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ABSTRACT

Many cancers comprise heterogeneous populations
of cells at primary and metastatic sites through-
out the body. The presence or emergence of dis-
tinct subclones with drug-resistant genetic and epi-
genetic phenotypes within these populations can
greatly complicate therapeutic intervention. Liquid
biopsies of peripheral blood from cancer patients
have been suggested as an ideal means of sam-
pling intratumor genetic and epigenetic heterogene-
ity for diagnostics, monitoring and therapeutic guid-
ance. However, current molecular diagnostic and se-
quencing methods are not well suited to the rou-
tine assessment of epigenetic heterogeneity in dif-
ficult samples such as liquid biopsies that contain
intrinsically low fractional concentrations of circu-
lating tumor DNA (ctDNA) and rare epigenetic sub-
clonal populations. Here we report an alternative ap-
proach, deemed DREAMing (Discrimination of Rare
EpiAlleles by Melt), which uses semi-limiting dilu-
tion and precise melt curve analysis to distinguish
and enumerate individual copies of epiallelic species
at single-CpG-site resolution in fractions as low as
0.005%, providing facile and inexpensive ultrasensi-
tive assessment of locus-specific epigenetic hetero-
geneity directly from liquid biopsies. The technique
is demonstrated here for the evaluation of epigenetic
heterogeneity at p14ARF and BRCA1 gene-promoter
loci in liquid biopsies obtained from patients in as-
sociation with non-small cell lung cancer (NSCLC)

and myelodysplastic/myeloproliferative neoplasms
(MDS/MPN), respectively.

INTRODUCTION

Advances in molecular diagnostic and sequencing technolo-
gies continue to shed light on the manifold genetic and epi-
genetic alterations that occur during the initiation, progres-
sion and evolution of cancer. Carcinogenesis is thought to
arise from genomic instability due to the gradual accumu-
lation of these alterations that ultimately leads to the de-
velopment of neoplastic cell populations (1,2). Perhaps the
most well-studied epigenetic alteration associated with can-
cer is DNA hypermethylation (3). Many forms of cancer
exhibit DNA hypermethylation within CpG islands of tu-
mor suppressor gene promoters that is distinct from healthy
tissue and has likewise been shown to act as a promis-
ing biomarker for cancer diagnostics, prognostics and pre-
dicting drug response (4,5). Aberrant methylation occurs
early during carcinogenesis (3) in a progressive and stochas-
tic manner (4,6), producing daughter cell populations with
heterogeneously-methylated epialleles and epigenetic phe-
notypes (7,8). These cells can later give rise to subclones
that contribute to cancer heterogeneity, plasticity and drug
resistance that can often lead to complications in therapeu-
tic interventions and corresponding adverse clinical out-
comes (9–15). The assessment of tumor heterogeneity may
thus provide key advantages in the early detection of cancer,
as well as predicting and monitoring responses to targeted
chemotherapies (4,9).

The evaluation of tumor heterogeneity requires an abil-
ity to both sample and discriminate between the subclonal
populations that constitute cancerous tissue at primary and
metastatic sites. Toward this end, liquid biopsies of periph-
eral blood from cancer patients have been shown to con-
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tain circulating tumor DNA (ctDNA) (16) and rare epi-
genetic subclonal populations (7,17) with molecular alter-
ations derived from [cancerous] cell populations through-
out the entire body and have consequently been heralded
as an ideal means of sampling overall intratumor hetero-
geneity. Nonetheless, tumor-specific genetic and epigenetic
alterations within liquid biopsies are often only present at
extraordinarily low fractional concentrations (<0.1%) and
their detection remains extremely challenging (18–20). Ad-
ditionally, as epigenetic silencing (and resulting drug resis-
tance) can be effected by the methylation of even only a
few CpG sites (21), the ability to detect variants and cor-
respondingly potentially drug-resistant epiallelic clones at
ultra-high resolution is also of particular importance.

While there exist numerous methods for the assessment of
methylation in genomic DNA (5), they are fundamentally
limited in their ability to discriminate rare epiallelic vari-
ants. For example, commonly-employed locus-specific tech-
niques such as methylation-specific PCR (MSP) (22) and
its real-time analogs, quantitative MSP (qMSP) (23) and
MethyLight (24), are routinely used to detect methylation of
specific loci in fractions as low as 0.01%, but can only pro-
vide semi-quantitative information regarding a specific [typ-
ically fully-methylated] methylation pattern. On the other
hand, genome-wide approaches including array-based anal-
yses, such as Infinium BeadArray methods (25), and bisul-
fite sequencing (26,27) provide broad views of DNA methy-
lation and epigenetic heterogeneity across the genome, but
despite tremendous advances in sequencing technology are
still not capable of directly quantifying heterogeneously-
methylated epialleles in fractions below 0.1% without ex-
traordinary time and expense (28–30). These constraints
have thus far precluded the widespread assessment of epi-
genetic heterogeneity in challenging samples such as liquid
biopsies and thereby limited studies primarily to the evalu-
ation of samples containing high fractional concentrations
of epiallelic variants such as standard tissue biopsies (31–
34) or cell line models (10,35).

Here, we present an alternative approach called
DREAMing (Discrimination of Rare EpiAlleles by
Melt) that provides a facile and inexpensive means ideally
suited to the detection and assessment of epigenetic hetero-
geneity of ultra-rare epiallelic variants such as those found
in liquid biopsies. DREAMing employs some of the basic
principles of methylation-sensitive high resolution melt
(MS-HRM) (36), but unlike bulk MS-HRM, it is directly
quantitative and aimed at the detection and enumeration of
ultra-rare epiallelic variants down to the single copy level.
DREAMing relies upon two key underlying concepts. The
first is that DNA samples can be diluted to a so-called
‘quasi-digital’ level such that no more than two epiallelic
species of a given locus exist per reaction volume. The
second is that, in a single reaction volume, the HRM
profiles of amplicons derived from bisulfite-treated (BST)
heterogeneously-methylated epialleles can be readily distin-
guished from unmethylated epialleles and their respective
melt temperatures (Tm) used to quantify the methylation
density of the original templates. Thus by plotting the Tm
heterogeneity of individual epialleles, the overall epigenetic
heterogeneity of the sample can be directly inferred.

MATERIALS AND METHODS

Primer and locus selection

Methylation-independent primer design was adapted from
previously published design criteria (36). Briefly, the de-
sign constraints were as follows: (i) target regions < 150 bp
(shorter is generally better); (ii) inclusion of one or two CpG
dinucleotide targets in each primer as far toward the 5′ end
of the respective primer as possible; (iii) primer melting tem-
peratures near 65◦C and within 1◦C of each other; (iv) speci-
ficity check through Bisearch (37); (v) no significant hair-
pin or primer dimer formation; (vi) single-peak melt profiles
for both fully methylated and fully unmethylated bisulfite-
treated sequences, as determined through uMELT (38). All
primers were obtained from Integrated DNA Technologies
(IDT).

Extraction and bisulfite treatment of genomic DNA

Unmethylated control genomic DNA was obtained from
either DNA extracted from DNMT1/DNMT3b double-
knockout (DKO) cells (39), human male genomic DNA
(Promega) or Epitect unmethylated control DNA (Qiagen).
Enzymatically CpG-methylated HeLa genomic DNA (New
England BioLabs) was used as a fully-methylated control.

