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rosaeodora essential oil as 
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activity in millets with emphasis 
on cellular and its mode of 
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The present study demonstrates first time investigation on encapsulation of 

Aniba rosaeodora essential oil into chitosan nanoemulsion (AREO-CsNe) with 

the aim of improvement of its antifungal, and aflatoxin B1 (AFB1) inhibitory 

performance in real food system. The GC–MS analysis of AREO revealed 

the presence of linalool (81.46%) as a major component. The successful 

encapsulation of EO into CsNe was confirmed through SEM, FTIR, and XRD 

analysis. The in-vitro release study showed the controlled release of AREO. 

AREO-CsNe caused complete inhibition of Aspergillus flavus (AFLHPSi-1) 

growth and AFB1 production at 0.8 and 0.6 μl/ml, respectively, which was far 

better than AREO (1.4 and 1.2 μl/ml, respectively). Impairment of ergosterol 

biosynthesis coupled with enhancement of cellular materials leakage 

confirmed plasma membrane as the possible antifungal target of both 

AREO and AREO-CsNe. Significant inhibition of methylglyoxal (AFB1 inducer) 

synthesis in AFLHPSi-1 cells by AREO and AREO-CsNe confirmed their 

novel antiaflatoxigenic mode of action. In-silico molecular docking studies 

revealed effective interaction of linalool with Ver-1 and Omt-A proteins, 

leading to inhibition of AFB1 biosynthesis. Further, AREO-CsNe showed 

enhanced antioxidant activity with IC50 values 3.792 and 1.706 μl/ml against 

DPPH• and ABTS•+ radicals, respectively. In addition, AREO-CsNe caused 100% 

protection of stored millets (Setaria italica seeds) from AFB1 contamination 

and lipid peroxidation over a period of 1 year without compromising its sensory 

properties and exhibited high safety profile with LD50 value 9538.742 μl/kg 

body weight. Based on enhanced performance of AREO-CsNe over AREO, 

it can be  recommended as a novel substitute of synthetic preservative for 

preservation of stored millets.
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Highlights

 • Nanoencapsulation and characterization of AREO into chitosan nanoemulsion  
(CsNe).

 •  AREO nanoemulsion possesses improved antifungal and AFB1 inhibitory activities.
 •  Nanoemulsion exhibited strong in-situ preservative efficacy for stored Setaria italica.
 •  Nanoemulsion as protectant of millets from lipid oxidation with high safety profile.
 •  AREO nanoemulsion as green preservative for recommendation in food industry.

Introduction

Millets are considered as major functional foods and 
currently receiving global attention as nutraceuticals due to high 
proteins, carbohydrate, and minerals along with their low 
glycemic index (Duodu and Dowell, 2019; Sruthi and Rao, 
2021). Among different millets, Setaria italica (L.) P. Beauv. has 
strong ability to fulfil the minerals and micronutrients deficiency 
in human (Vetriventhan and Upadhyaya, 2019). The grains of 
this millet is well acknowledged in food nutrition due to 
abundant essential amino acids, proteins, and minerals such as 
potassium, calcium, zinc, phosphorous, zinc, and vitamin B 
(Bandyopadhyay et  al., 2017a,b; Nadeem et al., 2018; Jaiswal 
et al., 2019).

However, during storage their grains are frequently 
contaminated by a number of storage fungi and related 
mycotoxins such as aflatoxins, ochratoxins, fumonisins, 
deoxynevalenol, and zearalenone which upon consumption 
can acute as well as chronic toxicity. Among different 
mycotoxins, aflatoxin B1 (AFB1) is of momentous concern 
owing to its proven carcinogenic, mutagenic, teratogenic, 
immunosuppressive, and nephrotoxic properties in both 
humans and animals (Chaudhari et  al., 2019; Chibuzor-
Onyema et  al., 2021). Besides fungal and aflatoxin 
contamination, lipid peroxidation of stored millets is the 
second leading cause responsible for their qualitative 
deterioration (Ajiboye et al., 2017). The free radical oxygen 
species generated during lipid peroxidation has been also 
linked to be responsible for the generation of methylglyoxal 
(MG), substrate responsible for enhancing AFB1 in Aspergillus 
flavus culture (Chen et al., 2004).

To overcome these, various chemical preservatives have 
been widely applied; however, their indiscriminate use has led 
to the development of resistance races among fungal 
population, residual toxicity to non-target organisms, and 
environmental problems (Contigiani et al., 2018; OuYang et al., 
2020). In this regard, the use of plant essential oils (EOs) as 

green chemicals is gaining cumulative interest because of their 
highly volatility that act as fumigant, biodegradability, safety 
and antimicrobial, insecticidal, and antioxidant activities 
(Isman, 2020; Das et al., 2021a; Yang et al., 2021a). Despite of 
having proven potential, the large-scale application of EOs 
especially in food matrix remains limited (Froiio et al., 2019; 
Ju et al., 2019). To overcome these limitations and to improve 
its wider practical applicability, their nanoencapsulation into 
suitable polymeric matrix has been recommended (Bagheri 
et al., 2021; Upadhyay et al., 2021). Among different polymers 
available, chitosan has received maximum interest due to its 
abundance, biodegradability, cost-effectiveness, green image, 
antimicrobial and antioxidant properties, and high 
encapsulation efficiency (Singh et  al., 2021; Soltanzadeh 
et al., 2021).

Aniba rosaeodora Ducke (Family: Lauraceae), commonly 
known as rose wood, is a large perennial tree and grows 
abundantly in Amazon Forest (Sampaio et al., 2012; Maia and 
Mourão, 2016). The EO of A. rosaeodora (AREO) obtained from 
the Heart wood by steam distillation and displayed potential 
antimicrobial and antioxidant properties (Pimentel et al., 2018; 
Teles et al., 2021). However, reports pertaining to the antifungal 
and antiaflatoxigenic activity of AREO along with enhancement 
in overall bioefficacy after nanoencapsulation are still  
lacking.

Therefore, the main objective of this study was to 
synthesize and characterize AREO-based chitosan 
nanoemulsion (AREO-CsNe) and evaluate its preservative 
potential against fungal, AFB1 and lipid peroxidation mediated 
deterioration of stored millets. The study also elucidates the 
antifungal and antiaflatoxigenic mode of action of AREO by 
targeting plasma membrane and cellular methylglyoxal 
content, respectively in treated A. flavus strain. Finally, the 
safety profile was tested on mice model and in-situ study was 
conducted to explore the efficacy of nanoemulsion in real food 
system so as to recommend its possible large-scale application 
in food industry.
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Materials and methods

Materials

Chitosan powder (deacetylation degree >85%), aqueous 
acetic acid, dichloromethane (DCM), sodium-tripolyphosphate 
(S-TPP), chloroform, Tween-20, Tween-80, acetic acid  
(99.99% purity), 1,1-diphenyl-2-picrylhydrazyl (DPPH), 
2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid; ABTS), 
1,2-diaminobenzene (DAB), thiobarbituric acid (TBA), 
trichloroacetic acid (TCA), methylglyoxal, perchloric acid, 
sodium carbonate, and nutrient media (PDA and SMKY) were 
purchased from HiMedia laboratories, Mumbai, India. The EO 
of A. rosaeodora was procured from MRK naturals (99.90% 
purity), New Delhi, India.

