Volume 8 | Issue 8 | e70630



biopsies from sarcoidosis patients, and their clinical classification

as progressive-fibrotic or self-limited after follow-up [18]. Collec-

tively these findings suggest the potential for blood transcriptomic

approaches to provide information before prolonged follow-up of

a patient and allow development of much needed tools to

standardise and aid sarcoidosis management.

In contrast to the IFN-signalling pathways in TB and

sarcoidosis, the transcriptomes in pneumonia and lung cancer

represented inflammation related pathways, in keeping with

different immunopathogenesis of these diseases, and pneumonia

as an infection of the respiratory tract resulting in acute

inflammation of the lungs and peripheral blood [19,20]. The

inflammatory blood transcriptional signature of lung cancer

patients is in keeping with a role for inflammation in primary

lung cancer [21], suggesting blood could be used for further

exploratory studies where tissue is not available. The under-

abundance of transcripts relating to T and B cells in all four

diseases is consistent with previous observations of reduced

numbers of immune cells in the blood of patients with TB,

sarcoidosis and bacterial infection, likely due to migration or death

[4,22,23].

Although TB and sarcoidosis exhibited similar IFN-inducible

transcriptional signatures, the significant quantitative difference in

their transcriptional activity in whole blood and the neutrophils

likely reflects the observed clinical differences. Sarcoidosis patients

with a dominant IFN-inducible signature clustered with the TB

patients whereas those with a much weaker IFN-inducible profile

clustered with the healthy controls. Although IFNc has been

shown to be crucial in controlling mycobacterial infection [24],

type 1 IFN, induced by extracellular mycobacterial DNA

activation of cytosolic receptors [25], or peptidoglycan activation

of the NOD2/IRF5 pathway by [26], may exacerbate TB [27]

[4,10,28]. The immune pathways contributing to sarcoidosis

remain unresolved although suggested to be associated with

macrophage and Th1 activation [29]. It is notable that IFNa
therapy for hepatitis C is a documented risk factor for developing

sarcoidosis (approximately 5% of cases) [30]; and IFNß therapy

has also been associated with case reports of sarcoidosis [31]. That

sarcoidosis and TB patients show a similar transcriptional

signature suggests that the underlying immunological processes

of these two granulomatous diseases have much in common [29].

A frequently suggested aetiological agent for sarcoidosis is

mycobacteria, however the evidence for this is debated [32].

Establishing whether this IFN-inducible signature is reflective of

granulomatous inflammation, or a response to pathogens such as

mycobacteria, requires studies of additional pulmonary granulo-

matous diseases.

Successful treatment of TB and pneumonia patients with anti-

microbial drugs led to diminishment of the blood transcriptional

signature. However, sarcoidosis patients responding successfully to

treatment showed a significant increase in transcriptional activity

by MDTH of inflammatory transcripts, including the anti-

inflammatory genes, IL1R2, IL18RAP, DUSP1, FOS, IkBa and

MAPK1, which invariably accompany the activation of inflam-

matory pathways [33,34,35]. This is consistent with the mixed

transcriptional response found after glucocorticoid stimulation of

blood from healthy donors [36]. However, the IFN-inducible

signature was unchanged. In SLE it has been shown that while

glucocorticoids suppress the inflammatory NF-kB pathway in

many cells, they exerted no effect on secretion of IFNa by

plasmacytoid dendritic cells, providing a potential reason for the

reduced glucocorticoid sensitivity seen in SLE [14]. The under-

lying mechanisms resulting in the partial or negligible clinical

responses towards glucocorticoids seen in many sarcoidosis

patients are as yet undetermined [37].

We identified 144 differentially expressed transcripts between

TB and active sarcoidosis, including IFN-inducible transcripts that

were over-abundant only in the TB patients and distinguished the

TB samples from all other diseases in our three cohorts and an

external cohort (Maertzdorf et al cohort) [9], (sensitivity .80%;

specificity .90%). The two previously published studies compar-

ing whole blood expression profiles of TB and sarcoidosis patients

also derived transcript lists to differentiate the diseases [8,9],

however their lists produced much lower sensitivity, but similar

specificity values when tested against our cohorts. The high

specificity achieved by all transcript lists was due to the very low

Type I error rate attributable to the low prevalence of true TB

samples. Thus blood transcriptional signatures may have promise

as supportive surrogate markers for pulmonary TB diagnosis, after

satisfying rigorous testing and validation in large populations.

We have shown that the blood transcriptome of sarcoidosis like

TB is dominated by an IFN-inducible neutrophil-driven signature,

and heterogeneity of this signature is reflective of disease activity in

sarcoidosis. In contrast, pneumonia and lung cancer were

dominated by an inflammatory signature. Identification of

biological pathways by transcriptomics enhances our understand-

ing of the potential factors underlying pathogens is in the

pulmonary granulomatous diseases TB and sarcoidosis and the

acute and chronic pulmonary diseases, pneumonias and lung

cancers.