All genomic DNA was processed according to the
‘Methylation-on-Beads’ (MOB) bisulfite conversion tech-
nique as previously published (40). Briefly, for samples re-
quiring extraction, cells or plasma were first digested in a
solution containing 3 ml of Buffer AL (Qiagen) and 1 ml
of Proteinase K (Invitrogen). DNA was then extracted via
precipitation by isopropanol, then purified and washed by
a series of magnetic decantation steps. The resulting DNA
was bisulfite converted using reagents contained within the
EZ DNA Methylation Kit (Zymo Research) according to
the MOB protocol, washed by magnetic decantation and
eluted into a final volume of 100 �l.

MS-HRM and DREAMing assay conditions and optimiza-
tion

Each candidate primer pair underwent a multi-step as-
say condition optimization process. Master mix contain-
ing 16.6 mM (NH4)2SO4, 67 mM Tris pH 8.8, 10 mM β-
mercaptoethanol, 1X Evagreen dye (Biotium), 10 nM flu-
orescein, 200 �M of each deoxynucleotide triphosphate
(dNTP) and 0.04 U/�l of Platinum Taq polymerase (Ther-
moFisher Scientific) was mixed with magnesium chloride to
yield a final working magnesium concentration between 1.7
mM to 6.7 mM. Final reaction volumes for all assays were
25 �l.

A PCR condition matrix was then created by varying the
quantitative PCR (qPCR) annealing temperature and mas-
ter mix magnesium concentration. qPCR and HRM were
performed using a CFX96 Touch Real-time PCR Detec-
tion System (Bio-Rad) and analyzed using the accompany-
ing stock software, CFX Manager. For all MS-HRM and
DREAMing assays, the qPCR cycling conditions were as
follows: 5 min at 95◦C, followed by 60 cycles of (95◦C for
30 s, 30 s at TA and a 30-s extension step at 72˚C, where TA
is the primer annealing temperature). HRM was performed
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immediately after amplification with a temperature range
of 60◦C–90◦C at 0.2◦C increments and a 10-s hold time be-
fore each measurement. Primer pairs and their respective
PCR assay conditions were evaluated through analysis of
cycle threshold (Ct) values and melt curve profiles accord-
ing to two primary criteria: difference in the Ct values and
ability to produce clearly distinguishable single-peak melt-
ing temperature differences in unmethylated versus methy-
lated controls. Primer pairs and conditions that produced
consistent and large differences in Ct value as well as large,
distinct differences in melting temperature between the two
controls were selected for use. The final, optimized, assay
conditions were 2.7 mM Mg2+ and TA = 65.2◦C for BRCA1
and 62.2◦C for p14ARF.

Following primer selection and assay condition optimiza-
tion, analytic sensitivity was evaluated through serial dilu-
tion of BST methylated control DNA in negative-control
BST unmethylated genomic DNA (NC-BSTDNA). Ge-
nomic DNA copy numbers were calculated according to
beta-actin standards (see below).

DREAMing background determination and model assay

Baseline assay signal was evaluated via DREAMing on BST
DKO, human male, Epitect and synthetic DNA. Approxi-
mately 20 000 genomic copy equivalents were diluted into
a 96-well microtiter plate. Background methylation signals
for BST DKO, human male and Epitect DNA were an av-
erage epiallelic fraction of 0.02% for p14ARF and 0.005%
for BRCA1. Here, the epiallelic fraction of a given sam-
ple is defined as the ratio of all fully and heterogeneously-
methylated epialleles divided by the total number of epi-
alleles. Background epiallelic fraction signal for synthetic-
equivalent BST unmethylated DNA was 0.000% for both
p14ARF and BRCA1 assays. The difference between the
baseline methylation level of synthetic and BST Epitect is
ostensibly attributable to incomplete bisulfite conversion,
an issue common to all bisulfite-based methylation analysis
and has been shown to be a function of the conversion pro-
tocol, as well as other potential factors including sequence
complexity and secondary structures (41).

For the model p14ARF DREAMing assay, a
manufacturer-estimated eight copies of a synthetic DNA
oligonucleotide equivalent to a BST fully-methylated locus
were diluted into an estimated 5000 genomic equivalents of
NC-BSTDNA and distributed amongst 87 microtiter wells
(the nine remaining wells were used for controls). Wells con-
taining only unmethylated epialleles exhibited melt peaks
with melt temperatures under 79◦C, while wells containing
a copy of the synthetic oligonucleotide were identified
by distinct secondary melt peaks at 83.8◦C ± 0.2◦C. For
the BRCA1 model assay, a manufacturer-estimated 4.2
copies each of synthetic equivalents of BST 20% and
100% methylation density BRCA1 loci were diluted into
approximately 5000 genomic equivalents of NC-BSTDNA
and distributed amongst 84 wells (the remaining 12 wells
were used for controls). qPCR and HRM were performed
as with the bulk assay. Resulting HRM curves were then
classified according to melt temperature and assigned a
methylation density based upon calculated 80% confidence
intervals (see below).

DREAMing for detection of p14ARF epialleles in lung-CT-
scan-positive plasma samples

Peripheral blood and tumor biopsy samples from patients
that had undergone CT-screening for lung cancer were col-
lected at Johns Hopkins Hospital under research study
J06115. All patients provided informed consent accord-
ing to HIPAA regulation. Patients were independently di-
agnosed according to standard histological examination
of biopsies. Blood samples were collected and transferred
into 15 ml conical tubes containing 4 ml of Ficoll buffer.
These conical tubes were spun for 10 min at 3000 rpm,
and the plasma then transferred into 1.5 ml microcentrifuge
tubes. These samples were stored at -80◦C prior to isola-
tion of cfDNA via Methylation-on-Beads (MOB), as de-
scribed above. NSCLC samples were assessed for CDKN2A
(p16) promoter methylation using a standard MethyLight
assay (24) with 300 nM forward primer, 5′- TTA TTA GAG
GGT GGG GCG GAT CGC -3′, 300 nM reverse primer,
5′ - GAC CCC GAA CCG CGA CCG TAA -3′, span-
ning a 151-bp region (chr9:21,974,757–21,974,907), and 100
nM probe, 5′- \56-FAM\ ACT ACT CCC \ZEN\ CRC
CRC CRA CTC CAT AC \3IABkFQ\ -3′. Cycling condi-
tions were 95◦C for 5 min, followed by 60 cycles of (95◦C
for 30 s, 60◦C for 30 s and 72◦C for 30 s). These sam-
ples were also assessed for CDKN2A (p14ARF) promoter
methylation by qMSP with Evagreen dye using a touch-
down qMSP approach (42) using primers adapted from pre-
vious studies (43) with 300 nM forward primer, 5′- GTG
TTA AAG GGC GGC GTA GC -3′ and 300 nM reverse
primer, 5′- AAA ACC CTC ACT CGC GAC GA -3′, span-
ning a 123-bp region (chr9:21,994,263–21,994,385). Cycling
conditions were 95◦C for 5 min, followed by 5 cycles of
(95◦C for 30 s, 69.5◦C for 30 s and 72◦C for 30 s), 5 cycles of
(95◦C for 30 s, 67.5◦C for 30 s and 72◦C for 30 s), 5 cycles
of (95◦C for 30 s, 65◦C for 30 s and 72◦C for 30 s), 5 cycles
of (95◦C for 30 s, 62.5◦C for 30 s and 72◦C for 30 s) and 30
cycles of (95◦C for 30 s, 60◦C for 30 s and 72◦C for 30 s).
Sequences for beta-actin recognizing both methylated and
unmethylated templates were: actin-sense 5′- TAG GGA
GTA TAT AGG TTG GGG AAG TT -3′; actin-antisense
5′- AAC ACA CAA TAA CAA ACA CAA ATT CAC -3′,
spanning a 104-bp region (chr7:5,532,168–5,532,271). Cy-
cling conditions were 95◦C for 5 min, followed by 50 cycles
of (95◦C for 5 s, 60◦C for 30 s and 72◦C for 30 s).

