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Department of Computer Science and Engineering, ECK Institute for Global Health, and Interdisciplinary Center for Network Science and Applications, University of Notre

Dame, Notre Dame, Indiana, United States of America

Abstract

Citation: Hulovatyy Y, Solava RW, Milenkovic

Editor: Peter Csermely, Semmelweis University, Hungary

Received June 4, 2013; Accepted January 29, 2014; Published March 3, 2014

Copyright: � 2014 Hulovatyy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Science Foundation EAGER CCF-124329 grant. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tmilenko@nd.edu

Introduction

Motivation and background
Networks (or graphs) model real-world phenomena in many

domains. We focus on biological networks, protein-protein

interaction (PPI) networks in particular, with the goal of identifying

missing and spurious links in current noisy PPI networks.

Nonetheless, our study is applicable to other network types as

well. In PPI networks, nodes are proteins and two nodes are

connected by an edge if the corresponding proteins interact in the

cell. We focus on these networks, since it is the proteins (gene

products) that carry out the majority of cellular processes and they

do so by interacting with other proteins. And this is exactly what

PPI networks model.

High-throughput methods for PPI detection, e.g., yeast two-

hybrid (Y2H) assays or affinity purification followed by mass

spectrometry (AP/MS), have produced PPI data for many species

[1–5]. However, current networks are noisy, with many missing

and spurious PPIs, due to limitations of biotechnologies as well as

human biases [6–10]. AP/MS is estimated to have a 15–50% false

positive rate and a 63–77% false negative rate [11]. Similar holds

for Y2H, though PPIs obtained by Y2H are still more precise than

literature-curated PPIs supported by a single publication [12].

Analogous to genomic sequence research, biological network

research is promising to revolutionize our biological understand-

ing: prediction of protein function and the role of proteins in

disease from PPI network topology has already received attention

[13–17]. However, the noisiness of the network data is an obstacle

on this promising avenue, as it could lead to incorrect predictions.

Computational de-noising of current PPI network data by

identifying missing and spurious links could improve the quality

of topology-based predictions and consequently save resources

needed for experimental validation of the predictions. Thus, we

aim to test how well we can decrease the noise in PPI data via link

prediction (LP).

LP typically uses the existing topology of the network to predict

missing and spurious links [18–24]. Alternatively, one network

type, e.g., functional interactions, can be used to predict another

network type, e.g., physical PPIs [24]. LP consists of unsupervised

or supervised approaches that use some measure of the topology of

the nodes to be linked [21]. For example, it may be desirable to

link nodes with high degrees as measured by preferential

attachment [25–28], nodes that share many neighbors as

measured by Jaccard [29] or Adamic/Adar coefficients [30],

nodes that share many paths as measured by Katz index [31], or

similar [32]. Both supervised and unsupervised LP methods have

Protein interaction networks (PINs) are often used to ‘‘learn’’ new biological function from their topology. Since current PINs
are noisy, their computational de-noising via link prediction (LP) could improve the learning accuracy. LP uses the existing
PIN topology to predict missing and spurious links. Many of existing LP methods rely on shared immediate neighborhoods
of the nodes to be linked. As such, they have limitations. Thus, in order to comprehensively study what are the topological
properties of nodes in PINs that dictate whether the nodes should be linked, we introduce novel sensitive LP measures that
are expected to overcome the limitations of the existing methods. We systematically evaluate the new and existing LP
measures by introducing ‘‘synthetic’’ noise into PINs and measuring how accurate the measures are in reconstructing the
original PINs. Also, we use the LP measures to de-noise the original PINs, and we measure biological correctness of the de-
noised PINs with respect to functional enrichment of the predicted interactions. Our main findings are: 1) LP measures that
favor nodes which are both ‘‘topologically similar’’ and have large shared extended neighborhoods are superior; 2) using
more network topology often though not always improves LP accuracy; and 3) LP improves biological correctness of the
PINs, plus we validate a significant portion of the predicted interactions in independent, external PIN data
sources. Ultimately, we are less focused on identifying a superior method but more on showing that LP improves
biological correctness of PINs, which is its ultimate goal in computational biology. But we note that our new methods
outperform each of the existing ones with respect to at least one evaluation criterion. Alarmingly, we find that the different
criteria often disagree in identifying the best method(s), which has important implications for LP communities in any
domain, including social networks.
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their (dis)advantages. Though supervised methods can outperform

unsupervised ones, much of previous research has focused on

unsupervised LP, since many factors that might influence

supervised LP have not been well understood [18,21,22].

There are some limitations to the existing LP measures. With

some exceptions [31,33], most of them capture only the

topological information contained in the immediate network

neighborhood of nodes to be linked [25,26,29,30,34]. However,

significant amount of the information is available in the rest of the

network that could improve LP accuracy. Thus, additional

sensitive measures that capture deeper network topology might

be needed. We recently generalized the idea of shared immediate

neighborhoods to shared extended neighborhoods in the context of

network clustering and showed that including more network

topology resulted in biologically superior clusters [35]. So, it is

reasonable to test whether including more topology will be

effective for LP as well.

Also, most of the existing shared neighborhood-based methods

can predict a link only between nodes that are within the shortest

path distance of two from each other [29,30,34], whereas it might be

beneficial to link nodes which are more distant [31,33]. Preferential

attachment-based measures can achieve this [25,26], but they

again capture only the immediate neighborhoods of the nodes to

be linked. A shortest path-based LP method exists which can also

connect distant nodes in the network but which can at the same

time capture deeper network topology. However, this method is

computationally expensive [36]. A couple of additional methods

exist that can link distant nodes under the hypothesis that nodes

that share many paths or that are at similar distances to all other

nodes in the network should be linked [31,33]. Here, we introduce

an alternative and sensitive measure of the topological similarity of

extended neighborhoods of two nodes that addresses all of the above

issues, and we use it with a novel hypothesis that nodes that are

topologically similar should be linked together.