Fungal strain

Aflatoxigenic strain of A. flavus (AFLHPSi-1) and other food 
borne fungi viz. A. niger, A. luchuensis, A. sydowii, A. minutus, 
A. chevalieri, A. humicola, A. fumigatus, A. nidulans, A. terreus, 
Fusarium graminearum, F. oxysporum, Penicillium citrinum, 
P. italicum, and mycelia sterilia isolated during mycobiota analysis 
of different millet samples in our previous investigation (data 
unpublished) were used as test fungi. The fungal isolates isolated 
during the mycobiota analysis were identified with the help of 
standard manuals. The genus Aspergillus was identified by using 
taxonomic key of Raper and Fennel (1965), genus Penicillium was 
identified with the help of Manual of Pitt (1979), and other fungal 
isolates were identified using manual of soil fungi by Gilman and 
Joseph (1998).

Isolation and characterisation of AREO

The AREO was obtained from the dried leaves of A. roseodora 
plant through conventional hydro-distillation in a Clevenger type 
apparatus following official method of European Pharmacopoeia 
(WorldCat, 2011). Chemical profiling of AREO was done through 
GC/MS (GC: Thermo scientific 1,300 GC and MS: Perkin Elmer 
Turbo mass Gold MA, United  States) equipped with TG-5 
capillary column (30 m × 0.25 mm ID × 0.25 μm thickness) and 
temperature of instrument was set from 60°C to 240°C with 
temperature rise at the rate of 5°C min−1. The split ratio was kept 
1: 50, helium was used as carrier gas, transfer line and oven 
temperatures were set according to standard protocols. The 
identification of components was done by comparing their kovats 
retention indices (KRI) and mass fragmentation pattern with 
those available in the literature (Adams, 2007). The KRI values of 
different components were calculated by using the retention 
times (RT) of a homologous series of n-alkanes (C9–C28 
hydrocarbons, Polyscience Corp. Niles IL) running in parallel 
with EO.

Nanoencapsulation of AREO into 
chitosan matrix (AREO-CsNe)

AREO-loaded chitosan nanoemulsion was prepared 
through ionic gelation technique following Yoksan et al. (2010) 
with slight modifications. Briefly, 1.5% chitosan solution was 
prepared by overnight stirring in aqueous acetic acid (1%, v/v) 
solution followed by drop wise addition of Tween-80 as 
surfactant and stirring for 2 h at 45°C. Requisite amounts of 
AREO (0.06, 0.12, 0.18, 0.24, and 0.30 g) were separately 
dissolved in 4 ml dichloromethane (DCM) and added dropwise 
into chitosan solution during homogenization (12,600 rpm 
10 min). Then, 0.4% solution of S-TPP was added in oil–water 
emulsion dropwise and stirred for 45 min. The prepared 
nanoparticles were collected through centrifugation (REMI 
compufuge CPR-4) at 13,000 × g for 10 min at 4°C and 
consequently washed thrice with 0.1% Tween-20 solution. 
Chitosan nanoemulsion (CsNe) was also prepared without 
addition of AREO by similar procedure. The emulsions were 
instantly sonicated by ultra-sonicator (Sonics Vibra Cell) for 
8 min (1 s pulse on and 1 s pulse off) to obtain homogeneous 
suspension. Different ratios of chitosan to AREO (1: 0.0, 1: 0.2, 
1: 0.4, 1: 0.6, 1: 0.8, and 1: 1) were prepared and assessed for 
loading in chitosan. Finally, the nanoemulsion was lyophilized 
(Christ, alpha D plus, Australia) at −54°C for 48 h and the 
obtained powdered nanoparticles were used for physico-
chemical characterizations. All the biological experiments were 
performed by prepared nanoemulsion.

Determination of loading capacity and 
encapsulation efficiency of AREO-CsNe

Briefly, 300 μl aliquot of AREO nanoemulsion was 
dissolved into 3 ml of hexane followed by gentle mixing and 
centrifugation at 13,000 × g for 10 min. Absorbance of 
collected supernatant was recorded at 239 nm by UV–Visible 
spectrophotometer. The amount of AREO present in 
supernatant was calculated from standard curve obtained in 
pure hexane (y = 0.0019 x − 0.0085, R2 = 0.9969). The amount 
of loaded AREO can be calculated by subtracting the amount 
of AREO present in supernatant from the amount of total 
AREO used. % Encapsulation efficiency (EE) and loading 
capacity (LC) were calculated from the following equations (1 
and 2) of Hosseini et al. (2013).

 

%EE Amount of loaded AREO/Initialof AREO added

 

= ( )
×100

(1)

%
/
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Amount of loaded AREOin chitoson nanoemulsion
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×100  (2)
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Physico-chemical characterization of 
AREO-CsNe

Scanning electron microscopic investigation
The morphological structures of synthesized 

nanoemulsions (CsNe and AREO-CsNe) were observed 
through scanning electron microscope (SEM; Evo-18 
researcher, Zeiss, Germany). For this, 1 mg of powdered CsNe 
and AREO-CsNe were dissolved into 10 ml of double distilled 
water and sonicated for 4 min at 4°C. Thereafter, 10 μl aliquot 
of CsNe and AREO-CsNe was separately dropped on cover 
glass, spread to form thin film, and dried at room temperature. 
The dried films were then coated with gold and observed  
in SEM.

Fourier transform infrared spectroscopic 
analysis

Fourier transform infrared (FTIR) spectra of chitosan 
powder (CsP), AREO, lyophilized CsNe, and AREO-CsNe were 
recorded by Perkin Elmer IR spectrometer (United States). The 
powdered and liquid samples were mixed with KBr to form thin 
pellets and analysed under 64 scans at resolution of 4 cm−1 from 
500 to 4,000 cm−1.

X-ray diffraction analysis
X-ray diffractometer (Bruker D8 Advance) was used to 

analyse the crystallographic profiles of CsP, CsNe, and AREO-
CsNe. The measurement was done over the 2θ range from 5 to 
50° with step angle of 0.02° min−1 and scanned speed of 
5° min−1.

In-vitro release profile of AREO-CsNe

The in-vitro release profile of AREO-CsNe was performed 
in phosphate buffer saline (PBS) mixed ethanol solution 
following the protocol of Das et al. (2020). Briefly, an aliquot 
of 500 μl AREO-CsNe was dissolved in 3 ml of PBS (pH 7.4) 
and absolute ethanol (3:2 v/v) and kept at room temperature. 
The ethanol was used for proper phase separation and 
breaking of AREO-CsNe emulsionic particles in the PBS 
system. Moreover, ethanol addition facilitates proper 
partitioning of emulsion phases and interphases outside the 
core material induced by reduction in interfacial tension and 
delivery of AREO (Das et  al., 2021b). At specific time 
intervals (8 to 152 h), the sample was centrifuged at 13,000 × g 
and 1 ml of the supernatant was taken out for analysis 
followed by replacement of PBS and ethanol mixture to 
maintain the total volume. The amount of AREO released was 
determined at 239 nm using the standard calibration curve of 
AREO (y = 0.0238x + 0.0015; R2 = 0.9841) prepared in PBS and 
ethanol mixture. The percent cumulative release was 
calculated by equation (3).

% Cumulativerelease

of AREO

Cumulativeamount of AREO

released a
=

tt each time

Initialamount of AREO

loadedin thesample

 
×100

 (3)

Antifungal and antiaflatoxigenic efficacy 
of AREO and AREO-CsNe against 
AFLHPSi-1

Requisite concentrations of AREO (0.2–1.4 μl/ml) and AREO-
CsNe (0.2–0.8 μl/ml) were added in 25 ml SMKY medium in 
conical flasks. Thereafter, each conical flask was inoculated with 
25 μl spore suspension of AFLHPSi-1 (density = 106 spores/mL) 
strain. Controls were prepared by addition of 500 μl of 0.5% Tween 
20 for AREO and CsNe for AREO-CsNe. Thereafter, the conical 
flasks were kept at 27 ± 2°C in BOD incubator for 10 days. The 
minimum concentration of AREO and AREO-CsNe preventing 
the visible growth of test fungus (determined in terms of fungal 
mycelial fresh weight calculated by weighing the soaked filtered 
fungal mycelia after harvestation) was considered as minimum 
inhibitory concentrations (MICs).

