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There are two central premises to this evolutionary view of Parkinson disease (PD). First, 
PD is a specific human disease. Second, the prevalence of PD has increased over the 
course of human history. Several lines of evidence may explain why PD appears to be 
restricted to the human species. The major manifestations of PD are the consequence 
of degeneration in the dopamine-synthesizing neurons of the mesostriatal neuronal 
pathway. It is of note the enormous expansion of the human dopamine mesencephalic 
neurons onto the striatum compared with other mammals. Hence, an evolutionary bottle 
neck was reached with the expansion of the massive nigrostriatal axonal arborization. 
This peculiar nigral overload may partly explain the selective fragility of the human dopa-
minergic mesencephalic neurotransmission and the unique presence of PD in humans. 
On the other hand, several facts may explain the increasing prevalence of PD over the 
centuries. The apparently low prevalence of PD before the twentieth century may be 
related to the shorter life expectancy and survival compared to present times. In addition, 
changes in lifestyle over the course of human history might also account for the increas-
ing burden of PD. Our hunter-gatherers ancestors invested large energy expenditure on 
a daily basis, a prototypical physical way of life for which our genome remains adapted. 
Technological advances have led to a dramatic reduction of physical exercise. Since the 
brain release of neurotrophic factors (including brain-derived neurotrophic factor) is par-
tially exercise related, the marked reduction in exercise may contribute to the increasing 
prevalence of PD.

Keywords: Parkinson disease, evolutionary approach, life expectancy, dopaminergic field, physical activity

Parkinson disease (PD), the second most prevalent neuropsychiatric neurodegenerative disorder 
(1–5), increases exponentially with aging (3, 4). While PD likely represents a syndrome of several 
molecular subtypes, with a small proportion arising from well-defined genetic abnormalities (1, 5), 
the data accumulated suggest two common denominators: alpha synuclein accumulation into cyto-
plasmic Lewy bodies and dopamine deficiency as the casualty of neuronal loss in the nigrostriatal 
neurons (1, 5). The convergence of diverse biological processes, including genetic, environment, and 
behavioral factors in the development of PD suggests that evolutionary processes may explain in 
part the vulnerability to this form of neurodegeneration (6). From a phylogenetic standpoint, PD is 
prevalent among human primates at the top of the evolutionary chain but evidence for its presence 
in other species is lacking.

There are two central premises to the evolutionary view of PD. First, PD is a specific human 
disease. Despite the importance of animal models to the understanding of potential pathogenic 
mechanism in PD (5), there is no naturally occurring parkinsonism in non-human species: PD is 
a specific human disease. Second, the prevalence of PD has increased over the course of human 
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history (7), and probably even over the last century (8). Several 
converging evolutionary theories can explain these observations.

PD is sPeciFicALLY HUMAN

Many neurological diseases can be found in non-human mam-
mals (9–12) both acquired and hereditary (such as myelopathy, 
brain tumors, epilepsy, muscular dystrophy, and narcolepsy, to 
mention a few). However, Alzheimer disease and PD are con-
sidered specific to Homo sapiens (13–15). While there are useful 
animal models of PD including MPTP and alpha-synuclein-
overexpressing transgenic mouse models, which may recapitu-
late important clinical features of the human disorders (5, 14), 
especially in aged monkeys (16, 17), no spontaneous akinetic-
rigid syndrome is known to occur in wild mammals including 
non-human primates.

Several lines of evidence serve to explain why PD appears to be 
restricted to the human species. The major motor manifestations 
of PD are the consequence of degeneration in the dopamine-
synthesizing neurons of the mesostriatal neuronal pathway (1, 
13). In particular, the dopaminergic fields in the striatum of 
neurons from the substantia nigra pars compacta (SNpc) can be 
far more extensive than those of other neurotransmitter types 
(18). The elegant anatomical studies of Matsuda and colleagues 
illustrated that the magnitude of the SNpc-to-neostriatum 
relationship whereby the axon of a single tyrosine hydroxylase-
positive dopaminergic neuron in the rat occupies up to 6% of 
the volume of the striatum (18). Conversely, the arborization of 
the human mesostriatal neurons occupies a much larger volume 
of striatum compared to other vertebrates. Vernier and col-
leagues suggested that the peculiar phenotype of the dopamine 
mesencephalic neurons, selected during vertebrate evolution, 
and reshaped in the human lineage, has rendered these neurons 
particularly prone to oxidative stress (13). Bolam and Pissadaki 
also stressed the enormous expansion of the human dopamine 
mesencephalic neurons onto the striatum compared with other 
mammals (19, 20). Some figures are impressive: the volume of 
the striatum has increased by approximately 300-fold from rats 
(20 mm3) to humans (6,280 mm3), but the number of dopamin-
ergic neurons in the SNpc has increased by only 32-fold (rats, 
12,000; humans, 382,000) (19). Thus, human dopamine nigral 
neurons must give rise to axons 10 times the size and 10 times 
the number of synapses compared to rats (19, 20). Pissadaki and 
Bolam elegantly proposed that this axonal architecture creates 
high-energy demands on dopamine-producing nigral neurons 
to maintain cell functions including the propagation of action 
potentials (19, 20). As these authors suggested, the nigral neu-
rons are on the edge of an energetic catastrophe (19). Hence, an 
evolutionary bottle neck was reached with the expansion of the 
massive (and unmyelinated) nigrostriatal axonal arborization. 
This peculiar nigral overload may partly explain the selective 
fragility of the human dopaminergic mesencephalic neurotrans-
mission and the unique presence of PD in humans (13, 19, 20).