Another drawback of the existing methods is as follows. It might

be more efficient to predict the existence of a link between two

nodes by explicitly measuring the topological position of an edge (or

equivalently a non-edge) rather than by measuring the position of

each of the two nodes individually [37], as most of the current

methods do. Thus, we propose a new, sensitive measure of the

network position of an edge and a non-edge, which counts the

number of subgraphs that the two nodes in question participate in

simultaneously, and we use it with the hypothesis that nodes that

participate in many subgraphs and thus have large and dense

extended shared neighborhoods should be linked together.

Our approach
We study several PPI networks of yeast, the best studied species

to date, obtained by different experimental methods for PPI

detection, and we apply our new as well as popular existing LP

measures to the networks to de-noise them. Given a network, we

aim to study the topologies of each node pair in it with respect to

the given LP measure, in order to determine which of the node

pairs should be connected.

We perform three types of evaluation tests, as follows. First, we

introduce synthetic noise in the given PPI network by randomly

removing a percentage of edges from the network, with the goal of

measuring how well the given method can reconstruct the original

network, using the original PPIs as the ground truth data.

Second, given the availability of low-confidence PPI data for one

of the studied networks, we apply the given method to this network

and use the corresponding low-confidence PPI data as the ground

truth data when evaluating the method. In both of these

evaluation tests, we test the accuracy of a LP method in systematic

receiver-operator curve and precision-recall settings. In this

context, we study the effects on LP accuracy of the ‘‘topological

similarity’’ as well as the size of the shared extended neighborhoods

of nodes, where the nodes can be distant in the network. Also, we

study what amount of network topology should be used for LP. We

find that LP measures that favor nodes which are both topologically

similar and which have large shared extended neighborhoods are

superior to LP measures that have only one of these two

properties. Also, we show that using more network topology often

though not always increases LP accuracy.

Third, we apply the LP methods to the original PPI networks

to de-noise them, and we evaluate the quality of the de-noised

networks, i.e., of different LP methods, in two ways. First, we

compute their biological correctness by measuring the ‘‘enrich-

ment’’ of predicted edges in Gene Ontology (GO) terms [38].

Importantly, we show that LP improves the biological correctness

of the PPI networks by de-noising them. Second, we search for the

predicted interactions in an external, independent PPI data source,

and in this way, we validate a significantly large portion of the

predictions, further confirming the biological correctness of the de-

noised networks.

Importantly, we show that our new LP measures are statistically

significantly superior to each of the existing ones with respect to at

Figure 1. Graphlet positions of a node, an edge, a non-edge,
and a node pair. All topological positions (‘‘orbits’’) in up to 4-node
graphlets of a node (top; node shade), an edge (upper middle; solid
line), a non-edge (lower middle; broken line), and any node pair, an
edge or a non-edge (bottom; wavy line) are shown. For example: 1) in
graphlet G3 , the two end nodes are in node orbit 4, while the two
middle nodes are in node orbit 5; 2) in G3 , the two ‘‘outer’’ edges are in
edge orbit 3, while the ‘‘middle’’ edge is in edge orbit 4; 3) in G3 , the
non-edge touching the end nodes is in non-edge orbit 2, while the two
non-edges that touch the end nodes and the middle nodes are in non-
edge orbit 3; 4) a node pair at node pair orbit 1 touches a G2 at edge
orbit 2, if it is an edge, or a G1 at non-edge orbit 1, if it is a non-edge
(hence, mutually exclusive edge orbit 2 and non-edge orbit 1 are
reconciled into a common node pair orbit 1). There are 15 node, 12
edge, 7 non-edge, and 7 node pair orbits for up to 4-node graphlets. In
a graphlet, different orbits are colored differently. All up to 5-node
graphlets are used, but only up to 4-node graphlets are illustrated.
There are 73 node, 68 edge, 49 non-edge, and 49 node pair orbits for
up to 5-node graphlets.
doi:10.1371/journal.pone.0090073.g001
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least one of the evaluation criteria. Alarmingly, we find that

receiver-operator curve, precision-recall, and biological (function-

al) evaluation frameworks do not necessarily agree in identifying

the best LP method(s), which has important implications for the

LP community.

Methods

We study multiple S. cerevisiae PPI networks obtained by different

experimental methods for PPI detection. Given a network, we aim

to de-noise the network, with the goal of determining which of all

pairs of nodes in the network should be connected by edges, with

respect to a variety of existing as well as new LP measures. We

evaluate the different measures in systematic precision-recall and

receiver-operator curve frameworks, as well as with respect to two

biological (functional) criteria. The details are as follows.

Network data
We evaluate all LP methods on three S. cerevisiae yeast PPI

networks obtained with different experimental methods. We study

Figure 2. LP accuracy of the graphlet-based methods in the context of evaluation test 1. The accuracy is shown in terms of AUROCs
(panels A, C, and E) as well as AUPRs (panels B, D, and F) at the lowest noise level of 5% and the highest noise level of 50% when comparing: 1)
varying as in the AP/MS network (panels A and B); 2) unweighted (‘‘u’’) vs. weighted (‘‘w’’) node-pair-GDV-centrality in the HC network (panels C and
D); and 3) different graphlet sizes (3–5-node (‘‘g3–5’’), 3–4-node (‘‘g3–4’’), and 3-node (‘‘g3’’) graphlets) in the Y2H network (panels E and F). Note that
we intentionally vary the networks between the panels (AP/MS in panels A and B, HC in panels C and D, and Y2H in panels E and F), but only in order
to represent each of the three studied networks equally; we show full results throughout File S1.
doi:10.1371/journal.pone.0090073.g002
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PPI networks of yeast because yeast has been the most studied

species to date. As such, it has the most complete interactome and

thus represents the best species to evaluate the methods on. We

study multiple yeast PPI networks obtained with different experi-

mental methods for PPI detection to test whether LP results are

dependent on the experimental method. The three networks are:

1) Y2H network, obtained by Y2H, which consists of 1,647 nodes

and 2,518 edges [3,35]; 2) AP/MS network, obtained by AP/MS,

which consists of 1,004 nodes and 8,319 edges [3,35]; and 3) high-

confidence (HC) network, obtained from multiple data sources,

which consists of 1,004 nodes and 8,323 edges [9]. The quality of

PPIs in the HC network is comparable to the quality of

interactions produced by precise small-scale biological experi-

ments [9]. Importantly, in addition to the high-confidence PPIs,

the data by [9] also contains the corresponding lower-confidence

PPI data, which is useful for evaluation of the LP methods (as

explained below).