For the NSCLC plasma samples, beta-actin standards
were used to estimate overall circulating DNA copy num-
bers. Many samples exhibited weak p16 MethyLight and
p14ARF qMSP amplification profiles and/or did not show
amplification in all replicates. Thus, for Ct values greater
than 35, methylated-epiallele copy numbers were estimated
by counting the fraction of replicates that exhibited any am-
plification, however slight, and dividing by the total number
of replicates. Each replicate contained 2% of extracted and
BST DNA from a 2 ml plasma sample, thus representing cir-
culating DNA from roughly 40 �l of plasma per replicate.
This was then used to estimate the number of copies per
volume of plasma for both qMSP and DREAMing assays.
Wells in the p14ARF DREAMing assay were considered pos-
itive if the melt profile exhibited a peak with a melt temper-
ature of 79◦C or higher, which corresponds to a >96% con-
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fidence interval based upon the average (78.7◦C) and stan-
dard deviation (0.129◦C) determined by DREAMing assay
of 96 wells of NC-BSTDNA.

Pyrosequencing of DREAMing products

In order to perform pyrosequencing, one of the primers was
replaced with a biotinylated analogue. Following DREAM
analysis, wells of interest were selected for sequencing. The
biotinylated PCR product was purified and subjected to py-
rosequencing using the PyroMark Q24 System (Qiagen), us-
ing forward primers according to the manufacturer’s pro-
tocol. Sequencing results report the percentage of cytosine
versus thymine at each CpG site.

The use of pyrosequencing to verify the methylation den-
sities of DREAMing amplicons represents an atypical se-
quencing application. In short, prior to amplification, each
‘positive’ reaction volume (well) ostensibly contains one
heterogeneously-methylated epiallele and anywhere from 5
to 500 unmethylated epialleles. Secondly, while the primers
are designed to preferentially, but not exclusively, amplify
epialleles that are methylated in the primer region, the final
ratio of unmethylated to methylated amplicons cannot be
precisely controlled. Lastly, while all methylated cytosines
from a single epiallele should exhibit the same raw methyla-
tion percentage, this rarely occurs in practice, as there is of-
ten a considerable amount of noise in pyrosequencing traces
that confound analysis. These variables combine to prevent
using a single methylation percentage threshold as a means
of determining the methylation status of CpG sites for all
samples. To deal with this issue, a logic flowchart was de-
veloped for evaluating the methylation status of CpG sites
on a sample-by-sample basis, the details and an example of
which is provided in Supplementary Section 3.1. Wells with
primer dimer -dRFU/dT peaks, multiple or very low level
heterogeneously-methylated epiallelic peaks were typically
unable to be sequenced reliably due to methylation assess-
ment complications and/or lack of pyrosequencing sensi-
tivity and were thus excluded from analyses.

Bulk MS-HRM epiallelic fraction determination

For both p14ARF and BRCA1, BST methylated control ge-
nomic DNA was serially diluted in NC-BSTDNA to yield
an epiallelic fraction ranging from 0.01% to 100%. Follow-
ing triplicate qPCR (using optimized assay conditions de-
veloped above), HRM curves were generated and the abso-
lute value of the negative derivative peaks (-dRFU/dT) at
the unmethylated and fully methylated melt temperatures
were recorded. The peak heights were averaged and plot-
ted against the epiallelic fraction. Best-fit trendlines were
computed for the resulting curves based on power regres-
sion analysis.

Statistical framework for quantitative methylation density
assessment

Synthetic DNA sequences equivalent to amplified BST-
DNA of a single permutation of 0% (unmethylated), 20%,
40%, 60%, 80% and 100% (fully methylated) of the selected
BRCA1 locus were obtained from IDT. DNA for each re-
spective methylation density was diluted to yield 10 000

copies per reaction volume. Following qPCR (using op-
timized assay conditions developed above), HRM curves
were generated and corresponding melt temperatures ob-
tained for each methylation density. Resulting melt temper-
atures were then compared with in silico estimates obtained
through uMELT (38) using the Blake & Delcourt thermo-
dynamic library (44). In silico and experimental melt tem-
perature values obtained above were then evaluated in order
to generate a linear regression.

Melt temperature estimates for all permutations were
then calculated via interpolation using the equation for
the best-fit trendline of the linear regression. By as-
suming each permutation of a given methylation den-
sity has an equal probability of occurrence, an estimated
average melt temperature for each methylation density(
X̄permutation,%methylation

)
was generated, along with the

corresponding standard deviation, spermutation,%methylation ,
which is a composite of the standard deviation of the
predicted melt temperatures at each methylation den-
sity, spermutation,%methylation , and the standard deviation of
X̄permutation,%methylation from the regression, sregression, as:

sestimation,%methylation =
√

s2
regression + s2

permutaion,%methylation

The measurement standard deviation, smeasurement, was ob-
tained through 48 replicate assays on NC-BSTDNA and,
when combined with the estimation standard deviation
was used to generate the overall assay standard deviation,
smeasurement, for each methylation density, as:

soverall,%methylation =
√

s2
measurement + s2

estimation,%methylation

Here we assume that smeasurement is independent of the sam-
ple being measured. Finally, a confidence interval for each
methylation density, θmean,%methylation , based on the mean of
a given number of binned replicates (normally one) from a
sample, nreplicates, was derived from the overall assay stan-
dard deviation, as:

θmean,%methylation

= X̄permutaion,%methylation ± z∗ soverall,%methylation√
nreplicates

where z* is the upper critical value based upon a standard
normal distribution.

A step-by-step demonstration of the incorporation of raw
melt data into this statistical framework is provided in Sup-
plementary Section 3.2.

DREAMing for detection of BRCA1 epiallelic variants in
MDS/MPN clinical isolates

Peripheral blood samples from patients diagnosed with
mixed MDS/MPN were collected at the Johns Hopkins
Hospital under research study J0969. All patients provided
informed consent according to the Declaration of Helsinki.
Mononuclear cells were isolated by density centrifugation
with Ficoll-Paque Plus (GE Healthcare). The ZR-DuetTM

DNA/RNA MiniPrep kit (Zymo Research) was used to ob-
tain genomic DNA.
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BRCA1 promoter methylation was initially analyzed by
qMSP (23) using the iTaq SYBR Green mix and 300 nM
of each primer. Primers specific for methylated BRCA1
sequences were: BRCA1-methylated sense 5′- GGG TGG
TTA ATT TAG AGT TTC GAG AGA CG -3′; BRCA1-
methylated antisense 5′- AAC GAA CTC ACG CCG CGC
AAT CG -3′, spanning a 185-bp region (chr17:43,125,361–
43,125,545). Sequences for beta-actin recognizing both
methylated and unmethylated templates were: actin-sense
5′- TAG GGA GTA TAT AGG TTG GGG AAG TT -3′;
actin-antisense 5′- AAC ACA CAA TAA CAA ACA CAA
ATT CAC -3′, spanning a 104-bp region (chr7:5,532,168–
5,532,271). Cycling conditions were 95◦C for 5 min, fol-
lowed by 40 cycles of (95◦C for 5 s and 64◦C for 60 s). Epi-
allelic fractions were estimated using cycle threshold values
for beta-actin and target gene promoter according to the
formula 2(ActinCt - BRCA1Ct) x 100%.