The antiaflatoxigenic activity of AREO and AREO-CsNe was 
evaluated as minimum AFB1 inhibitory concentration (MAIC). For 
the quantification of AFB1, the contents (media and mycelia) of 
cultured isolates were filtered through Whatman no. 1 paper. AFB1 
was extracted from the medium in separating funnel using 20 ml 
chloroform followed by evaporation on water bath (80°C) till 
complete dryness and residues were re-dissolved in 1 ml methanol. 
50 μl aliquot of each sample was spotted on silica gel G plate and 
developed in a mixture consisting of toluene: isoamyl alcohol: 
methanol, 90:32:2 (v/v/v) and observed under UV transilluminator 
(Zenith, India) at 360 nm. The fluorescence of blue-coloured spots 
indicated the presence of AFB1. Spots were scrapped, dissolved in 
5 ml cold methanol, and centrifuged at 5000 × g for 10 min. The 
absorbance of each sample was recorded at 360 nm using UV–
visible spectrophotometry (UV-2600, Shimadzu, Japan) and 
amount of AFB1 was calculated using following equation (4).

 
AFB  content

mL

D M

E L
10001

µg





 =

×
×

×
 

(4)

Where, D = absorbance of samples, M = molecular weight of 
AFB1 (312), E = molar extinction coefficient of AFB1 (21,800), and 
L = path length (1 cm).

Fungitoxic spectrum of AREO and 
AREO-CsNe

Fungitoxic spectrum of AREO and AREO-CsNe was 
determined against 14 different storage fungi (A. niger, 
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A. luchuensis, A. sydowii, A. minutus, A. chevalieri, A. humicola, 
A. fumigatus, A. nidulans, A. terreus, Fusarium graminearum, 
F. oxysporum, Penicillium citrinum, P. italicum, and mycelia 
sterilia) using the poisoned food technique. The inhibition of 
fungal growth was recorded and % inhibition was calculated by 
following Equation (5):

 
% Growth inhibition

dc dt

dc
=

−
×100

 
(5)

Where, dc = average colony diameter in control sets, and 
dt = average diameter of fungal colony in treatment sets.

Biochemical and molecular docking 
concerning the mode of action of both 
AREO and AREO-CsNe

Effect on ergosterol biosynthesis
Effect of AREO and AREO-CsNe on plasma membrane 

ergosterol of AFLHPSi-1 cells was studied following the methods 
described by Das et  al. (2022). Requisite amounts of AREO 
(0.2–1.4 μl/ml) and AREO-CsNe (0.2–0.8 μl/ml) were added to 
SMKY medium (25 ml) and inoculated with 25 μl spore 
suspension. After 7 days of incubation at 27 ± 2°C in BOD 
incubator, the fungal biomass was autoclaved, and then dipped in 
culture tube containing 5 ml of 25% alcoholic KOH solution and 
vortexed for 3 min. The mixture was then incubated on water bath 
for 2 h at 75°C, cooled, and 2 ml of distilled water and 5 ml of 
n-heptane were added, followed by vortex mixing for 3 min. After 
completion of incubation period (1 h), the upper n-heptane layer 
was scanned using UV–visible spectrophotometer between 230 to 
300 nm and ergosterol contents of samples were calculated by the 
equation (6).

% Ergosterol = A (% ergosterol + % 24 (28) dehydroergosterol) 
– B (% 24 (28) dehydroergosterol)

 

A  ergosterol  dehydroergosterol

Abs pe

 % %

. / ) /

+ ( )( )
=

24 28

282 290 lllet weight

B  dehydroergosterol

Abs pellet

%

. /

24 28

230 518

( )( )
= / wweight  

(6)

Where, 290 and 518 are the E values in % per cm for crystalline 
ergosterol and 24 (28) dehydroergosterol and pellet weight (g).

Determination of vital cellular ions and 
UV-absorbing material leakage

Estimation of ions leakage from AFLHPSi-1 cells treated with 
AREO and AREO-CsNe were performed following the protocol 
of Chaudhari et  al. (2020b,c) with slight modifications. The 
samples were analysed for Ca2+, Mg2+ and K+ ions and 260, 280 nm 
absorbing materials leakage through atomic absorption 

spectrophotometry (AAnalyst 800, Perkin Elmer, United States) 
and UV–visible spectrophotometry, respectively.

Effect on methylglyoxal (MG) content of 
AFLHPSi-1 cells

Estimation of cellular MG in AFLHPSi-1 cells was done 
following the method of Upadhyay et al. (2018). In brief, 300 mg 
of harvested biomass of AFLHPSi-1 was placed in SMKY 
medium containing different concentrations of AREO (0.2 to 
1.4 μl/ml) and AREO-CsNe (0.2 to 0.8 μl/ml). The control sets 
were prepared without AREO and AREO-CsNe. After overnight 
incubation in BOD incubator at 27 ± 2°C, mycelia was crushed 
in 3 ml of 0.5 M chilled perchloric acid and incubated in ice bath 
for 15 min. Thereafter, the incubated suspensions were 
centrifuged at 13,000 × g for 10 min and supernatant was 
neutralized by dropwise addition of saturated potassium 
carbonate solution. The samples were again centrifuged and 
obtained supernatant was used for cellular MG estimation. The 
standard curve of MG was prepared using different 
concentrations (10–100 μm) of pure MG.

In-silico molecular docking of linalool 
with Ver-1 and Omt-A proteins

For molecular docking analysis, 3D structure of linalool 
(major component of AREO) was downloaded in SDF format 
from PUBCHEM online server. FASTA sequences of Ver-1 and 
Omt-A proteins were retrieved from Uniprot database and 
transferred to phyre 2 online server to develop 3D structures. 
Following this, molecular interaction of linalool with Ver-1 and 
Omt-A proteins was done in UCSF chimera software on the basis 
of number of hydrogen bond, and binding energy (kcal/mol) 
indices.

Antioxidant activity evaluation of AREO 
and AREO-CsNe

DPPH•+ assay
For DPPH•+ assay, 0.004% methanolic solution of DPPH•+ was 

prepared and kept under dark condition overnight. Different 
volumes of AREO (5–50 μl/ml) and AREO-CsNe (5–50 μl/ml) 
were mixed in methanolic DPPH•+ solution to obtain different 
concentrations and incubated at room temperature for 30 min. 
Absorbance of the sample was measured at 517 nm and per cent 
free radical scavenging activity was calculated by following 
Equation (7):

 
% Inhibition

Ablank Asample

Ablank
=

−
×100

 
(7)

Where, A blank = absorbance of methanolic DPPH•+ solution;
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A sample = absorbance of different concentrations of AREO 
and AREO-CsNe solutions.

ABTS assay
ABTS•+ scavenging activity of AREO and AREO-CsNe was 

estimated following the protocol of Re et al. (1999) with some 
modifications. Firstly, the ABTS•+ reaction mixture was prepared 
by mixing equal volumes of 7 mM stock solution of ABTS•+ with 
140 mM of potassium persulphate and kept at room temperature 
under dark condition for 12–14 h. The prepared mixture was 
diluted with ethanol until absorbance of mixture maintained to 
0.7 ± 0.05 nm. Thereafter, requisite volumes of AREO (2–20 μl/ml) 
and AREO-CsNe (2–20 μl/ml) were added into ABTS•+ mixture 
and after 6 min of incubation, absorbance of the samples was 
recorded at 734 nm. Per cent free radical scavenging activity was 
calculated by same Equation of DPPH assay.