Existing commonly used LP measures
Degree-based measure. According to preferential attach-

ment [25,26], the higher the degrees of two nodes, the more likely

the nodes are to interact. The degree product (DP) measure scores the

potential edge between two nodes v and w as:

DP(v,w)~d(v)|d(w), where d(v) is the degree of node v [21].

Common neighbors-based measures. A popular idea is

that the more neighbors (or paths) two nodes share, the more likely

the nodes are to interact. Hence, a number of methods has been

proposed in this context, as follows.

The shared neighbors (SN) measure scores the potential edge

between nodes v and w as: SN(v,w)~DN(v)\N(w)D, where N(v) is

the set of neighbors of v [25,26]. SN simply counts the shared

neighbors.

Jaccard coefficient (JC) scores the potential edge between two

nodes v and w as: JC(v,w)~
DN(v)\N(w)D
DN(v)|N(w)D

[29]. That is, it scores

two nodes with respect to the size of their shared neighborhood

relative to the size of their entire neighborhoods combined. As

such, it favors node pairs for which a high percentage of all

neighbors are shared.

The Adamic-Adar (AA) measure scores the potential edge between

two nodes v and w as: AA(v,w)~
P

z[N(v)\N(w)

1

log d(z)
[30].

Thus, of all common neighbors of two nodes, it favors low-degree

shared neighbors over high-degree shared neighbors.

Katz index (Katz) scores the potential edge between two nodes v

and w as as follows: Katz(v,w)~
P?

l~1 bl Dpathsvlw
v,w D, where

pathsvlw
v,w is the set of all paths between v and w having length

of exactly l, and bw0 is a parameter that controls relative weights

(i.e., levels of importance) of paths of different lengths [31], such

that the smaller the value of b, the smaller the contribution of

larger paths is to the sum. For our evaluation, we use a popular

choice of value for b of 0.005 [20]. In summary, Katz favors node

pairs that share many paths of different lengths.

Local path index (LPI) scores the potential edge between two

nodes v and w as follows: LPI(v,w)~
P3

l~2 bl Dpathsvlw
v,w D [39]. By

considering paths of length l~2 and l~3, LPI provides a trade-off

between SN (which considers only l~2) and Katz (which

considers all possible values of l).

Resource allocation index (RAI) scores the potential edge between

two nodes v and w as: RAI(v,w)~
P

z[N(v)\N(w)

1

d(z)
[34]. This

measure, motivated by the resource allocation process taking place

on networks, is similar to AA, the only difference being scaling of

the denominator. For networks with small average degree, the

results of AA and RAI are expected to be similar [34].

Random walk with resistance (RWS) scores the potential edge

between two nodes v and w under the intuition that nodes having

similar ‘‘distances’’ to all other nodes in the network are likely to

interact with each other [33]; here, the distance is defined as the

expected number of steps needed for a random walker to travel

between two nodes in question. As such, RWS can predict links

between nodes that are not necessarily close to each other and thus

might not share any common neighbors. For a formal description,

see the original publication [33].

New LP measures
We already designed sensitive measures of topology that unlike

many of the existing measures go beyond capturing only the direct

neighborhoods of nodes to be linked. We used them for network

alignment [40–42], clustering [35,43–45], and modeling [46,47],

but they have not been used for LP thus far. Thus, we introduce

them as new LP measures. Also, we design conceptually new

Figure 3. Comparison of different methods in the context of evaluation test 1. Our best method (‘‘ours’’) is compared against existing
methods (DP, SN, JC, AA, Katz, LPI, RAI, and RWS) in terms of AUROCs (panel A) and AUPRs (panel B) for synthetically noised AP/MS, HC, and Y2H
networks at 5% noise level. Here, ‘‘ours’’ corresponds to using 3–5-node weighted graphlets at a = 0.8. Results for all other noise levels are shown
throughout File S1.
doi:10.1371/journal.pone.0090073.g003
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measures. (Software executables are freely available upon request.)

The details are as follows.

Existing sensitive measures of topology as new LP
measures

To go beyond capturing only the direct network neighborhood

of a node, we previously designed a constraining graphlet-based

measure of topology, called node graphlet degree vector (node-GDV), that

captures up to 4-deep neighborhood of a node; a graphlet is a

small induced subgraph of the network [48]. We designed a

measure of topological similarity of such extended neighborhoods

of two nodes, called node-GDV-similarity. In this study, we use node-

GDV-similarity for LP, with the hypothesis that the more

topologically similar two nodes are, the more likely the nodes

are to interact. Also, since shared neighbors-based approaches,

which are among the best LP measures over the widest range of

real-world networks [21], are based on the number of 3-node

paths that two nodes in question share, where a 3-node path is just

a 3-node graphlet, we generalize these measures by counting the

number of all 3–5-node graphlets that the two nodes share. We do

this by using a sensitive measure called edge-GDV. The formal

description of all of the measures is as follows.

Node graphlet degree vector (node-GDV). We generalized

the degree of node v that counts the number of edges that v touches

(where an edge is the only 2-node graphlet, denoted by G0 in

Fig. 1), into node-GDV of v that counts the number of 2–5-node

graphlets that v touches [43]. We need to distinguish between v

touching, for example, a three-node path (G1 in Fig. 1) at an end

node or at the middle node, because the end nodes are

topologically identical to each other, while the middle node is

not. This is because an automorphism (defined below) of G1 maps

the end nodes to one another and the middle node to itself.