MDS/MPN patient samples were also preliminarily eval-
uated in a bulk MS-HRM assay to determine the poten-
tial presence of methylated epiallelic variants. The epial-
lelic fraction from each sample was estimated via the bulk
MS-HRM epiallelic fraction method described above ac-
cording to the number of wells showing anomalous peaks
and the respective height of those peaks. Through compari-
son with methylated:unmethylated control DNA standards,
the epiallelic fraction for most samples could be reasonably
estimated. For rare epialleles, a reasonable estimate could
be obtained by measuring the sample in triplicate and ob-
serving the number of replicates exhibiting heterogeneous-
methylation peaks. Samples were then diluted according to
their respective estimated epiallelic fractions to yield a final
working concentration of less than 0.25 methylated epial-
lelic variants per well. The diluted samples were then mixed
with freshly-made master mix, containing a biotinylated
analogue of one of the primers (in order to allow subse-
quent pyrosequencing, as described above), and then pipet-
ted into 84–90 wells of a microtiter plate, along with 6–
12 wells containing no-template and/or negative controls.
Following qPCR and HRM, resulting HRM curves were
then classified according to melt temperature and assigned
methylation densities based upon the previously calculated
confidence intervals. Epiallelic fractions from the DREAM
analysis of each sample were calculated according to the
original dilution factor, using beta-actin qPCR to standard-
ize each sample, respectively.

Gaussian mixture modeling and subtraction

For Tm’s that could not be directly identified by CFX
Manager software due to low peak-heights relative to a
large unmethylated epiallelic peak, the raw melt profile
data were exported and analyzed using a MATLAB sub-
routine based upon a mixed Gaussian model. Unmethy-
lated peaks were automatically fitted to a skewed Gaus-
sian and removed from analysis, leaving only the remain-
ing heterogeneously-methylated epiallelic melt profile and
associated peaks. Wells were considered positive if they ex-
hibited a remaining heterogeneous-methylation peak three
standard deviations greater than [noise from] the average
unmethylated control. Methylation densities were assessed
using the previously calculated confidence intervals.

RESULTS

Overview of the DREAMing assay

A schematic illustrating how DREAMing effectively com-
bines quasi-digitization and melt profile analysis to produce
an overall assessment of epiallelic/epigenetic heterogeneity
directly from a liquid biopsy is shown in Figure 1. Circu-
lating cell-free DNA (cfDNA) is first extracted and bisulfite
converted using our previously described MOB technique
that results in significantly higher cfDNA recovery and pu-
rity when compared with other methods such as phenol
chloroform and spin-column-based techniques (40,45). At
this point the sample contains a solution of single-stranded
BST DNA containing a heterogeneous population of epi-
allelic variants. Then, using preliminary copy number esti-
mates, the sample is diluted to yield quasi-digital reaction
volumes (wells) that contain no more than one partially or
fully-methylated epiallelic variant per well. In order to in-
crease signal from heterogeneously-methylated and methy-
lated epialleles, the target loci are amplified with primers
that preferentially, but not exclusively, recognize methy-
lated epiallelic variants. Following amplification, HRM is
performed in the presence of a DNA-saturating dye such
as Evagreen (46) and the resulting negative derivative (-
dRFU/dT) curves are compared. Wells containing indi-
vidual heterogeneously-methylated or fully-methylated epi-
allelic variants can then be easily identified by the pres-
ence of a characteristic secondary melt peak whose respec-
tive Tm can be used to identify the methylation density of
each original template molecule. Lastly, a ‘DREAM anal-
ysis’ histogram based on the observed frequency of each
methylation-density-variant can then be created to allow
a clear visual representation of a given sample’s epigenetic
heterogeneity at the target locus.

Primer selection and assay optimization for DREAMing

DREAMing assays were designed within CpG islands lo-
cated in the promoter regions of two tumor suppressor
genes, CDKN2A (p14ARF) and BRCA1. These loci were
chosen to demonstrate the ability of DREAMing to identify
potentially drug-resistant and susceptible epigenetic sub-
populations directly from liquid biopsies. For example, epi-
genetic inactivation of p14ARF results in overexpression of
MDM2 and loss of p53 (47). This has been shown to be
a useful prognostic indicator of response of non-small cell
lung cancer (NSCLC) to gemcitabine and gefitinib treat-
ment (48–50). Likewise, BRCA1 is a DNA repair protein
whose epigenetic silencing has been shown to correlate to
sensitivity to poly(ADP-ribose) polymerase (PARP) inhi-
bition in breast cancer patients (51) and, more recently,
patients suffering from myelodysplastic/myeloproliferative
neoplasms (MDS/MPN) (52).

Primers were designed by amending previously-published
design criteria (36) specifically for the preferential amplifi-
cation of ultra-rare heterogeneously-methylated species. In
particular, one to two CpG sites were included toward the 5′
end of each primer to bias amplification against unmethy-
lated sequences (that contain mismatches at the primer CpG
sites) resulting in preferential amplification of epialleles
that exhibit methylation in the primer regions of the locus.
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Figure 1. DREAMing: analysis of epigenetic heterogeneity at single-copy sensitivity and single-CpG-site resolution. DNA is extracted from a liquid
biopsy and undergoes bisulfite treatment (BST). The sample containing a heterogeneous population of BST epialleles is then diluted such that no more
than two epiallelic species are present per reaction volume (quasi-digitized). Following PCR amplification and melt curve generation, wells containing
a fully methylated (M; blue DNA/curve) or heterogeneously-methylated (HM; red DNA/curve) epiallele can be easily distinguished from those that
are unmethylated (U; gray DNA/curves) by the presence of a secondary melt peak, whose melt temperature (dashed lines) allows discrimination and
enumeration of epiallelic variants based on methylation density. Observed melt temperatures can then be plotted as a ‘DREAM analysis’ histogram to
easily visualize epigenetic/epiallelic heterogeneity.

Among the critical amendments to previously-described
MS-HRM design criteria were the selection of primers/loci
that result in the generation of single peak/melt temper-
ature (Tm) negative derivative melt profiles and large dif-
ferences in melt temperature between unmethylated versus
methylated epialleles. Primer pairs were initially evaluated
by mixing BST fully-methylated epialleles with negative
control BST unmethylated genomic DNA (NC-BSTDNA).
Following amplification and melt curve generation, two dis-
tinct negative derivative melt peaks are clearly visible, as
shown in Figure 2. The first melt peak is derived from the
melting of amplified unmethylated (U) epialleles, while the
second peak corresponds to the melt profile from the fully
methylated (M) epialleles. By carefully adjusting annealing
temperatures and magnesium concentrations the effect of
the bias against unmethylated sequences could be modu-
lated to achieve the desired level of sensitivity (see Supple-
mentary Figure S1A,B). After fine-tuning this approach to
the detection of ultra-rare species, we could readily detect
(methylated):(total epialleles) epiallelic fractions for both
loci below 0.01% (Supplementary Figure S1C), demonstrat-
ing over an order of magnitude greater sensitivity than pre-
viously reported (36). The sequences and characteristics of
the finally-selected primer pairs and loci are provided in
Supplementary Table S1.