Supporting Information

Figure S1 Recruitment flow diagrams for each disease
group and healthy controls in the Training Set.

(PDF)

Figure S2 Recruitment flow diagrams for each disease
group and healthy controls in the Test Set.

(PDF)

Figure S3 Recruitment flow diagrams for each disease
group and healthy controls in the Validation Set.

(PDF)

Figure S4 Pulmonary granulomatous diseases display
similar transcriptional signatures that are distinct from
pneumonia and lung cancer. (A) 3422-transcripts derived by

unsupervised analysis in the Training Set, prior to the application

of a statistical filter, in the whole blood of healthy controls,

pulmonary TB patients, pulmonary sarcoidosis patients, pneumo-

nia patients and lung cancer patients. The 3422 transcripts and

patients’ profiles are organised by unsupervised hierarchical

clustering. (B) After adding a statistical filter to the 3422-

transcripts, 1446-transcripts were derived as differentially ex-

pressed across all the groups in the Training Set. The clustering of

the 1446-transcripts are tested here in an independent cohort, the

Test Set. A dotted line is added to the heatmaps to clarify the main

clusters generated by the clustering algorithm. Transcript intensity

values are normalised to the median of all transcripts. Red

transcripts are relatively over-abundant and blue transcripts

under-abundant. The coloured bar at the bottom of the heatmap

indicates which group the profile belongs to.

(PDF)

Figure S5 Clinical decision tree for classifying sarcoid-
osis patients. The decision tree demonstrates how each

sarcoidosis patient was classified into active pulmonary, active

extra-thoracic or non-active sarcoidosis using clinical variables
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known to be associated with disease activity and routinely

measured as part of standard medical care.

(PDF)

Figure S6 Active sarcoidosis signatures are similar to
TB but distinct from non-sarcoidosis which resembles
healthy controls. 1396-transcripts are differentially expressed in

the whole blood of healthy controls, pulmonary TB patients, active

sarcoidosis patients, non-active sarcoidosis patients, pneumonia

patients and lung cancer patients. The 1396 transcripts and

patients’ profiles are organised by unsupervised hierarchical

clustering. A dotted line is added to the heatmap to clarify the

main clusters generated by the clustering algorithm. Transcript

intensity values are normalised to the median of all transcripts.

Red transcripts are relatively over-abundant and blue transcripts

under-abundant. The coloured bar at the bottom of the heatmap

indicates which group the profile belongs to. (A) Test Set (B)

Validation Set.

(PDF)

Figure S7 Modular analysis shows similar pathways
associated with TB and sarcoidosis, differing from
pneumonia and cancer. Gene expression levels of all

transcripts that were significantly detected compared to back-

ground hybridisation (18894 transcripts, p,0.01) were compared

between each patient group: TB, active sarcoidosis, non-active

sarcoidosis, pneumonia, lung cancer, to the healthy controls in the

Test Set. Each module corresponds to a set of co-regulated genes

that were assigned biological functions by unbiased literature

profiling. A red dot indicates significant over-abundance of

transcripts and a blue dot indicates significant under-abundance

(p,0.05). The colour intensity correlates to the percentage of

genes in that module that are significantly differentially expressed.

(PDF)

Figure S8 Neutrophil module. (A) The mean percentage of

genes significantly overexpressed in the neutrophil module for

each disease in both the Training and Test set. (B) The mean fold

change of the expression of the genes present in the neutrophil

module compared to the controls. The mean, SEM and p-values

are displayed (ANOVA with Tukey’s multiple comparison test).

(PDF)

Figure S9 Venn diagram comparing differentially ex-
pressed genes for each disease group compared to their
matched controls. Differentially expressed genes were derived

from the Training Set by comparing each disease to healthy

controls matched for ethnicity and gender: TB = 2524, active

sarcoidosis = 1391, pneumonia = 2801 and lung cancer = 1626

transcripts ($1.5 fold change from the mean of the controls, Mann

Whitney Benjamini Hochberg p,0.01). The 4-set Venn diagram

was created using Venny (Oliveros 2007). IPA canonical pathways

was used to determined the most significant pathways associated

with the unique transcripts for each disease (Fisher’s exact

FDR = 0.05). Active Sarc = active sarcoidosis.

(PDF)

Figure S10 Venn diagram comparing the gene lists used
in the class prediction. The gene lists were obtained from this

study (144 Illumina probes), Maertzdorf et al study (100 Agilent

probes of which only 76 probes were recognised as genes using

DAVID converter) and Koth et al study (50 genes obtained from a

Affymetrix platform). In the Illumina platform used to compare

these lists some genes are represented by more than one transcript

for example the 50 genes in Koth et al study translate to 77

Illumina probes/transcripts.