Formally, an isomorphism f from graph X to graph Y is a bijection

of nodes of X to nodes of Y such that xy is an edge of X if and only

if f (x)f (y) is an edge of Y. An automorphism is an isomorphism

from X to itself. The automorphisms of X form the automorphism

group, Aut(X ). If x is a node of X, then the automorphism node

orbit of x is Orbn(x)~fy[V (X )Dy~f (x) for some f [Aut(X )g,
where V (X ) is the set of nodes of X. There are 73 node orbits for

2–5-node graphlets. Hence, node-GDV of v has 73 elements

counting how many node orbits of each type touch v (v’s degree is

the first element). It captures v’s up to 4-deep neighborhood and

thus a large portion of real networks, as they are small-world [49].

Node-GDV-similarity. To compare node-GDVs of two

nodes, one could use some existing measure, e.g., Euclidean

distance. However, this might be inappropriate, as some orbit

counts are not independent. Hence, we designed a new measure,

called node-GDV-similarity, as follows [43]. For a node u[G, ui is

the ith element of its node-GDV. The distance between the ith

orbits of nodes u and v is Di(u,v)~wi|
Dlog(uiz1){log(viz1)D

log(maxfui,vigz2)
,

where wi is the weight of orbit i that accounts for orbit

dependencies [43]. The log is used because the ith elements of

two node-GDVs can differ by several orders of magnitude and we

did not want the distance between node-GDVs to be dominated

by large values. The total distance is D(u,v)~

P72
i~0 Di

P72
i~0 wi

. Finally,

node-GDV-similarity is S(u,v)~1{D(u,v). The higher the node-

GDV-similarity between nodes, the higher their topological

similarity.

Edge-GDV. Since a graphlet contains both nodes and edges,

we defined edge-GDV to count the number of graphlets that an edge

touches at a given ‘‘edge orbit’’ (Fig. 1) [35]. Given the

automorphism group of graph X, Aut(X ), if xy is an edge

of X , the edge orbit of xy is Orbe(xy)~fzw[E(X )Dz~
f (x) and w~f (y) for some f [Aut(X )g, where E(X ) is the set

of edges of X . There are 68 edge orbits for 3–5-node graphlets

[35]. (We designed edge-GDV-similarity to measure topological

similarity of edges, which we used for network clustering [35].

However, we do not use this measure for LP.)

Conceptually novel measures of topology
We need to predict the existence of a link between nodes

independent on whether there is an edge between them in the

original network. Thus, in addition to describing the network

position of an edge, we need to be able to describe the position of a

non-edge as well. Hence, we generalize edge-GDV into non-edge-

GDV to measure the topological position of a non-edge. Then, we

reconcile mutually exclusive edge-GDVs and non-edge-GDVs into

a new node-pair-GDV measure, which counts the number of

graphlets that a node pair (an edge or a non-edge) touches at a

given ‘‘node pair orbit’’ (defined below). Finally, based on node-

pair-edge-GDV of a node pair, we create a new measure of the

topological centrality of the node pair, called node-pair-GDV-

centrality. According to this measure, the more graphlets the two

Figure 4. Comparison of different methods in the context of evaluation test 2. Our best method (‘‘ours’’) is compared against existing
methods (DP, SN, JC, AA, Katz, LPI, RAI, and RWS) in terms of AUROCs (panel A) and AUPRs (panel B) for the HC network when using low confidence
PPIs as the ground truth data. Here, ‘‘ours’’ corresponds to using 3–4-node weighted graphlets at a = 0.4.
doi:10.1371/journal.pone.0090073.g004
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nodes participate in (or share), the higher their centrality. Then,

node-pair-GDV-centrality is used as a LP measure to score

potential edges between node pairs in the network. The measures

are defined as follows.

Non-edge-GDV. Analogous to edge-GDV, in this study, we

define non-edge-GDV to count the number of graphlets that a non-

edge touches at a given ‘‘non-edge orbit’’ (Fig. 1). We define non-

edge orbits as follows. If xy is a non-edge of graph X, then the non-

edge orbit of xy is Orbne(xy)~fzw[C(X )Dz~f (x) and w~

f (y) for some f [Aut(X )g, where C(X ) is the set of all non-edges

of X. For example, in Fig. 1, in graphlet G1, the only non-edge is in

non-edge orbit 1. Graphlet G2 has no non-edges. In graphlet G3,

the non-edge that touches the two end nodes is in one non-edge

orbit (non-edge orbit 2), while the remaining two non-edges that

touch the end nodes and the middle nodes are in a different non-

edge orbit (non-edge orbit 3). And so on. There are 49 non-edge

orbits for 3–5-node graphlets.

Node-pair-edge-GDV. Edge and non-edge orbits are mutu-

ally exclusive (Fig. 1). However, to perform LP, we need to

contrast the topological neighborhood of nodes v and u against the

neighborhood of nodes s and t, while hiding the information about

whether v and u or s and t are actually linked. Hence, we need to

reconcile edge orbits and non-edge orbits by defining node-pair-

GDV to count the number of graphlets that a general node pair,

which can be either an edge or a non-edge, touches at a given

‘‘node pair orbit’’. For example, in Fig. 1, a node pair at node pair

orbit 1 touches a triangle (graphlet G2) at edge orbit 2, if the node

pair is an edge, or it touches a three-node path (graphlet G1) at

non-edge orbit 1, if the node pair is a non-edge. Hence, we

reconcile mutually exclusive edge orbit 2 and non-edge orbit 1 into

a common node pair orbit 1. We do this for all edge- and non-edge

orbits, resulting in 49 node pair orbits for 3–5-node graphlets.

Node-pair-GDV-centrality. We design node-pair-GDV-cen-

trality to assign high centrality values to node pairs that participate

in many graphlets. For nodes v and u, if ci is the ith element of

node-pair-GDV of the two nodes, then node-pair-GDV -

centrality(vu)~
P49

i~0 wi|log(ciz1). Thus, the more graphlets

a node pair participates in, the higher its centrality. Note that we

previously designed an analogous measure of the network

centrality of a node, called node-GDV-centrality [50].

Using the new measures for LP
Node-GDV-similarity and node-pair-GDV-centrality measures

allow for several simple modifications which could perhaps

improve LP accuracy, as follows.