We also found that the overall epiallelic fraction of a bulk
sample could be readily estimated using the ratio between
the heights of the ‘U’ and ‘M’ peaks, as shown in Supple-
mentary Figure S2A,B. By performing a serial dilution with
epiallelic fractions ranging from 100% down to 0.01% for
the p14ARF and BRCA1 loci, respective characteristic equa-
tions could be defined to approximate the epiallelic frac-
tion based solely on the negative derivative melt curve (Sup-
plementary Figure S2C). We confirmed the validity of this
approach by comparing epiallelic fraction estimates of the
BRCA1 locus in three liquid-biopsy-derived mononuclear
cell samples from MDS/MPN patients based on the peak-
height method against estimation based upon qMSP (Sup-

plementary Figure S2D). The results of these comparisons
demonstrated that the peak-height method provides esti-
mates within a factor of two of those obtained by qMSP.
However, unlike qMSP-based estimates, the peak-height
method is capable of assessing the epiallelic fraction of par-
tially methylated epialleles and does not require comparison
to a reference gene such as beta-actin.

Enumeration of individual epiallelic variants at single-copy
sensitivity

We next sought to assess the ability of DREAMing to
enumerate individual epiallelic variant copies accurately.
We first determined the baseline melt characteristics of
the p14ARF locus for unmethylated epialleles (Avg. Tm:
78.6±0.13◦C) and fully-methylated epialleles (Avg. Tm:
83.8±0.10◦C). A mock p14ARF DREAMing assay was then
performed using standard samples containing synthetic
oligonucleotides corresponding to a BST fully-methylated
locus diluted into a large excess of NC-BSTDNA. Fig-
ure 3A shows the results of such an assay where a
manufacturer-estimated 8 copies of synthetic DNA equiva-
lent to a BST fully-methylated epiallele were diluted into
∼5000 genomic equivalents of NC-BSTDNA and dis-
tributed among 87 microtiter wells. When the resulting melt
curves were plotted, 78 wells exhibited a single primary ‘U’
Tm peak centered at 78.6◦C (indicating the exclusive pres-
ence of NC-BSTDNA), while 8 wells produced a character-
istic secondary ‘M’ melt peak at an average of 83.8◦C, each
indicating the presence of a single copy of a fully-methylated
epiallele (one well exhibiting an atypical melt profile was ex-
cluded). Following analysis, the observed melt temperatures
for each of the wells were plotted into a DREAM analysis
histogram as shown in the inset of Figure 3A. Here, melt
temperatures derived from wells that contain only unmethy-
lated genomic DNA are shown in gray and those that ex-
hibit an M peak are colored blue.
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Figure 2. DREAMing primers optimized for high sensitivity. (A) Bulk (–dRFU/dT) melt curves for the p14ARF locus at various genomic DNA methy-
lated:total epiallelic fractions. (B) Bulk (–dRFU/dT) melt curves for the BRCA1 locus at various genomic DNA methylated:total epiallelic fractions. Both
assays exhibit sensitivities that provide detection of epiallelic fractions of 0.01% or lower.

Assessment of p14ARF epigenetic heterogeneity in liquid biop-
sies from CT-scan-positive NSCLC patients

We next used DREAMing to assess epigenetic heterogene-
ity of the p14ARF locus in 26 liquid-biopsy-derived cfDNA
samples obtained from lung CT-scan-positive patients that
had been previously diagnosed for NSCLC according to
histopathology. cfDNA from each patient’s liquid-biopsy-
derived plasma was processed according to the MOB tech-
nique and preliminarily assessed for methylation in the
CDKN2A locus within the p14ARF and p16 promoters by
qMSP (23) and MethyLight (24), respectively. In the ma-
jority of these samples, methylation levels/copy numbers
could not be determined with high confidence by these
real-time-PCR-based approaches due to weak or inconsis-
tent amplification (ostensibly due to a combination of in-
trinsically low ctDNA quantity and the inability of MSP
primers to amplify heterogeneously-methylated epialleles
efficiently). To perform DREAMing, the BST cfDNA was
diluted into microtiter plates such that, based on prelim-
inary qMSP/MethyLight estimates of each sample, any-
where from 5–100 genomic equivalents and no more than
one heterogeneously-methylated p14ARF epiallelic variant
were expected to be present per reaction volume. Following
amplification and melt profile analysis, heterogeneously-
methylated epiallelic variants were detected by identifying
wells exhibiting secondary melt peaks with a Tm ≥ 79◦C
(above the NC-BSTDNA Tm 96% confidence interval),
thereby indicating the presence of a single heterogeneously-
methylated or fully-methylated epiallelic variant. Figure
3B,C shows the results of DREAMing for two NSCLC sam-
ples with each HRM profile and DREAM analysis color-
coded according to Tm/methylation density.

In order to confirm the presence and methylation density
of the epiallelic variants that were detected by DREAMing,
we took 137 of the positive wells from the sample analy-
ses and had them verified by pyrosequencing. Based on this
analysis, epiallelic variants were positively confirmed in 19
of 20 (95%) of the DREAMing-positive samples and in 133

of 137 (97.1%) positive wells (confirmed patterns are shown
in Supplementary Table S2A, though not all wells could be
reliably sequenced due to primer dimers and/or multiple
secondary peaks). As shown in Figure 3D, epiallelic vari-
ants exhibited the predicted linear correlation (R2 = 0.97)
between variant Tm’s and methylation density, further val-
idating the use of Tm as a means of easily discriminating
between different epiallelic variants to assess epigenetic het-
erogeneity.

The results of p14ARF DREAM analyses were also com-
pared with CDKN2A (p14ARF and p16) qMSP/MethyLight
estimates for each of the NSCLC samples. Figure 4 shows
a bar graph of the total number of variants detected by
DREAMing as compared to qMSP/MethyLight in each
sample, grouped according to clinical diagnosis. Variants
detected by DREAMing are additionally color-coded ac-
cording to Tm/methylation density. Overall, DREAMing
detected p14ARF methylation in over three times as many
samples compared to p14ARF qMSP (22 versus 7 samples,
respectively) and up to 28.4-fold more variant copies in sam-
ples that were also positive by qMSP. The bars within the
graph display the color-coded ‘DREAM analyses’ that pro-
vide a facile means of visualizing and comparing epigenetic
heterogeneity between the samples.

Interestingly, previous MSP-based studies showed that
while p16 and p14ARF share a common promoter, their
methylation status appears to be independent (43). Consis-
tent with these reports, only 7 of the 15 p16-MethyLight-
positive samples also exhibited p14ARFmethylation by
qMSP. However, DREAMing was able to confirm that all
15 of the p16-MethyLight-positive samples also exhibited
detectable p14ARF methylation, intimating an association
between methylation of the two loci. The disparity between
these results is ostensibly due to the higher sensitivity of
DREAMing and its ability to detect methylation densities
as low as a single CpG site within the entire p14ARF locus.
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Figure 3. Analysis of p14ARF epigenetic heterogeneity in NSCLC. (A) DREAM analysis showing detection of 8 of 8 copies of synthetic BST fully-
methylated p14ARF locus in the presence of ∼5000 BST unmethylated genomic equivalents. *One aberrant profile was excluded. (B–C) DREAMing results
of p14ARF epiallelic heterogeneity in NSCLC samples. The DREAM analysis of each sample is displayed in the upper left insets, along with the relative
Tm/methylation density frequency. (D) Scatterplot color-coded according to methylation density/melt temperature showing correlation between observed
of CT-scan positive clinical NSCLC sample p14ARF DREAMing melt temperatures and respective methylation densities as determined by pyrosequencing.
Here, CpG sites with an indeterminate methylation status (see Supplementary Section 3.1) were considered half methylated.