Finally, it is relevant to note that this phylogenetically over-
loaded system needed to regulate very complex motor behaviors. 
Motor control among mammalians became progressively more 

sophisticated as hominids developed such skilled motor behaviors 
as stone tools manufacturing (21). The basal ganglia are known to 
be critical for the acquisition, improvement, and sustainability of 
skilled motor behaviors (22, 23).

PD PrevALeNce HAs iNcreAseD Over 
tHe cOUrse OF HUMAN stOrY

The “official” history of PD is quite recent. PD was named after 
the contribution of James Parkinson in 1817 (24). Although 
James Parkinson was first in bringing attention to this particular 
disease, aspects of the disease had been described by Galen, 
Sylvius, Juncker, and Cullen (24). Early artistic descriptions of 
PD can also be found in painting (25, 26). In any case, until 
the second part of the nineteenth century, PD was virtually 
unknown to physicians. It is relevant to ask why a motorically 
obvious disease such as PD was unnoticed until relatively 
recently. A plausible explanation is that PD was actually rare. 
James Parkinson described only six patients, and over the next 
century, even experienced neurologists such as Gowers and 
Wilson, and others did not report a large number of parkinso-
nian patients (27–30), Gowers only studied 80 cases in detail: 
“Of eighty cases, of which I have notes, fifty were men and thirty 
women” (27) and Wilson included in his textbook (1940) a table 
with 383 patients “… combining the collection of Erb, Peterson, 
Bychowski, Ruherman and Manschot” (28). Over the last few 
decades, the incidence and prevalence seem to have increased 
according to several authors (4, 8, 31), although for others, PD 
may have reached a nadir (31–34).

The apparently low prevalence of PD before the twentieth 
century may be related to the shorter life expectancy and survival 
compared to present times (4, 8, 31, 34). In addition, historical 
changes in lifestyle might also account for the increasing burden 
of these diseases. As O’Keefea and colleagues noted, our ancestors, 
surviving as hunter-gatherers, required large energy expenditures 
on a daily basis, and this way of life represented the prototypical 
physical activity regimen for which our genome adapted (35). 
O’Keefea et al. and Mattson suggested that technological advances 
(from the agricultural revolution to the industrial revolution 
and to the recent digital revolution) have led to progressive but 
dramatic reduction in physical exercise and overall activity in 
daily routines (35, 36). Critically, however, our inherent exercise 
capabilities and needs, selected after thousands of years of evolu-
tion, remain essentially unchanged as compared with those of our 
ancestors (35). That physical exercise is important for everyone is 
supported by the fact that many chronic ailments and age-related 
diseases including PD are associated with sedentarism (34–37). 
Of course, it is impossible to know exactly the collective level of 
daily physical exercise achieved by our stone age ancestors, but 
O’Keefea and colleagues suggested that the energy expenditure 
on physical activity of hunter-gatherers was at least four times 
that of the modern humans (35).

Physical activity has not only proven beneficial in prevent-
ing but also attenuating the motor and cognitive developments 
of PD (34, 37–40). Moderate or vigorous physical activity is 
associated with a >30% reduction in PD risk (40). In addition, 
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FigUre 1 | evolutionary and behavioral variables that may contribute to the presence of Parkinson disease: increasing nigroestriatal arborization 
and synaptic putaminal coverage from lower species to humans, decreasing activity levels, and increasing human life span over the course of 
millennia.
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a protective role of physical activity on PD risk is also sup-
ported by animal models (41, 42). Physical exercise seems to 
be one of the few practical strategies with neuroprotective 
potential across all neurodegenerative diseases (35, 37, 43). 
The putative neuroprotective benefits of physical exercise may 
be explained by several mechanisms including the production 
of neuroprotective factors such brain-derived neurotrophic 
factor and glial cell-derived neurotrophic factor (42–45). 
Vigorous exercise should, therefore, be accorded a central 
place in the primary prevention and secondary management 
of PD (35, 37–40, 43).

In summary, important evolutionary clues may explain 
the specificity of PD to human species, as shown in 
Figure 1:

 1. The phenotype of the dopamine mesencephalic neurons, 
selected during vertebrate evolution and reshaped in the 
human lineage, has rendered these neurons particularly prone 
to oxidative stress, and thus, to the selective neurodegenera-
tion of PD (13, 18).

 2. The size and arborization of theses expanded mesencephalic 
neurons compared with other vertebrates have made human 
dopamine nigral neurons vulnerable to an energetic crisis 
(19, 20).

Finally, other evolutionary concepts may partially explain the 
increasing presence of PD in our society, including the following:
 1. The apparently low prevalence of PD before the twentieth cen-

tury may be related to a shorter life expectancy and survival 
(4, 8, 31, 34).

 2. Changes in lifestyle over the course of human history might 
also account for the increasing burden of PD. Our hunter-
gatherers ancestors invested large energy expenditure on a 
daily basis, a prototypical physical way of life for which our 
genome remains adapted (35, 36).

 3. Technological advances have led to a dramatic reduction of 
physical exercise for daily routines (35, 36).

 4. Since the brain release of neurotrophic factors is partially 
exercise-related (44, 45), the reduction in exercise at a soci-
etal level may contribute to the increasing prevalence of PD 
and other neurodegenerative disorders in our era of digital 
revolution.
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