In-situ antifungal and AFB1 inhibitory 
activity of AREO and AREO-CsNe in 
Setaria italica (the model food system) 
seeds

In-situ efficacy of AREO and AREO-CsNe against 
AFLHPSi-1 was performed in S. italica seeds stored in airtight 
containers for 1 year (Chaudhari et al., 2020a). The experiment 
was performed in three different sets; in set 1, the millets seeds 
were fumigated with MIC doses of AREO (1.4 μl/ml) and AREO-
CsNe (0.8 μl/ml). Set 2 contained millet seeds fumigated with 2 
MIC doses of AREO (2.8 μl/ml) and AREO-CsNe (1.6 μl/ml). The 
set 3 was considered as control, where the millets seeds were not 
treated with AREO and/or AREO-CsNe. All the sets were stored 
at 25 ± 2°C and ~ 70% relative humidity for 1 year. After 
completion of storage periods, mycobiota analysis of seed samples 
was performed by serial dilution. For this, 1 g of grinded seed 
sample was dissolved into 9 ml of double distilled water and 
different dilutions were prepared. Thereafter, 1 ml aliquot of 10−4 
dilution was inoculated into PDA medium in Petri plate followed 
by incubation at B.O.D incubator for 7 days at 25 ± 2°C. Fungal 
colonies in control and treatment sets were counted and percent 
protection was measured by the following equation.

 

% Fungalprotection

Number of funglecolonies in control

Number o
=
− ff funglecolonies in treatment

Number of funglecolonies in treatmennt

 ×100

The seed samples were processed and analysed for AFB1 
determination through high performance liquid chromatography 
(HPLC). In brief, ten grams of finally grounded samples were 
mixed with 10 ml mixture of methanol and distilled water 
(8:10 v/v), placed on mechanical shaker for 30 min, and 
centrifuged at 5000 × g for 10 min. 4 ml of supernatant was mixed 
with 300 μl chloroform and 6 ml water containing 3% KBr (0.18 g 

KBr dissolved in 6 ml of water) and again centrifuged. The settled 
phase was collected, evaporated on water bath, and then dissolved 
in 500 μl of HPLC grade methanol. 50 μl of sample was injected 
to C−18 reverse phase column using the mobile phase of methanol, 
acetonitrile and distilled water (17:19:64 v/v/v). AFB1 content was 
expressed as μg/kg of S. italica seeds.

Lipid peroxidation estimation in stored 
Setaria italica seeds

Lipid peroxidation in S. italica seeds treated with AREO and 
AREO-CsNe (MIC and 2 MIC doses respectively) were estimated 
in terms of malondialdehyde (MDA) content following Das et al. 
(2020) with minor modifications. 0.5 g grinded millet samples were 
mixed with 4 ml of reaction mixture containing 15% TCA, 0.375% 
TBA, and 0.25 N HCl followed by heating on water bath (75°C) for 
10 min. Thereafter, the mixture was centrifuged at 10,000 × g for 
10 min. The absorbance of the obtained supernatant was 
determined at 532 and 600 nm, respectively. The MDA content was 
calculated using the molar extinction coefficient 0.155 μm−1 cm−1 
and expressed in terms of μm/gFW of S. italica seeds.

Safety profile assessment of AREO and 
AREO-CsNe

The safety profile assessment of AREO and AREO-CsNe was 
carried out on male mice (Mus musculus L., average weight 35 g 
and 3 months old). The mice were obtained from the Department 
of Zoology, Banaras Hindu University, Varanasi and prior to 
experiment, they were acclimatized for 7 days under laboratory 
conditions. The permission from Animal care and Ethical 
committee of the University was taken prior to practicing acute 
oral toxicity study on mice. The stock solution of Tween-20 and 
distilled water (1:1) was prepared and different concentrations 
(100–500 μl/ml) of AREO and AREO-CsNe were orally 
administered to mice with the help of micropipette catheter. For 
control sets, equal amounts of Tween-20 and water (1:1) mixture 
were given. All groups of mice were observed periodically between 
4 to 24 h, and at the end of period. Dead mice number was counted 
for the evaluation of LD50 values by applying Probit analysis 
(Finney, 1971).

Phytotoxicity assessment of AREO and 
AREO-CsNe on stored Setaria italica 
seeds

For phytotoxicity assay, both the untreated and treated seeds 
were collected and rinsed with distilled water and placed in Petri 
plates containing moistened blotting papers at the bottom. At the 
regular time intervals (1–7 days), the lengths of plumules and 
radicles were recorded by centimetre scale.
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Sensory profile evaluation of AREO and 
AREO-CsNe in Setaria italica seeds

Sensorial analysis of S. italica seeds treated with AREO and 
AREO-CsNe at MIC and 2 MIC doses were carried out by a panel 
of 10 unaware trained peoples of both genders and they know the 
taste of millet because of their consuming experiences. Sensory 
analysis of seeds was done by the 5-point hedonic scale 
(5 = extremely acceptable, 4 = slightly acceptable, 3 = moderately 
acceptable, 2 = acceptable, and 1 = not acceptable) following the 
protocol of Chaudhari et al. (2020b). The parameters tested were 
colour, texture, odour, mouth feel, and overall acceptability. The 
samples were cooked in boiling water for half an hour without the 
use of pressure cooking, given to the participants in a transparent 
plate and coded with two arbitrary digits.

Statistical analysis

Each experiment was conducted a minimum of three times, 
and each analysis was carried out in triplicate. The experimental 
data were subjected to one way analysis of variance (ANOVA), 
and significant differences between means were evaluated by 
Tukey’s B multiple range test (SPSS 25.0.) and value p < 0.05 was 
considered statistically significant.

Results and discussion

Chemical characterization of AREO

Chemical characterization of AREO exhibited the presence 
of 9 different components comprising 95.91% of total essential 
oil (Table 1). Linalool (81.46%) and α-Terpineol (7.4%) were 
observed as major components of AREO. The result of the 
present investigation is in agreement with the report of Teles 
et  al. (2021) indicating linalool as major ingredient of 
AREO. Variations in the per cent composition of EOs are 

ascribed due to differences in extraction techniques, plant parts 
utilised for extraction of EO, time of harvesting, age of plant, 
thereby, affecting the chemical composition of AREO 
(Nattudurai et al., 2017).

Preparation of AREO loaded chitosan 
nanoemulsion (AREO-CsNe)

AREO loaded chitosan nanoemulsion (AREO-CsNe) was 
prepared through ionic gelation method. Most notably, chitosan 
and EO are kept under GRAS category, suggesting suitability for 
practical application in food systems (Alehosseini et al., 2021; Hu 
and Luo, 2021). AREO-CsNe complex is stabilized by interaction 
between phosphate groups of S-TPP and amine group of chitosan 
under slightly acidic condition, producing the stable nanoemulsion 
(Das et  al., 2020). Similar method has been used and for the 
preparation of clove EO loaded chitosan nanoparticles and allspice 
EO loaded chitosan nanoemulsion by others (Hadidi et al., 2020; 
Chaudhari et al., 2022a). Using this method, the authors obtained 
good encapsulation efficiency and loading capacity for the 
respective EOs that may be useful for long time application as 
food preservative.

Determination of loading capacity (LC) 
and encapsulation efficiency (EE)

The LC values of AREO-CsNe ranged between 0.38–2.48%, 
while EE was found in the range of 70.24–94.95% (Table 2). LC 
represents the concentration of EO in fixed amount of chitosan 
nanoemulsion, whereas EE represents the concentration of 
nanoencapsulated EO evaluated over the initial amount taken and 
was maximum at 1:1 chitosan to AREO ratio. Higher EE value 
strengthens the nanoencapsulated EOs against the oxidative 
damages and degradation under storage conditions (Timilsena 
et al., 2016). Similar trends of increasing EE and LC were reported 
by Singh et  al. (2019) and Upadhyay et  al. (2021) during 

TABLE 1 GC-MS of Aniba rosaeodora EO.