Statistical framework for the differentiation of epiallelic vari-
ants at single-CpG-site resolution

We next sought to develop a statistical framework for us-
ing DREAMing to distinguish epiallelic variants at single-
CpG-site resolution based solely on differences in Tm. We
utilized the DREAMing assay for the BRCA1 locus that
was designed around a reduced number of CpG dinu-
cleotides to limit variance in Tm due to methylation pat-
tern permutations at each methylation density. We then
performed HRM using synthetic oligonucleotide standards
equivalent to BST BRCA1 epialleles with methylation den-
sities of 0% (unmethylated), 20%, 40%, 60%, 80% and 100%
(fully methylated) and observed the resulting melt profiles
and respective Tm’s (Figure 5A). As shown in Figure 5B,
linear regression analysis demonstrated a high correlation

between experimental Tm’s and in silico estimates, thereby
allowing interpolation of the melt temperatures of all pos-
sible 2n epiallelic permutations, where n is the number of
CpG sites (here, n = 5) located between the primers within
the locus of interest. By accounting for variances due to ex-
perimental deviation from the regression curve and differ-
ences in Tm due to permutations at each methylation den-
sity, as well as measurement imprecision, we were able to
calculate the probability of a given variant methylation den-
sity as a function of observed Tm, as shown in Figure 5C
(see methods for more details). Based on these probabili-
ties, non-overlapping confidence intervals were established
for distinguishing epiallelic variants at single-CpG-site res-
olution based solely on Tm, as shown in Figure 5D. An ex-
ample of the process of incorporating raw BRCA1 melt data
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Figure 4. p14ARF methylation in NSCLC via DREAMing and qMSP. Plot
comparing the number of detected copies of methylated p14ARF epial-
leles via DREAMing versus p16 qMSP (estimated) and p14ARF qMSP
(estimated) per 100 �l plasma from 26 CT-scan-positive patients, plotted
according to histopathological diagnosis. p14ARF DREAMing detected
heterogeneously-methylated p14ARF epialleles in 3 times as many samples
as compared to p14ARF qMSP. All samples positive by p16 qMSP were
also positive by p14ARF DREAMing, while less than half (47%) were pos-
itive by p14ARF qMSP.

into this framework is provided in Supplementary Section
3.2.

We next performed a mock assay to demonstrate the
ability of DREAMing to identify and enumerate individ-
ual BRCA1 epiallelic variants at single-CpG-site resolu-
tion. Here, a manufacturer-estimated 4.2 copies each of syn-
thetic control DNA equivalent to BST BRCA1 epiallelic
variants at single-CpG-site (20%) and 100% methylation
densities were mixed with ∼5000 genomic equivalents of
NC-BSTDNA and pipetted into 84 wells. Following am-
plification, three wells exhibited secondary melt peaks at
77.8–78.2◦C, indicating methylation of a single CpG site
(20% density), and five wells showed secondary melt peaks
at 80.4–80.6◦C, indicating 100% methylation density, as
shown in Figure 6A. These results are well anticipated by
the Poissonian probability (� = 4.2). The right inset of Fig-
ure 6A shows the overall DREAM analysis of the mock ex-
periment, color-coded according to the methylation density
of the epiallelic variants predicted by the Tm confidence in-
tervals.

In order to assess the fraction of false-positive epiallelic
variants due to incomplete bisulfite conversion, we also
performed BRCA1 DREAMing on Epitect NC-BSTDNA
and compared it with the synthetic equivalent of fully-
converted unmethylated DNA. DREAMing detected an
overall 0.005% heterogeneously-methylated epiallelic frac-
tion in the NC-BSTDNA, as compared to 0.000% for the
synthetic control DNA. This difference reflects the notable
ability of DREAMing to easily assess the false-positive rate
stemming from inherent inefficiencies in bisulfite conversion
(53,54).

Assessment of BRCA1 epigenetic heterogeneity in
MDS/MPN patient liquid biopsies

Lastly, we sought to demonstrate the ability of DREAM-
ing to directly assess the methylation density/clonal
heterogeneity of the BRCA1 locus in liquid-biopsy-
derived mononuclear cells from 10 patients diagnosed with
MDS/MPN. These samples were initially evaluated for
BRCA1 methylation by both qMSP as well as the bulk peak-
height ratio method described above to inform the level of
dilution appropriate for the DREAMing assay. Figure 6B–
D shows the results of DREAM analyses of BRCA1 hetero-
geneity in three of the ten clinical samples. Through sim-
ple observation of the resulting secondary-peak Tm’s, the
presence of heterogeneously-methylated epiallelic variants
with 20%, 60%, 80% and 100% methylation densities could
be readily discriminated based on Tm confidence intervals.
Secondary peaks with a difficult to discern Tm were eval-
uated by employing a Gaussian mixture model to remove
interference from the large unmethylated peak (see Sup-
plementary Figure S3). By counting the total number of
wells that exhibited secondary heterogeneous-methylation
peaks, direct enumeration of the epiallelic variants could
be easily obtained, as shown in Table 1. In addition to
providing assessment of epiallelic subclonal heterogeneity,
DREAMing also detected up to 30-fold more epiallelic vari-
ants than qMSP per sample. Subsequent pyrosequencing
analysis confirmed the predicted epiallelic variant methy-
lation densities at single-CpG-site resolution in 33 of 34
wells chosen for sequencing analysis (see Supplementary
Table S2B for sequencing results). The upper right insets in
Figure 6B–D show the methylation patterns that were con-
firmed by pyrosequencing.

DISCUSSION

Intratumor heterogeneity has emerged as a critical compo-
nent in the understanding, assessment and treatment of can-
cer (55). At present, the exact mechanism that accounts for
this heterogeneity remains an issue of hot debate (56). Over-
all, two paradigms have dominated this discussion: the can-
cer stem cell (CSC) hypothesis (57,58) and the clonal evo-
lution model (59). Both of these can be used to account for
the commonly-observed phenomenon that only a small sub-
set of cancer cells can transfer disease in immunocompro-
mised mice (60,61). Yet while the two competing theories
differ on how this small subset of cells arises during car-
cinogenesis, both paradigms posit that it is epigenetic differ-
ences that predominantly determine tumorigenic potential
between cancer cells due the implausibility that only the rare
tumorigenic cells contain genotypes that allow high rates
of proliferation. Likewise, epigenetic heterogeneity arising
from stochastically disordered methylation has been shown
to directly correspond to adverse clinical outcome (14,15).