(PDF)

Figure S11 Receiver operating curves of the gene lists
used in the class prediction. Receiver operating curves and

area under the curves calculations are shown in parallel to the

support vector machine results in tables 3–5. (A) 144 transcripts

from our study (B) 76 probes from Maertzdorf et al study (C) 50

genes from Koth et al study.

(PDF)

Table S1 Demographics of the patients and controls
recruited. (A) Training Set and Test Set total numbers, age,

gender and ethnicity. (B) Validation Set.

(PPTX)

Table S2 Clinical characteristics of the Training set are
not significantly different to the Test and Validation
Sets. (A–D) Clinical characteristics of the patients in the Training

Set. (E-H) Comparing the clinical characteristics of the patients in

the Training Set to those of the patients in the Test and Validation

Sets (t-test or Chi-squared p,0.05). BAL = bronchoalveolar

lavage, IGRA = IFN gamma-release assay, Lymph = lymphocyte

count, BHL = bilateral hilar lymphadenopathy, Neut = neutrophil

count, CXR = chest X-ray, ISC = Indian subcontinent, CRP = C-

reactive protein, Ind = indeterminate, ND = not done, N/A = not

available, pred = prednisolone. Dyspnoea = breathlessness. Hae-

moptysis = coughing up blood. CURB65 score = pneumonia

severity score where 5 is the most severe. HT = hypertension.

DM = hypertension. Adeno = adenocarcinoma.

(PPTX)

Table S3 Clinical characteristics and clinical classifi-
cation of sarcoidosis patients as determine by the
decision tree. (A) Training Set (B) Test Set (C) Validation Set

(D) Demographics of all sarcoidosis patients in the three datasets.

CXR = chest radiograph, CT = computer tomography, ACE = an-

giotensin converting enzyme, Lymph = lymphocyte count,

Neut = neutrophil count, TLCO = transfer factor for carbon

monoxide, KCO = transfer coefficient, FVC = forced vital capac-

ity, FEV1 = forced expiratory volume in 1 second, Abdo = abdo-

men, LN = lymph node, Med = mediastinal, NA = non-active

sarcoidosis, AET = active extra-thoracic sarcoidosis, Neuro = -

neurological disease.

(PPTX)

Table S4 The clinical classification decision tree used
to categorise patients into either active or non-active
sarcoidosis predicts the clustering of the transcriptional
profiles of the sarcoidosis patients better than standard
single or multiple clinical variables. (A) Univariate

regression analysis to determine which single clinical variables

can best predict those sarcoidosis patients that will cluster with the

TB patients and those that will cluster with the healthy controls as

per the unsupervised clustering of the 1446-transcripts in the

Training set and Test set (see Figures 1 &S4b) (B) Multivariate

analysis to determine the ability of more than one variable to

predict the clustering of the sarcoidosis patients.

(PPTX)

Table S5 The top 50 differentially expressed transcripts
for each disease compared to matched controls. Differ-

entially expressed genes were derived from the Training Set by

comparing each disease to healthy controls matched for ethnicity

and gender: TB = 2524, active sarcoidosis = 1391, pneumo-

nia = 2801 and lung cancer = 1626 transcripts ($1.5 fold change

from the mean of the controls, Mann Whitney Benjamini

Hochberg p,0.01).

(PPTX)
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Table S6 The top 50 differentially expressed transcripts
unique for each disease as determined by the 4-set Venn
diagram. Differentially expressed genes were derived from the

Training Set by comparing each disease to healthy controls

matched for ethnicity and gender ($1.5 fold change from the

mean of the controls, Mann Whitney Benjamini Hochberg

p,0.01). A 4-set Venn diagram was used to identify genes that

were unique for each disease.

(PPTX)

Table S7 Drug therapy given to each sarcoidosis patient
who was commenced on treatment and the clinical
management of their practising physician after observ-
ing their response to the therapy. Each patients study ID

and ‘treatment response category’ correlates with the legend used

for the modular analysis. The superscript number of the

sarcoidosis patients is used when the patient had more than one

visit to their practising physician such that 22 was the visit after

being started on treatment and 23 was the subsequent visit.

(PPTX)

Table S8 Top 50 over-expressed genes in the inflam-
mation modules in the good-treatment response sar-
coidosis patients.

(PPTX)

Table S9 Interferon-inducible genes from the Berry
et al 2010 publication.

(PPTX)

Table S10 Demographics of study participants used in
the cell purification.
(PPTX)

Table S11 List of transcripts present in the IPA
canonical pathways shown in Figure 5. List of all transcripts

by gene symbol that are present in the IPA canonical pathways:

EIF2 signalling, interferon signalling, role of pattern recognition

receptors in recognition of bacteria and viruses, and antigen

presentation pathway.

(PPTX)
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