S. No. Components RT (min) Percent composition KRI (Adams, 2007) KRI (calculated)

1 Linalool oxide 6.03 1.56 1,005 1,002

2 Linalool* 7.32 81.46 1,095 1,091

3 Dihydrolinalool 7.98 1.1 1,131 1,128

4 α-Terpineol 10.94 7.4 1,186 1,181

5 γ-Terpineol 11.07 0.93 1,199 1,196

6 α-Gurjunene 14.62 1.36 1,409 1,407

7 β-Gurjunene 15.57 0.46 1,431 1,429

8 α-Caryophyllene 16.48 0.64 1,464 1,459

9 α-Longipinene 17.84 0.99 1,350 1,347

Total 95.91

*Major component in bold.
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encapsulating Ocimum sanctum and Cananga odorata EOs, 
respectively in chitosan nanoemulsion.

In-vitro release behavior of AREO-CsNe

In-vitro release profile of AREO-CsNe was determined at 
regular time intervals between 8–152 h (Figure 1H). Release of 
AREO from AREO-CsNe complex depicted biphasic release with 
initial burst release (45.55%) within 8 h followed by controlled 
release after 24, 56, 104, and 152 h, respectively. Similar results 
with an initial release of 82% encapsulated oregano EO followed 
by controlled release of remaining EO was reported by Hosseini 
et al. (2013) during synthesis and characterization of chitosan–
TPP nanoparticles loaded with EO. The initial burst release at 
initial stage might be attributed to the weak interaction between 
different constituents of AREO and chitosan as well as release of 
the EO that are adsorbed on the surface of polymer cage (Anitha 
et al., 2011; Esmaeili and Asgari, 2015). However, the controlled 
release in later stage could be  due to the diffusion of the 
encapsulated AREO dispersed into the chitosan matrix as the 
main mechanism (Ji et al., 2019). On the basis of observed results, 
the AREO-CsNe emulsion showed strong candidature for 
controlled and sustained delivery of AREO for long term 
preservation of stored food commodities against fungal infestation 
and AFB1 contamination.

Physico-chemical characterization of 
AREO-CsNe

Scanning electron microscopy
Particle size of CsNe and AREO-CsNe are presented in 

Figures  1A,B. Size of CsNe particles ranged between 120.8–
73.24 nm, while size of the CsNe particles after incorporation of 
AREO (AREO-CsNe) was significantly decreased (77.07–
40.69 nm). Decrement in size of nanoparticles after encapsulation 
of AREO might be  due to close binding with Cs and S-TPP 
(Esmaeili and Asgari, 2015). Moreover, the use of Tween-80 as 
surfactant might be  attributed to the reduction in size of 
nanoemulsion (da Silva Gündel et  al., 2018). Aggregation of 

particles was recorded at some places which has been associated 
with clustering of one particle with another during freeze drying 
(Hasheminejad et al., 2019). Our findings are in corroboration 
with previous investigations of Ziaee et al. (2014) and Dwivedy 
et  al. (2018) demonstrating reduction in size of chitosan 
nanoparticles after incorporation of Carum copticum and Illicium 
verum EOs, respectively. Hence, nanometric size with greater 
surface to volume ratio of AREO-CsNe may facilitate better 
inhibitory activity against fungal growth and aflatoxin production.

Fourier transform infrared spectroscopy
During FTIR analyses (Figures 1C–F), CsP showed a series 

of peaks at 3460 cm−1 (-OH and-NH stretching), 2,860 cm−1 (-CH 
stretching), 1,660 cm−1 (open-chain imino-C=N-stretching), 
1,583 cm−1 (-C=C-stretching), 1,379 cm−1 (-CH stretching), 
1,145 cm−1 (-C-O-stretching), 1,083 cm−1 (primary amine-CN 
stretching), and 661 cm−1 (-CH stretching). For CsNe, peaks 
3,460, 2,860, and 1,660 cm−1 shifted to 3,422, 2,922, and 
1,639 cm−1, respectively and new peaks were developed at 
1560 cm−1 (-NH stretching), 1,411 cm−1 (-OH and-CH 
stretching), 1,100 cm−1 (P-O-C stretching), and 894 cm−1 (-CH 
stretching). The P-O stretching indicated ionic interaction 
between amine groups of chitosan and phosphoric groups of 
S-TPP. The confirmation on complex formation due to interaction 
between NH3+ groups of chitosan and phosphoric groups of TPP 
within the nanoparticles was also suggested by Yoksan et  al. 
(2010) during encapsulating ascorbyl palmitate in chitosan 
nanoparticles. AREO showed a number of peaks at 3450 cm−1 
(-OH stretching), 3,086 cm−1 (-CH stretching), 2,968, 2,920, 
1722 cm−1 (-CH stretching), 1,636 cm−1 (-C=N-and-NH 
stretching), 1,445, 1,370 cm−1 (-CH stretching), 1,247 cm−1 
(-P-O-stretching), 993, 913 cm−1, 827 cm−1 (C-O-O-stretching), 
and 685 cm−1 (C-S stretching; Coates, 2000). The presence of 
numerous peaks in EO revealed the occurrence of different 
bioactive compounds, and most of the peaks of CsNe and AREO 
in AREO-CsNe confirmed successful loading of AREO. This 
behavior of successful loading has been also confirmed by 
Chaudhari et al. (2022a); Upadhyay et al. (2021), and Das et al. 
(2022) during encapsulating anethole, C. odorata EO, and 
synergistic mixture of Pimpinella anismum and Coriandrum 
sativum essential oil in chitosan nanomatrices. The authors 
suggested that this behavior might be  attributed to the 
establishment of noncovalent and electrostatic interaction of test 
compounds and EOs with chitosan-TPP via hydrogen bonding, 
hydrophobic and Van der Waal’s forces.

X-ray diffraction study
X-ray diffraction (XRD) patterns of CsP, CsNe, and AREO-

CsNe are presented in Figure  1G. CsP showed prominent 
diffraction peak at 2θ value at 20.3° and a small shoulder peak 
at 10.9°, indicating high crystalline nature. The tight packaging 
of constituent molecules of CsP resulted into crystalline and 
stable nature. For CsNe and AREO-CsNe, broadening of peaks 
and reduction in peak height depicted the decrement in 

TABLE 2 Effect of different concentrations of AREO on encapsulation 
efficiency and loading capacity.

Chitosan:  
AREO (w/v)

% Encapsulation 
efficiency

% Loading 
capacity

1:0 0.000 ± 0.000a 0.000 ± 0.000a

1:0.2 70.208 ± 2.921b 0.387 ± 0.008b

1:0.4 92.075 ± 2.696c 0.963 ± 0.028c

1:0.6 79.505 ± 1.134d 1.254 ± 0.012d

1:0.8 90.776 ± 0.850d 1.900 ± 0.017e

1:1 94.959 ± 0.700d 2.484 ± 0.018f

Values are mean (n = 3) ± standard error. Different letter represent significant differences 
at p value <0.05 according to ANOVA and Tukey’s multiple comparison test.
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crystallinity and increase in amorphous nature (Hosseini et al., 
2013). The cross linking between NH3

+ of chitosan and PO4
3− of 

S-TPP was responsible for broadening of peaks and loss in 
crystalline nature of CsP (Amalraj et al., 2020). Moreover, the 
decreased crystalline nature might be  due to addition of 
nanoencapsulants components involved in crystal dissolution 

at matrices and solvent surfaces along with alteration of 
diffraction pattern indicating inter and intra molecular 
interaction between AREO, CsP, and S-TPP (Das et al., 2021c). 
Study also showed that the width of the peak is related to the 
degree of polymer crystallinity, and the broadened peak usually 
results from imperfect crystal. This inferred that the loading of 