Combining node-GDV-similarity and node-pair-GDV-

centrality. Node-GDV-similarity favors linking topologically

similar nodes. Node-pair-GDV-centrality favors linking nodes that

share many graphlets. Combining the two would favor linking

nodes that are both topologically similar and share many graphlets.

We combine them as: (1{a)|node-GDV -similarityza|node-

pair-GDV -centrality. We vary a from 0 to 1 in increments of 0.2.

Prioritizing dense graphlets. Node-pair-GDV-centrality,

as defined above, counts the number of graphlets that two nodes

share, while assigning weights to different graphlets only with

respect to ‘‘orbit dependencies’’ (see [43] for details). However, it

ignores any information about the denseness of the graphlets that the

two nodes share. Analogous to Adamic-Adar which favors some

shared neighbors over others based on their degrees (see above),

we might want to favor some shared graphlets over others based

on their denseness. For example, it might be more reasonable to

link two nodes that share many 4-node cliques than two nodes that

share many 4-node paths. So, we favor denser shared graphlets

over sparser shared graphlets by defining density-weighted (or simply

weighted) node-pair-GDV-centrality (Section S1 in File S1). We evaluate

both unweighted and weighted node-pair-GDV-centrality mea-

sures.

Graphlet size. To test how much of network topology is

beneficial for LP, when using the graphlet-based measures, we use:

1) all 3–5-node graphlets, 2) 3–4-node graphlets, but not 5-node

graphlets, and 3) only 3-node graphlets. Note that using the only 3-

node graphlet within the node-pair-GDV-centrality at a of 1 (see

above) is equivalent to the SN measure (see above). Hence, SN is a

variation of node-pair-GDV-centrality. Also, note that when using

3-node graphlets, unweighted and weighted node-pair-GDV-

centralities are equivalent. This is because there is only one 3-

node graphlet when dealing with node-pair-GDVs, and its density

is one. Determining which amount of topology to use is important:

the more topology (the larger the graphlets), the higher the

computational complexity. Exhaustive counting of all graphlets on

up to n nodes in graph G(V ,E) takes O(DV Dn); but, the practical

running time is much smaller due to the sparseness of real

networks [51–53]. Also, counting is embarrassingly parallel.

Finally, fast non-exhaustive approaches exist for counting graph-

lets [53].

Evaluation framework
We evaluate each of the existing and new LP methods on each

of the PPI networks as follows.

First, we introduce synthetic noise in the given PPI network by

randomly removing 5%–50% of its edges, with the goal of

measuring how well the different methods can reconstruct the

original network, using the original PPIs as the ground truth data.

We apply the given LP measure to a ‘‘noisy’’ network created in

this way and score each node pair in the network, so that the

higher the score, the more likely the nodes are to be linked. We

predict k% of the highest-scoring node pairs as edges. We vary k

from 0% to 100% in increments of 1%. At each k, we count the

number of true positives, true negatives, false positives, and false

negatives, and we compute: 1) precision, recall, and F-score; and 2)

sensitivity and specificity (Section S2 in File S1) [54]. For simplicity

of comparing results across different methods, we summarize the

Figure 5. Comparison of different methods in the context of
evaluation test 3. Our best method (‘‘ours’’) is compared against
existing methods (DP, SN, JC, AA, Katz, LPI, RAI, and RWS) in terms of GO
enrichments of AP/MS, HC, and Y2H networks and their de-noised
counterparts. Here, ‘‘ours’’ corresponds to using 3–5-node weighted
graphlets at a = 0.8.
doi:10.1371/journal.pone.0090073.g005
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performance of the methods over the entire range of k with respect

to sensitivity and specificity by calculating the areas under

receiver-operator curves (AUROCs), as well as with respect to

precision and recall by calculating the areas under precision-recall

curves (AUPRs).

To account for randomness in the above procedure, for each

level of noise, we randomly remove the given percentage of edges

from the original network five times and average the above

statistics over the five runs. Ideally, we would perform more

random runs, but this is impractical due to the required

computational time. Plus, this might be unnecessary, since the

standard deviations resulting from the five runs are typically very

small (Section ‘‘Results and discussion’’), and since even with five

random runs of each method, we can compute the statistical

significance of the difference in LP accuracy between a pair of

methods by using the paired t-test. With this test, we compare five

pairs of AUROCs corresponding to five random runs of two

methods, and a low p-value would indicate that the null hypothesis

(the difference between the accuracy of the two methods having a

mean of 0) can be rejected.

Second, due to the availability of low-confidence PPI data for

the HC network (see above), we perform an additional evaluation

test: we apply the given LP method to the HC network and use the

low-confidence PPIs as the ground truth data. We evaluate the

method in the same way as above.

Third, we apply the given LP method to a network to de-noise

it, and we evaluate the biological quality of the de-noised network

with respect to the ‘‘enrichment’’ of predicted edges in Gene

Ontology (GO) terms [38]. We compute the enrichment as the

percentage of predicted edges, out of all edges in which both

proteins have at least one GO term, in which the two end nodes

share a GO term. As [36], we do this for biological process GO

terms. To avoid potential biases, we consider only gene-GO term

associations with experimental evidence codes. Since we de-noise

networks by relying on their topology (i.e., on the PPIs), to avoid

‘‘circular arguments’’, of these associations, we exclude associa-

tions inferred from PPIs. We compute the statistical significance of

the enrichment by using the hypergeometric model (Section S2 in

File S1).

Finally, we validate predicted edges absent from the original

network by searching for them in an independent PPI data source.

Here, we use BioGRID [5], because it is a trusted PPI data source.

Again, we measure the statistical significance of validating the

given number of predictions by using the hypergeometric model

(Section S2 in File S1). We perform the external data source

validation on AP/MS predictions as this network uses the same

naming scheme as BioGRID.

Results and Discussion

We study three yeast PPI networks: AP/MS, Y2H, and HC. We

use a number of existing and new LP measures. The existing

measures are degree product (DP), shared neighbors (SN), Jaccard

coefficient (JC), Adamic-Adar (AA), Katz index (Katz), local path

index (LPI), resource allocation index (RAI), and random walk

with resistance (RWS). The new measures are node-GDV-

similarity and node-pair-GDV-centrality. See Methods for details.