Ultra-high-depth genome-wide analyses of cancer cell
populations as well as single-cell studies will be instrumen-
tal in shedding light on carcinogenesis and elucidating the
epigenetic differences and mechanisms that determine can-
cer cell tumorigenicity and drug resistance. While such ap-
proaches have clear utility in solving these fundamental
questions and for the discovery of epigenetic biomarkers,
they demand considerable time, effort and resources that
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Figure 5. Statistical basis for DREAMing at single-CpG-site resolution. (A) Experimental melt profiles of synthetic DNA equivalent to the BST BRCA1
locus at various methylation densities. Right inset indicates template methylation patterns; solid circles and empty circles indicate methylated and unmethy-
lated CpG sites, respectively. (B) Linear regression between experimental melt temperatures and those predicted by uMELT using the ‘Blake & Delcourt’
thermodynamic library. (C) Probability of true BRCA1 epiallelic variant methylation density as a function of observed melt temperature. For example, a
Tm of 78.7◦C (dashed line) has a ∼91% probability of being derived from a variant with a 40% density and ∼9% from a variant with a 60% density. (D)
Confidence intervals for the melt temperature mean of 1, 2 and 4 wells grouped by methylation density.

are currently impractical for many applications in basic sci-
ence and the clinic. There thus remains a critical need for
methods with the sensitivity and resolution required for
reliably detecting the presence and heterogeneity of epige-
netic biomarkers that are sufficiently cost-effective to allow
for routine use. This need is greatly exacerbated in studies
involving the use of samples such as liquid biopsies that
contain exceedingly low copy numbers of tumor-specific
DNA, making sequencing approaches particularly cost pro-
hibitive.

In the present work, we sought to describe a simple
and inexpensive method, termed DREAMing, which al-
lows evaluation of epigenetic heterogeneity at extremely
high sensitivity and resolution. While previous reports have

shown that higher methylation densities result in higher
Tm’s due to the greater GC content of methylated sequences
following bisulfite treatment (28), these bulk assay tech-
niques are limited due to issues arising from the generation
of heteroduplex amplicons whose melt curve contributions
obfuscate quantitative analysis (28). In contrast, DREAM-
ing incorporates a semi-limiting (quasi-digital) dilution ap-
proach that provides that no more than two epiallelic
species (typically one heterogeneously-methylated epiallelic
variant amongst 5–500 unmethylated epialleles/genomic
copies) be present per reaction volume. In this case, any het-
eroduplexes that form during amplification will melt at a
lower temperature than any epiallelic homoduplexes within
the same reaction volume, and can be readily excluded from
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Figure 6. DREAM analysis of BRCA1 epigenetic heterogeneity in MDS/MPN at single-copy sensitivity and single-CpG-site sensitivity. (A) DREAM
analysis showing detection and methylation density assessment of synthetic epiallelic variants equivalent to a BST 20% (green) and fully-methylated (blue)
BRCA1 locus. (B–D) DREAM analysis of BRCA1 epigenetic heterogeneity in liquid-biopsy-derived mononuclear cells from MDS/MPN patients. Raw
melt profiles color-coded according to methylation density as predicted by the confidence intervals shown in Figure 5D. DREAM analysis, along with the
calculated overall epiallelic fraction of each sample, are displayed in the upper left insets, while the methylation patterns, as determined by pyrosequencing,
are shown in the upper right insets. Hatched coloring indicates an indeterminate melt temperature (in between the previously-determined confidence
intervals).

melt curve analysis. The resulting derivative (-dRFU/dT)
melt curve thus consists of either one or two primary Tm
peaks (excluding primer dimers): one from amplified BST
unmethylated (U) epialleles and a secondary peak from
each well containing an amplified single copy of a BST
heterogeneously-methylated or fully-methylated (M) epial-
lelic variant. Based on this paradigm, here we have demon-
strated that DREAMing can be used to enumerate and dis-
criminate individual epiallelic variants in fractions as low
as 0.005% at single-CpG-site resolution using only a sin-
gle 96-well microtiter plate. This makes it far more efficient
than fully digital approaches (62), which would nominally
require HRM analysis of ∼50 000 reaction-wells to achieve
a similar sensitivity.

There are a number of issues that are important to
consider for the successful design and implementation of
DREAMing assays. First, loci should be specifically se-
lected based upon the desired application. For example,
the number of CpG sites located between the primers can
greatly influence the number of copies of heterogeneously-
methylated DNA that will be detected in a given assay.
Choosing to include more CpGs will ostensibly increase
the sensitivity of the assay to lower methylation densities
and, potentially, to disease or phenotype-specific methyla-
tion. On the other hand, the inclusion of large numbers of
CpG’s (e.g. >10) typically reduces assay resolution, thereby
limiting the ability to differentiate between epialleles at sim-
ilar methylation densities, potentially compromising over-
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Table 1. Results of BRCA1 DREAM analysis of MDS/MPN mononuclear cells and pyrosequencing confirmation

Sample EF qMSP
20%HM EF
(Conf.)

40%HM EF
(Conf.)

60%HM EF
(Conf.)

80%HM EF
(Conf.)

100%HM
EF (Conf.)

BorderlineTm
EF (Conf.)

Total EF
DREAMing
(Conf.)

Variants
Detected versus
qMSP

P1143 6% 0.3% (1/1) - - 2.4% (5/6)* 7.4% (2/2) 0.5% (2/2) 11% (10/11) 183%
P1180 5% 0.3% (1/1) - 0.3% (1/1) 0.9% (1/1) 2.5% (3/3) 0.9%* 5% (6/6) 100%
P2338 0.02% - - 0.01%* 0.01%* 0.01%* - 0.03% 150%
P2355 Below LOD

(Est. 0.002%)
- - 0.02% (1/1) 0.03% (2/2) 0.01% (2/2) - 0.06% (5/5) ∼3000%

P2361 0.00% - - - - - - 0.00% -
P2366 0.02% - - - 0.005%* 0.02% (3/3) 0.005%* 0.03% (3/3) 150%
P2368 0.00% - - - - - - 0.00% -
P2372 0.8% - - 0.2% (2/2) 0.3% (2/2) 1.2% (5/5) - 1.7% (9/9) 213%
P2434 0.01% - - - 0.01%* - - 0.01% 100%
P2437 0.02% - - 0.03%* 0.03%* - 0.009%* 0.06% 300%
NC-
BSTDNA

0.00% 0.005% - - - - - 0.005% ∞

NC-
Synthetic

0.00% - - - - - - 0.000% -

Ten MDS/MPN samples were analyzed and methylated:total epiallelic fractions (EF) compared with independent qMSP analysis. DREAMing methylation density assessments
were confirmed by pyrosequencing in select positive wells, the results of which are shown in parentheses. Of the 34 wells that were sequenced, 33 confirmed the predicted level of
methylation. Key: *Some sequencing not possible due to presence of primer dimers.

all analyses of epigenetic heterogeneity. While not compre-
hensively evaluated here, longer loci may also be subject to
higher backgrounds and/or false positives due to the inclu-
sion of an increased number of [potentially unconverted] cy-
tosines within the template strands.