A B

C D

E F

G
H

FIGURE 1

Scanning electron microscopic image of CsNe (A) Pa1 = 103.6, Pa2 = 120.8, Pa3 = 73.24, Pa4 = 73.24, Pa5 = 89.10, and Pa6 = 93.80 nm, respectively and 
AREO-CsNe (B) Pa1 = 57.54, Pa2 = 77.07, Pa3 = 63.18, Pa4 = 50.32, and Pa5 = 40.69 nm, respectively, FTIR spectra of CsP, CsNp, AREO, and AREO-CsNe 
(C–F), X-ray diffraction patterns of CsP, CsNp, and AREO-CsNe (G), and in-vitro release profile of AREOX-ray from AREO-CsNe nanoemulsion (H).
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EO resulted in a change in the chitosan-TPP packing structure 
(Rajkumar et  al., 2020). Thus, the alteration of diffraction 
pattern confirmed successful loading of test EO into 
chitosan matrix.

In-vitro antifungal and AFB1 inhibitory 
activity of AREO and AREO-CsNe

The MIC and MAIC of AREO was found to be  1.4 and 
1.2 μl/ml, respectively, while AREO-CsNe showed enhanced 
efficacy with MIC and MAIC values 0.8 and 0.6 μl/ml, 
respectively (Table 3). In the present investigation, TLC method 
was used to determine AFB1 concentration in the conditions of 
cultured fungi in supplemented SMKY medium. The fungal 
strains isolated from stored food commodities, when cultured 
on suitable culture media and incubated in BOD incubator, they 
produce plenty of AFB1 which could be easily quantified by TLC 
method, which is very common, fast, less expensive, widely 
used, and requires comparatively lesser amount of organic 
solvent than High Performance Liquid Chromatography 
(HPLC). This result of the current study is in good agreement 
with the earlier study of Beyki et al. (2014) and Kujur et al. 
(2021), demonstrating enhanced efficacy of Mentha piperata 
and Eugenia caryophyllata EOs, respectively against A. flavus 
and aflatoxin biosynthesis after encapsulation in chitosan 
nanoparticles. The improvement of antifungal and 
antiaflatoxigenic efficacy of AREO-CsNe over AREO might 
be  attributed to the synergistic action between AREO, and 
chitosan itself (Amjadi et al., 2019; Chaudhari et al., 2020a). In 
addition, AREO and AREO-CsNe inhibited the growth of 14 
other food borne fungi at their MIC values showing broad 
spectrum fungitoxic activity (Figure 2A). Increased potency of 
AREO-CsNe against AFB1 secretion may be due to extremely 
small size of the particles with site-specific delivery of AREO 
facilitating reduction in fungal sporulation and down regulation 
of some of the key enzymes involved in AFB1 secretion (López-
Meneses et al., 2018). The possible reason for AFB1 inhibitory 
effectiveness of AREO and AREO-CsNe was inhibition of spore 
germination, and impairment in carbohydrate metabolism 
leading to ultimate production of AFB1 in A. flavus cells (Das 
et al., 2021c). Jermnak et al. (2012) reported strong inhibition 
of norsolorinic acid production as a plausible reason for 
inhibition of AFB1 biosynthesis by essential oil. Hua et al. (2019) 
and Lasram et al. (2019) pointed out the fact that inhibition of 
sporulation through velvet gene regulation (veA) and functional 
disruption of membrane biomolecules as a major factor for 
restraining of AFB1 production by essential oil. Basically, the 
essential oil and nanoemulsion directly inhibited the production 
of AFB1 by regulating the metabolic steps. Our result agreed 
with the investigations of Das et al. (2021d) and Chaudhari et al. 
(2022a), suggesting improvement in antifungal and 
antiaflatoxigenic activities of Pimpinella anisum, and Pimenta 
dioca EOs, respectively. T
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Biochemical and molecular docking 
concerning the mode of action of both 
AREO and AREO-CsNe

Ergosterol is one of the major cell membrane components in 
fungal cells responsible for maintaining membrane permeability, 
and fluidity (Xu et al., 2021; Yang et al., 2021b). Per cent reductions 
in ergosterol level of AREO fumigated AFLHPSi-1 cells were 
found to be 7.72, 28.02, 48.88, 68.98, 85.57, 93.47 and 100% at 0.2, 
0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 μl/ml, respectively. AREO-CsNe 
fumigated AFLHPSi-1 cells showed better inhibition as 29.79, 
66.40, 93.02, and 100% at 0.2, 0.4, 0.6, and 0.8 μl/ml, respectively 

(Figures  2B,C; Table  4). Superior efficacy of AREO-CsNe in 
inhibition of ergosterol biosynthesis might be due to extremely 
small particle size having better penetration to fungal plasma 
membrane (Das et al., 2021b). Further, the polycationic nature of 
chitosan may be responsible for ergosterol inhibition as it can 
easily binds with the negatively charged components of plasma 
membrane lipid and abrogate their integrity and functionality. Lin 
et  al. (2003) reported that the fungal cells are susceptible to 
polyquaternary amines of chitosan, causing disruption of 
functional and direct insertion of the polymer into the membrane. 
Other possible actions are that chitosan may enter the fungal cells, 
interact with their nucleic acid, and alter its functioning via 

A

B

D E

C

FIGURE 2

Fungitoxic spectrum of AREO and AREO-CsNe against food contaminating fungi (A), effect of AREO and AREO-CsNe on membrane ergosterol 
level of AFLHPSi-1 (B,C), antioxidant activity of AREO and AREO-CsNe by DPPH (D) and ABTS (E) assay.
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conformational changes, chelate with basic proteins, spore 
elements, and essential nutrients, leading to inhibition of growth 
(Sajomsang et al., 2012). From the obtained result, it was clear that 
the test EO and their nanoemulsion would definitely cross the cell 
wall barrier which is made up of chitin and then inhibit/degrade 
the ergosterol content, resulting in the disturbance of the plasma 
membrane integrity and permeability, which subsequently causes 
leakage of the important cellular contents.

Result of the present investigation depicted dose-dependent 
increment in loss of Ca2+, Mg2+, and K+ ions as well as 260 and 
280 nm absorbing materials from treated AFLHPSi-1 cells 
(Figures  3A–D); however, nanoemulsion exhibited enhanced 
efficacy. Cellular ions are involved in maintenance of homeostasis, 
ATP generation, cellular metabolism, enzymatic secretion, and 
hyphal growth (Cai et al., 2019). The 260 and 280 nm absorbing 
materials generally correspond with the concentrations of nucleic 
acids and proteins, respectively in the cells. The enhanced efficacy 
of AREO-CsNe over AREO for the leakage of vital cellular ions 
and UV-absorbing materials might be  due to small size, and 
better mobility through fungal plasma membrane, leading to 
greater membrane damage and maximum leakage of cellular 
constituents. Moreover, damaged membrane of fungal cells 
would not be  able to perform the cellular respiration and 
metabolism which are necessary for growth, development and 
AFB1 production.