The two new graphlet-based measures allow us to address

several important LP questions. First, we can combine node-

GDV-similarity, which favors linking nodes with topologically

similar neighborhoods, with node-pair-GDV-centrality, which

favors linking nodes that share many graphlets and thus have

large extended shared neighborhoods, to favor linking nodes that are

both topologically similar and share many graphlets, which might

be preferred. To test whether this is the case, we combine the two

measures by varying the value of parameter a from 0 to 1, where a
of 0 means that only node-GDV-similarity is used, and a of 1

means that only node-pair-GDV-centrality is used (see Methods).

Second, we test whether favoring denser graphlets that are shared

between the nodes in question within the node-pair-GDV-

centrality measure is preferred over equally favoring all graphlets,

independent on their density. We do this by evaluating both

unweighted and weighted node-pair-GDV-centrality measures (see

Methods). Third, to test how much of network topology is

beneficial for LP, when using the graphlet-based measures, we use:

1) all 3–5 node graphlets, 2) only 3–4-node graphlets, and 3) only

3-node graphlets.

After we compare the different variations of graphlet-based

measures, we evaluate the best of them against the existing LP

measures. We perform three evaluation tests: 1) we introduce

synthetic noise in the given PPI network by randomly removing a

percentage of its edges, with the goal of measuring how well the

given method can reconstruct the original network, using the

original PPIs as the ground truth data; 2) given the availability of

low-confidence PPI data corresponding to the HC network, we

apply the given LP method to the original HC PPI network and

use the corresponding low-confidence PPI data as the ground truth

data when evaluating the method; and 3) we apply the LP methods

to the original PPI networks to de-noise them, and we evaluate

biological quality of the de-noised networks. In the first two

evaluation tests above, we use systematic AUROC and AUPR

frameworks as the evaluation criteria (see Methods). In the third

evaluation test above, we compute the ‘‘enrichment’’ of predicted

edges in GO terms [38], and also, we validate predicted edges in

an external data source (see Methods).

Ultimately, we are less focused on identifying a superior LP

method but more on testing whether we can de-noise a network so

that the de-noised network is biologically more meaningful than

the original one, as well as on which topological properties affect

LP accuracy.

Test 1: evaluating LP methods by introducing synthetic
noise into PPI networks

Current PPI networks are noisy. The correct and complete

ground truth interactomes are unknown. Thus, an alternative

ground truth data has to be sought. We create synthetic ground

truth data from the real PPI networks. For each PPI network, we

add synthetic noise to the network by randomly removing 5%,

10%, 15%, 20%, 25%, and 50% of the original edges. Then, we

evaluate the given LP method by applying it to a synthetically

noised network and by measuring how well it reconstructs the

original network (see Methods). Below, we initially discuss our

results in the context of AUROCs, and later on we contrast these

results against those returned by AUPRs.

Combining topological similarity and centrality of nodes

to be linked improves LP accuracy. By combining node-

GDV-similarity and node-pair-GDV-centrality with parameter a
(see Methods), we find that nodes that are simultaneously

topologically similar and share many graphlets are preferred for

LP. In general, the larger the value of a (the more node-pair-

GDV-centrality is used), the better the LP accuracy (Fig. 2 A). This

suggests that the topological similarity of two nodes is less relevant

for LP than the number of graphlets that the nodes share.

However, using a small amount of node-GDV-similarity in the

combined LP score (a~0:8) actually improves LP accuracy

compared to using node-pair-GDV-centrality alone (a~1),

implying that topological similarity is relevant. The difference

between LP accuracy of the best a of 0.8 and any other a in Fig. 2
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A is statistically significant, with p-values below 2:5|10{6 for 5%

noise and below 2:8|10{4 for 50% noise.

While the results in Fig. 2 A are for weighted node-pair-GDV-

centrality, 3–5-node graphlets, two noise levels, and the AP/MS

network, in general, they also hold for unweighted node-pair-

GDV-centrality, all graphlet sizes, all noise levels, and HC and

Y2H networks (Fig. S1 and S2 in File S1). And since a~0:8 is

statistically significantly superior to all other as, in the rest of the

section, we focus only on this value of a.
Favoring denser shared graphlets improves LP

accuracy. We find that preferring denser graphlets (see

Methods) improves the LP performance: weighted node-pair-

GDV-centrality outperforms the unweighted version (Fig. 2 C),

and its superiority is statistically significant, with p-value of

1:76|10{8 for 5% noise and 1:8|10{5 for 50% noise.

While the results in the figure are for all 3–5-node graphlets, two

noise levels, and the HC network, in general, they also hold for all

graphlet sizes, all noise levels, and AP/MS and Y2H networks

(Fig. S3 in File S1). Thus, henceforth, we focus only on the

superior weighted version of node-pair-GDV-centrality.
Using more topology does not always guarantee higher LP

accuracy. There is no clear trend on how much topology is best

(Fig. 2 E). For example, in the figure, for the lowest noise level of

5%, using 3–5-node graphlets is statistically significantly superior

over using 3–4-node or 3-node graphlets, with p-values of

5:8|10{3 and 1:1|10{2, respectively. On the other hand, for

the highest noise level of 50%, using 3-node graphlets is marginally

superior over using 3–4-node graphlets, with p-value of

5:6|10{2, and it is statistically significantly superior over using

3–5-node graphlets, with p-value of 8:6|10{3. Hence, using

more network topology can improve LP accuracy, but it is not

guaranteed to do so.

Whereas the results in Fig. 2 E are only for two noise levels and

the Y2H network, in general, they also hold for other noise levels

and for AP/MS and HC networks (Fig. S4 in File S1).