Another issue that deserves particular clarification is the
generation and effect of nonspecific hybridizations (e.g.
primer dimers and heteroduplexes) of amplified products on
the DREAMing assay. This issue is particularly notable in
that the primer design and assay optimization strategy re-
sults in a heavy bias against unmethylated sequences lead-
ing to relatively less competition for hybridization and an
increase in potential amplifications due to nonspecific inter-
actions. Additionally, the semi-limiting dilution technique
reduces the number of target strands further exacerbating
these phenomena and making nonspecific hybridizations
not uncommon in DREAMing assays. Evidence of these
nonspecific hybridizations is readily observable in the result-
ing melt profiles as distinct [lower melt temperature] peaks
or reductions in the Tm of the ‘U’ peak. However, unlike real
time assays, such as qMSP, these nonspecific interactions
very rarely affect the DREAMing assay itself due to fact
that they [all but always] result in melt temperature peaks
below unmethylated controls and thus do not interfere with
the evaluation of peaks or the quantification of amplified
epialleles.

A third issue that arises in the implementation of
DREAMing for clinical samples is the determination of
the appropriate dilution to achieve quasi-digitization of the
sample epialleles. This is primarily an issue stemming from
the limited number of reaction volumes available in a mi-
crotiter plate. Given that the number of wells containing a
methylated epiallele is expected to follow a normal Poisso-
nian distribution, samples should be diluted so as to yield a
quasi-digital state (0 or 1 methylated epiallele) for the vast
majority of wells. It is thus suggested that samples be diluted
such that a methylated epiallele is expected to be present in
no more than 40% of the total assay wells (� = 0.4 per plate)
in order to maintain a quasi-digital state for >95% of the
wells. Due to this constraint, it is generally advisable that
all samples be preliminarily assessed for overall DNA copy
numbers by performing methylation-independent qMSP on

a housekeeping gene such as beta-actin. For samples whose
epiallelic fraction cannot be a priori estimated within a
factor of ∼40, such as the MDS/MPN mononuclear cell
isolates tested here, a preliminary bulk technique such as
qMSP or the previously described peak height ratio method
can also be used to approximate the epiallelic fraction and
determine the minimum level of dilution required to pro-
duce a quasi-digital distribution (� < 0.4 per plate). As long
as this condition is met, the sensitivity of the assay is then
determined by the bulk sensitivity of the optimized assay
divided by the number of wells or by the bisulfite conver-
sion efficiency of the target locus. In the case of cfDNA the
situation is typically simpler as most clinical samples can
be easily evaluated by distributing the sample into the re-
action wells such that there are no more than 100 genomic
copies per well. This level of dilution (100 copies per well)
in a 96-well plate provides a sensitivity of approximately
0.01% and maintains reasonable quasi-digitization for sam-
ples with epiallelic fractions as high as ∼0.4%, which, in our
experience, is suitable for the vast majority of plasma sam-
ples.

The chosen level of dilution also has a direct relationship
to the statistical significance of a given DREAMing assay.
Statistically speaking, each DREAMing assay can be con-
sidered as a binomial observation of the fraction of wells
(or number of genomic copies) containing heterogeneously-
methylated epialleles that meet a given set of criteria. For ex-
ample, in a certain assay a researcher may be interested in
the overall epiallelic fraction, the fraction at a given methy-
lation density or, if supplemented by sequencing, the frac-
tion of unique methylation patterns. The statistical signifi-
cance of the population meeting the chosen criteria would
then be calculated using standard binomial statistical tests
(63) that can be simplified by assuming a normal distribu-
tion, and where the number of events, n, is equal to the num-
ber of assay wells and the proportion of successes, p̂ would
be the number of wells meeting the desired criteria divided
by n.

As alluded to previously, the high sensitivity and reso-
lution of DREAMing also make it particularly dependent
upon the bisulfite conversion efficiency of the target locus.
For this reason, it is recommended that proper negative con-
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Table 2. Comparison of DREAMing against commonly employed methylation analysis platforms

Technology
AveragePrep
Time

AverageAssay
Time

Cost
perSample

Native
Sensitivity

Heterogeneous
Methylation
Detection

Multi-Epiallelic
Discrimination

Directly
Quantitative Main application

MSP/MethyLight <30 min 2–3 h $10–$100 0.01–0.1% No No No Fully methylated
detection

MS-HRM (biased
primers)

<30 min 2–3 h $10–$100 0.1% Yes No No Rough HM Epiallele
detection

Pyrosequencing ∼1 h ∼6 h $50–$100 5% Yes No No Abundant Methylation
Detection

Bisulfite sequencing days 0.5–9 days $1K–$10K 0.1%–1% Yes Yes No Methylome Analysis
DREAMing <30 min 2–3 h $50–$100 0.005% Yes Yes Yes Epiallelic

Heterogeneity analysis

HM: heterogeneously-methylated.

trols, such as healthy human DNA and Epitect unmethy-
lated control DNA, be incorporated and rigorously evalu-
ated prior to evaluating any samples of interest in order to
determine the rate of false positives due to incomplete bisul-
fite conversion. For all research studies, healthy or normal
controls should also be extensively evaluated in order to dis-
tinguish between phenotypic or disease-specific methylation
versus low-level methylation that is within the normal range
of control populations.

Lastly, a number of fundamental limitations may render
DREAMing unsuitable for some applications. For exam-
ple, due to the demand for quasi-digitization, the sensitivity
of the assay is ultimately determined by the dominant [non-
zero] epiallelic methylation density within the sample as well
as the number of reaction volumes tested. In the case where
one species is particularly over represented and the assay
is performed in a 96-well microtiter plate, epiallelic species
present at an order of magnitude or lower than the domi-
nant fraction will be not be accurately represented or may
be missed altogether. While this limitation can, in principle,
be overcome through the use of higher density arrays, do-
ing so may undermine the simplicity and cost-effectiveness
of the assay.

Another fundamental limitation of DREAMing is the
relatively low throughput of the assay. This all but pre-
vents its use for biomarker discovery, as screening multi-
ple loci would be costly, time-consuming and necessitate
large sample volumes. Likewise, its low throughput makes
DREAMing far more suitable for individual biomarkers
than biomarker panels. These problems could be somewhat
alleviated by limiting the number of wells per target to allow
for more targets to be run in the same plate, but would con-
comitantly reduce the sensitivity and statistical significance
for each target-assay.

A third limitation is that DREAMing does not directly
provide sequence information. This limitation ultimately
prevents full characterization of epigenetic heterogeneity
within a given sample. Nonetheless, DREAMing can be
easily augmented with sequencing, as demonstrated here,
through incorporation of modified primers. It should be
noted, however, that while [supplemental] sequencing can
be used to identify epiallelic clones with different patterns
of methylation amongst the detected epiallelic variants of
a given methylation density, it is currently unclear whether
there is significant biological consequence to the methyla-
tion of particular CpG sites. There is, however, strong evi-
dence that locus methylation density has a direct effect on

epigenetic silencing and the generation of distinct epigenetic
phenotypes (21,64–65).

Overall, DREAMing represents a simple and practical
means of assessing epigenetic heterogeneity in difficult sam-
ples such as liquid biopsies by providing direct quantifica-
tion and discrimination of epiallelic variants at single-CpG-
site resolution. The technique offers a number of advan-
tages over other methods (see Table 2) and can be performed
at minimal time and cost in a microtiter plate using a stan-
dard qPCR machine capable of HRM analysis. DREAM-
ing is suitable for ultra-sensitive assessment of epigenetic
heterogeneity in any specimen of interest, particularly those
containing low abundance epialleles, and has potential util-
ity in the evaluation of DNA methylation dynamics in cell
populations (17), prenatal diagnostics (66), as well as early
cancer diagnostic, companion diagnostic and predictive ap-
plications (9).
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