MG, a glucose-derived reactive cytotoxic compound 
synthesized during glycolysis allows production of free radicals 
and induce secretion of aflatoxin by upregulation of aflR and  
ver 1 genes (Chen et  al., 2004). Therefore, to evaluate 
antiaflatoxigenic mode of action, herein we had measured MG 
level in AFLHPSi-1 cells. Control sets showed highest MG level 
(438.47 and 426.256 μm/g FW), whereas level of MG in 
AFLHPSi-1 cells fumigated with AREO at 0.2, 0.4, 0.6, 0.8, 1.0, 
1.2, and 1.4 μl/ml was found to be 402.45, 367.42, 341.16, 306.49, 
278.24, 255.55, and 235.78 μm/g FW, respectively (Figure 3E). 
AREO-CsNe showed better inhibition of MG biosynthesis in 
AFLHPSi-1 cells at lower doses than unencapsulated AREO. Our 
result is in corroboration with previous investigation of 
Chaudhari et al. (2022b) and Upadhyay et al. (2018), reporting 

considerable inhibition of MG biosynthesis by nanoencapsulated 
Pimenta dioica and Cistus ladanifer EOs, respectively. The 
antiaflatoxigenic activity might be linked with down regulation 
of aflR and ver-1 genes involved in aflatoxin biosynthesis and the 
inhibition of MG in fungal cells. Efficient inhibition of MG 
biosynthesis by AREO-CsNe could be  employed for the 
development of AFB1 resistant millet varieties by incorporating 
sustainable green transgenic approaches in modern agricultural 
technologies. In the in-silico molecular docking (section 3.8.), it 
has been confirmed that linalool (major component of AREO) 
potentially interacted with AFB1 synthesizing proteins viz. Ver-1 
and Omt-A, and inhibited AFB1 production. In the other way, 
methylglyoxal production was also alleviated by AREO and 
AREO-CsNe treatment which was mainly due to –OH group of 
linalool with effective trapping ability by inhibition of reactive 
oxygen species production, and electrophilic substitution 
forming linalool-methylglyoxal adduct formation followed by 
mitigation of its cellular occurrence. In this way, we have tried 
to transfer the linalool synthesizing gene (basically linalool 
synthase; LIS transgene) of A. rosaeodora plant into S. italica 
seeds by effective gene transfer technology to develop the AFB1 
resistant millet varieties, which in one hand has the possibility 
to combat the methylglyoxal mediated reactive oxygen species 
production, and in the other hand mitigate the AFB1 induced 
contamination in the storage conditions (Author’s unpublished 
work). As the LIS gene was isolated from A. rosaeodora  
plant, hence, the green transgenic approaches have been 
presented with its sustainable application in agricultural  
technologies.

In-silico molecular docking of linalool 
with Ver-1 and Omt-A proteins

For determination of the molecular target site of  
action, two different regulatory proteins viz. Ver-1  
(versicolorin dehydrogenase) and Omt A (sterigmatocystin 
o-methyltransferase) were selected on the basis of their crucial 
role in conversion of versicolorin to sterigmatocystin and 

TABLE 4 Effect of AREO and AREO-CsNe on ergosterol reduction of AFLHPSi-1.

Concentration 
(μL/mL)

AREO AREO-CsNe

Mycelial fresh weight (g) % Reduction of ergosterol Mycelial fresh weight (g) % Reduction of ergosterol

Control 1.012 ± 0.007a 0.00 ± 0.00a 1.000 ± 0.015a 0.000 ± 0.000a

0.2 0.958 ± 0.016ab 7.729 ± 2.162a 0.869 ± 0.002b 29.791 ± 2.627b

0.4 0.863 ± 0.019ab 28.028 ± 2.713b 0.646 ± 0.066c 66.405 ± 3.322c

0.6 0.779 ± 0.034bc 48.88 ± 2.363c 0.209 ± 0.057d 93.029 ± 2.499d

0.8 0.670 ± 0.051c 68.988 ± 2.572d 0.000 ± 0.000d 100.000 ± 0.000d

1.0 0.428 ± 0.060d 85.575 ± 2.587e – –

1.2 0.194 ± 0.076e 93.474 ± 1.862ef – –

1.4 0.000 ± 0.000f 100.000 ± 0.000f – –

Values are mean (n = 3) ± standard error. Different letter represent significant differences at p value <0.05 according to ANOVA and Tukey’s multiple comparison test.
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sterigmatocystin to dihydro-o-methylsterigamatocystin in AFB1 
biosynthesis, respectively. 3D structure of linalool was 
downloaded from PUBCHEM data base (Figure 4A), while Ver-1 
and Omt-A protein structures were obtained from phyre 2 online 
server (Figures 4B,C). In the present piece of work, linalool was 
found to be maximally interacted with ALA 3, HSD 4, SER 5, and 
THR 49 amino acids in Ver-1 and Omt-A proteins (Figures 4D,E). 
During molecular interaction, more negative binding energies 
(−6.140 and-5.766 Kcal/mol) were recorded and bond lengths 
were found in the range of 1.870–2.439 Å, suggesting efficient 
interaction of linalool with receptor proteins (Table  5).  
Our result is in agreement with the previous finding of  
Murugan et  al. (2019) for inhibition of AFB1 biosynthesis by  

molecular interaction of 3,7,11,15-tetramethylhexadec-2-en-1-ol, 
-Phenylquinazoline-4-Carboximidamide, and methyl palmitate 
with Ver-1 protein and Chaudhari et al. (2022b) by molecular 
interaction of major compounds α-pinine, bornyl acetate, and 
camphor with the target protein Nor-1 primarily catalyze an 
important step in AFB1 biosynthesis. Conclusively, strong 
interaction of linalool with Ver-1 and Omt A proteins facilitate 
functional changes which led to inhibition of AFB1 biosynthesis. 
This in-silico molecular docking forms a base or podium for 
further determination of wet lab molecular mechanism of action. 
However, for further practical application of AREO and its 
nanoemulsion as green preservative to combat the AFB1 
contamination in food commodities, investigation for the effect 

A

C D

E

B

FIGURE 3

Effect of different concentrations of AREO (A) and AREO-CsNe (B) on cellular ions leakage (A,B), effect of different concentration of AREO (C) and 
AREO-CsNe (D) on 260 and 280 nm absorbing materials leakage, and effect of on cellular methylglyoxal level of AFLHPSi-1 cells (E).
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of AREO and its components on Ver-1 and Omt-A genes 
expression by real time PCR should be worked out.

Antioxidant activity of AREO and 
AREO-CsNe

Since, ROS production and lipid peroxidation leading to 
deterioration of stored food commodities, the antioxidant activity 
of AREO and AREO-CsNe was assessed through DPPH•+ and 
ABTS•+ assay and expressed in terms of IC50 (50% scavenging of 

free radicals). The IC50 value of AREO was found to be 4.468 μl/ml 
through DPPH•+ and 2.370 μl/ml through ABTS•+ assay, whereas 
AREO-CsNe showed enhanced antioxidant activities with IC50 
values 3.792 μl/ml and 1.706 μl/ml through DPPH•+ and ABTS•+ 
assay, respectively (Figures 2D,E). Better antioxidant activity of 
AREO-CsNe over AREO might be  attributed to the better 
solubility in aqueous solution leading to controlled delivery of 
active components with better scavenging potentialities of free 
radicals (Lou et al., 2017; Chaudhari et al., 2020a). Similar reports 
on enhancement in antioxidant activities after encapsulation of 
clove EO and Petroselinum crispum EO into chitosan nanomatrix 
has been reported by Hadidi et  al. (2020) and Deepika et  al. 
(2021), respectively. Chitosan possesses very less antioxidant 
activity due to intramolecular hydrogen bonding within its 
polymeric chain which utilised hydrogen atoms from hydroxyl 
and amine moiety causing reduction in free radical neutralising 
capacity (Negm et  al., 2020). In current scenario, demand of 
natural antioxidants is increasing rapidly because of negative 
impacts of synthetic food preservatives (Prakash et al., 2018; Singh 
et al., 2021). Hence, there is need to develop better and effective 
natural antioxidants like AREO and AREO-CsNe having better 
antifungal and antiaflatoxigenic activities with potential 
application in preservation of stored food commodities.