Because in some cases using only 3-node graphlets is superior,

and because the existing shared neighbors-based methods and SN

in particular also rely on 3-node graphlets (see Methods), one

might incorrectly assume that in these cases, our graphlet-based

methods do not improve upon the existing SN method. However,

it is at a of 1 when our node-pair-GDV-centrality and existing SN

method are equivalent (see Methods). Since our results at a of 0.8

are superior over results at a of 1 (see above), and since at a of 0.8

SN is actually combined with graphlet information encoded in the

node-GDV-similarity measure, node-GDV-similarity actually im-

proves the accuracy of SN even when using 3-node graphlets only

and especially when using all 3–5-node graphlets is superior to

using only 3-node graphlets.

Also, using deeper network topology is superior to using only the

direct network neighborhood of nodes to be linked in the sense

that node-GDV-similarity alone (a~0) is superior to the existing

DP method (Fig. S5 in File S1). This is interesting because the two

methods are somewhat similar. They both take into account

graphlet degrees of two nodes in question. They differ in that DP

considers only the 2-node graphlet and hence captures only the

direct (1-deep) network neighborhoods of the nodes, whereas

node-GDV-similarity considers all 2–5-node graphlets, thus

capturing up to 4-deep node neighborhoods. Hence, in this

context, including more network topology helps. (We compare the

existing methods to our new graphlet-based methods in more

detail in the following section.)

In general, using larger graphlets can increase LP accuracy (the

following sections also confirm this). Since counting larger

graphlets is computationally expensive compared to counting

smaller graphlets (see Methods), whether it is worth including the

extra topological information that is captured by the larger

graphlets depends on how significant the improvement is.

New graphlet-based measures are superior to the

majority of the existing measures. Having examined differ-

ent variations of the graphlet-based measures, we now compare

these measures with the existing ones. Of all graphlet-based

variations, we report the weighted version at a~0:8 when

considering 3–5-node graphlets, since this version generally

performs the best. The existing measures include DP, SN, JC,

AA, Katz, LPI, RAI, and RWS.

Our graphlet-based method is superior to five out of the eight

existing methods in all three networks (Fig. 3 A). These five

methods are: DP, SN, JC, AA, and RAI. And whereas Katz, LPI,

and RWS are somewhat superior to our graphlet-based method in

this evaluation test and with respect to the evaluation criterion

from Fig. 3 A (namely AUROCs), we show later that our method

beats each of Katz, LPI, and RWS in at least one different

evaluation test or with respect to at least one other evaluation

criterion (such as AUPRs or biological correctness of de-noised

networks; see below). The p-value of the difference between LP

accuracy of our method and any of the five inferior methods in

Fig. 3 A is below 8:6|10{6, 1:5|10{6, and 1:2|10{6 for AP/

MS, HC, and Y2H networks, respectively. It is worth noting that

most of the methods perform quite well, reaching very high

AUROCs of up to 0.998, 0.998, and 0.98 in AP/MS, HC, and

Y2H networks, respectively. Whereas Fig. 3 A is for the lowest

noise level, the results are similar for other noise levels (Fig. S5 in

File S1). Interestingly, our graphlet-based measures further

improve over the existing measures as the noise increases.

ROCs vs. precision-recall curves. Thus far, we have

shown AUROC results. AUROCs are commonly used to evaluate

methods over the entire [0%,100%] range of k [21] (see Methods,

as well as Fig. S1–S8 in File S1). In a similar fashion, AUPRs can

be computed (see Methods, as well as Fig. S9–19 in File S1).

Whereas one would hope that different evaluation criteria such as

AUROCs and AUPRs would identify the same methods as best

performing, we actually find that the AUROC results are not

necessarily consistent with AUPR results.

Namely, while in both AP/MS and HC networks our best

graphlet-based measure is better than JC, AA, and RAI with

respect to AUROCs (along with some other existing measures)

(Fig. 3 A; Fig. S5 in File S1), JC, AA, and RAI are better with

respect to AUPRs (Fig. 3 B; Fig. S13 in File S1). On the other

hand, whereas Katz, LPI, and RWS are better than our graphlet-

based method with respect to AUROCs (Fig. 3 A), our graphlet-

based method is better than LPI and RWS with respect to AUPRs

(Fig. 3 B). Note that while Katz remains superior to our graphlet-

based methods with respect to AUPRs, as we show later, Katz

becomes inferior to our graphlet-based methods with respect to an

alternative evaluation criterion, namely biological correctness of

de-noised networks (see below).

Further, for Y2H, we notice a different inconsistency: whereas

AUROCs are high for the best-performing methods (Fig. S5 in

File S1), AUPRs indicate poor performance of almost all methods,

as precision is always relatively low (Fig. S13 in File S1).

Even though optimizing AUROCs does not necessarily

optimize AUPRs [54], the observed inconsistencies are alarming,

and the LP community needs to be aware. We address this issue by

also comparing the different methods with respect to biological

correctness of their de-noised networks (see below). But first, we

check whether results depend on the ground truth data, as follows.
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Test 2: evaluating LP methods on HC network with
respect to low-confidence PPI data

When we evaluate the LP methods on the HC network with

low-confidence PPIs as the ground truth data, we find that:

1. As in the previous section (when evaluating LP methods by

introducing synthetic noise into PPI networks), combining

topological similarity and centrality of nodes to be linked

improves LP accuracy. However, now a of 0.4 is the best

overall instead of a of 0.8 (Fig. S20 and S21 in File S1):

topological similarity is now more relevant than the number of

shared graphlets.

2. As in the previous section, favoring denser graphlets improves

LP accuracy for the best a (Fig. S22 in File S1).

3. As in the previous section, using more topology can improve

LP accuracy (Fig. S23 in File S1). Using 3–4-node graphlets at

the best a of 0.4 results in higher AUROC than using only 3-

node graphlets at any a, and using 3–5-node graphlets at a of

0.8 results in higher AUROCs than using only 3-node

graphlets or 3–4-node graphlets at the same a (Fig. S23 in

File S1).

4. As in the previous section, our best graphlet-based measure in

this context (using 3–4-node weighted graphlets at a~0:4) is

superior to the majority (namely six) of the eight existing

measures (Fig. 4 A; Fig. S24 in File S1). The only superior

methods in this context (namely with respect to AUROCs) are

Katz and LPI, but as we show later, these two methods are

inferior to our graphlet-based method with respect to at least

one alternative evaluation criterion.

5. We again see inconsistencies between AUROC and AUPR

results (Fig. 4 A and B; Fig. S25–S29 in File S1). For example,

whereas LPI is superior to our graphlet-based method with

respect to AUROCs, LPI is inferior to our graphlet-based

method with respect to AUPRs.

Test 3: de-noising the PPI networks
Since both our new and the existing methods perform well on

all networks with respect to AUROCs (Fig. 3 A and Fig. 4 A; Fig.

S5 in File S1), we use the overall best graphlet-based method

(weighted 3–5-node graphlets at a~0:8) as well as DP, SN, JC,

AA, Katz, LPI, RAI, and RWS and to de-noise the networks. We

score each node pair in a network, and we predict as edges in the

de-noised network the top k% highest scoring node pairs. We

choose k so that the number of edges in the de-noised network

matches the number of edges in the original network. Depending

on the network, k falls between 1% and 2%. We choose k in this

way because most of the methods achieve the maximum F-score in

this range of k (Fig. S17–S19 in File S1).

Gene Ontology (GO) validation of de-noised

networks. We validate biological correctness of the de-noised

networks by computing the enrichment of all predicted edges in

GO terms (see Methods and Fig. 5). When we de-noise AP/MS

and HC networks, the enrichment is statistically significant for all

methods (p-values ƒ10{100). Our method as well as JC, AA, LPI,

and RAI improve the quality of the original AP/MS and HC

networks. This is important, since the main goal of LP is to de-

noise a network so that the de-noised network is more meaningful

than the original one. While the GO enrichments are worse for the

de-noised networks than for the original Y2H network for all

methods but RWS, the enrichments are still statistically significant

(p-values#0.05) for our method, as well as for all existing methods

except SN.

Importantly, in this evaluation test and with respect to this

evaluation criterion, Katz, which is the only method that is

superior to our best graphlet-based method with respect to both

AUROCs and AUPRs, now loses its superiority: our best graphlet-

based method now beats Katz in AP/MS and HC networks. This

not only verifies that our method is superior to every one of the

eight existing methods with respect to at least one evaluation

criterion (be it AUROCs, AUPRs, or biological correctness of de-

noised networks), but it also implies an additional inconsistency

between the different evaluation criteria regarding the best-

performing method(s). As a further illustration of this inconsisten-

cy, we note that JC and AA, which are not superior to all other

measures with respect to either AUROCs or AUPRs, now slightly

outperform all of the other measures for AP/MS and HC

networks (Fig. 5).

Intersection of de-noised networks produced by different

methods. Since we de-noise a network with multiple LP

methods, we measure the intersections between the de-noised

networks (Fig. S30 in File S1). The intersections are quite large

between our method on one side and the shared neighbors-based

methods or LPI on the other. JC is an exception, as it is somewhat

different not only from our method but also from other shared

neighbors-based methods. Actually, our method is more similar to

SN and AA than JC is. The similarity between LPI and our

method, as well as between LPI and the shared-neighbors-based

methods (excluding JC) is not surprising, as all of these measures

are intuitively similar (see Methods). In terms of the intersections

between the original networks on one hand and de-noised

networks for the different methods on the other, the intersections

are the largest for Katz, followed by a number of more-less tied

methods (including ours), followed by DP (Fig. S30 in File S1).

It is important to note that de-noised AP/MS and HC networks

resulting from Katz (which achieves extremely high AUROCs and

AUPRs in AP/MS and HC networks in evaluation tests 1 and 2)

are completely identical to the original AP/MS and HC networks.

That is, when used to de-noise these networks, Katz cannot

generate any new edges or remove any of the existing ones (and

hence the maximum overlap with the original networks in Fig. S30

in File S1). And while on one hand one might argue that because

of high AUROCs and AUPRs Katz is very accurate, on the other

hand, Katz is clearly incapable of de-noising real-world networks,

which could be viewed as its disadvantage.

Validation of de-noised networks on external PPI

data. We aim to validate ‘‘new predicted edges’’ (predicted

edges not present in the original network; Table S1 in File S1) by

searching for them in BioGRID as an independent data source.

We do this for the AP/MS network. Even though validation

accuracy varies across the methods, all methods achieve statisti-

cally significant validation rates (p-values below 1|10{100),

except Katz, which predicts no new edges and thus cannot be

validated. Of the remaining existing methods, only RAI, JC, and

RWS outperform our method (Fig. S31 in File S1).

Concluding Remarks

We tackle the problem of link prediction (LP) in the context of

PPI network de-noising. We comprehensively study what is it in

the PPI network topology around nodes in question that dictates

whether the nodes should be linked. To evaluate whether nodes

that share many neighbors and are thus close in the network are

favored over distant nodes (as is the assumption of most of the

existing LP methods), whether topological similarity between

nodes in question has any effect, and how much of the network

topology should be included, we propose new LP methods, since
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none of the existing methods allowed for answering all of these

questions. Unlike the existing methods, our new methods allow for

combining topological similarity of the nodes to be linked with the

information about the size of their shared neighborhood, while at

the same time allowing to vary the amount of network topology

that is taken into account for LP. We demonstrate via a thorough

evaluation that our new methods outperform each of the eight

existing methods with respect to at least one evaluation criterion.

Importantly, when we use the LP methods to de-noise real-world

PPI networks, we find that the de-noised networks improve

biological correctness of the original networks, which is the

ultimate goal of LP in computational biology.

Supporting Information

File S1 This file combines Sections S1–S2, Table S1, and
Fig. S1–S31.
(PDF)
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41. Milenković T, Ng W, Hayes W, Pržulj N (2010) Optimal network alignment

with graphlet degree vectors. Cancer Informatics 9: 121–137.
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protein structure networks. PLoS ONE 4: e5967.

48. Pržulj N, Corneil DG, Jurisica I (2004) Modeling interactome: Scale-free or
geometric? Bioinformatics 20: 3508–3515.

49. Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks.

Nature 393: 440–442.
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