A

D E

B C

FIGURE 4

3D structure of linalool (A), Ver-1 and Omt-A protein structures (B,C), interaction of linalool with ALA 3, HSD 4, SER 5, and with THR 49 amino 
acids in Ver-1 and Omt-A proteins (D,E).

TABLE 5 Binding energy and bond length of linalool (major 
component of AREO) with Ver-1 and Omt A protein.

Major 
component 
of AREO

Receptor 
protein

H-bonding 
amino acid

Binding 
energy 
(Kcal/
mol)

Bond 
length (Å)

Linalool Ver-1 ALA-3 −6.140 2.306

HSD-4 2.439

SER-5 2.271

Omt A THR-49 −5.766 1.87
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In-situ antifungal and antiaflatoxigenic 
efficacy of AREO and AREO-CsNe in 
Setaria italica seeds

Although AREO and AREO-CsNe showed prominent in-vitro 
antifungal and AFB1 inhibitory activities with possible mechanism 
of action, these results are not enough for its potential application 
in real food systems. Therefore, the in-situ efficacy of AREO and 
AREO-CsNe was assessed in S. italica seeds as a model food system 
and seed samples were fumigated at MIC and 2 MIC doses for 
1 year of storage period. During in-situ study involving millet food 
system some of the essential oil content might be absorbed by food 
commodity itself, hence, 2 MIC concentrations of AREO and 
AREO-CsNe have been taken into consideration in the present 
investigation. The present investigation represented 78.69 and 
86.32% protection against fungal infestation in stored S. italica 
seeds at MIC and 2 MIC doses of AREO. However, AREO-CsNe 
at MIC and 2 MIC doses completely inhibited fungal growth in 
stored S. italica seed samples (Table 6). For detection of AFB1 in 
stored S. italica seeds, HPLC method was used because AFB1 was 
present in quite small quantity that cannot be quantified precisely 
by TLC. The maximum content of AFB1 as recorded by HPLC in 
control seed samples was 10.136 μg/kg, whereas the AFB1 content 
in S. italica seeds fumigated with MIC dose of AREO was found to 
be  1.476 μg/kg and complete inhibition of AFB1 content was 
recorded at 2 MIC dose. In case of AREO-CsNe fumigated sets 
(MIC and 2 MIC doses), complete (100%) inhibition of AFB1 
production was recorded (Table 6). In the present investigation, 
higher dose of AREO was required for complete inhibition of AFB1 
in S. italica seeds which may be due to degradation of some of the 
volatile components of EO and absorption/adsorption by the 
stored food commodity itself. Superior AFB1 inhibitory activity of 
AREO-CsNe in stored food system might be due to nano-range 
size of particles and controlled release over a longer period of time 
(Das et al., 2019; Hossain et al., 2019). The results obtained in 
present investigation suggested the practical application of 
nanoencapsulated AREO as next generation green preservative 
against AFB1 mediated biodeterioration of stored millets.

Effect of AREO and AREO-CsNe on 
inhibition of lipid peroxidation

Lipid peroxidation is one of the major biodeteriorating 
processes responsible for depletion of nutrient content, off-flavour, 

and off-taste of stored food commodities. Malondialdehyde 
(MDA) is produced as result of peroxidation of polyunsaturated 
fatty acids in stored food system. In the present investigation, 
thiobarbituric acid (TBA) assay was used for quantification of 
MDA content (Xu et al., 2009). The MDA content of control sets 
were found to be 385.806 and 375.268 μm/gFW, while in case of 
S. italica seeds fumigated at MIC and 2 MIC doses of AREO, the 
MDA content reduced to 164.515 and 142.795 μm/gFW, 
respectively. AREO-CsNe depicted better inhibition of MDA 
content at MIC (140.64 μm/g fresh weight) and 2 MIC doses 
(114.193 μm/g fresh weight; Figure 5A). The enhanced efficacy of 
nanoencapsulated AREO in MDA reduction might be associated 
with controlled release of AREO from chitosan nanomatrix 
causing maximum scavenging of biodeteriorating free radicals.

Phytotoxicity assessment of AREO and 
AREO-CsNe

The AREO and AREO-CsNe fumigated S. italica seeds 
showed non-phytotoxic effect as observed by emergence of 
plumule and radicles within 24–120 h (Figures  5B,C). 
Non-phytotoxic nature of AREO and AREO-CsNe on seed 
germination strengthens its candidature as natural food 
preservative and fumigated seeds may be used further for sowing 
purposes in next growing season and other intended 
agricultural practices.

Assessment of safety profile of AREO and 
AREO-CsNe

The LD50 values of AREO and AREO-CsNe were found to 
be 8142.742 μl/kg and 9538.742 μl/kg body weight, respectively. 
The LD50 values were found higher than commonly used botanical 
preservatives such as azadirachtin (~5,000 mg/kg), pyrethrum 
(350–500 mg/kg), and recommended cut-off (>5,000 mg/kg) of 
Organisation for Economic Co-operation and Development 
(OECD) guidelines suggesting practical recommendation in food 
industries (Coats, 1994; Isman, 2006). The obtained LD50 value of 
AREO-CsNe was found far greater than that of some frequently 
reported commercial compounds such as pyrethrum, bavistin, 
and formic acid as well as some EOs viz., Artemisia dracunculus 
and Melaleuca cajuputi EOs (Prakash et  al., 2012; 

TABLE 6 Inhibition of fungal growth and AFB1 production in S. italica seeds by AREO and AREO-CsNe fumigation.

Treatment sets Number of fungal 
colonies % Protection AFB1 content (μg/kg) % Protection

Control 56 ± 2.01a 0.00 ± 0.00a 10.136 ± 1.14a 0.00 ± 0.00a

AREO (MIC dose) 12 ± 1.67b 78.69 ± 3.64b 1.476 ± 0.04b 85.43 ± 3.16b

AREO (2 MIC dose) 8.0 ± 1.31c 86.32 ± 2.07c 0.00 ± 0.00c 100 ± 0.00c

AREO-CsNe (MIC dose) 0.00 ± 0.00d 100 ± 0.00d 0.00 ± 0.00c 100 ± 0.00c

AREO-CsNe (2 MIC dose) 0.00 ± 0.00d 100 ± 0.00d 0.00 ± 0.00c 100 ± 0.00c

Values are mean (n = 3) ± standard error. Different letter represent significant differences at p value <0.05 according to ANOVA and Tukey’s multiple comparison test.
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Chaudhari et  al., 2022b). This result confirmed mammalian 
non-toxicity of the nanoemulsion and, hence, can be considered 
for application as food preservative of stored food products.

Sensory properties of Setaria italica seeds 
fumigated with AREO and AREO-CsNe

Effect of AREO and AREO-CsNe on sensory properties of 
S. italica seeds for 1 year of storage was assessed by 5-point 
hedonic scale as presented in Figure  5D. At the MIC dose of 
AREO, there was improvement in scores for colour, texture, 
odour, mouth feel, and overall acceptability, while there was 
decrement in scores for mouth feel and flavour recorded in 
samples fumigated with 2 MIC doses. This decrement in scores for 

mouth feel and flavour might be due to absorption of EO by stored 
commodities at higher doses. However, AREO-CsNe fumigated 
seeds showed improvement in scores without any negative impacts 
on colour, texture, odour, mouth feel, and overall acceptability at 
both MIC and 2 MIC doses. This result is consistent with the study 
of Chaudhari et al. (2020b) and Tiwari et al. (2022), who suggested 
improvement in sensory parameters of maize and black cumin 
seeds after fumigation with Origanum majorana and 
Cinnamomum glaucescens EOs loaded chitosan nanoemulsion. 
The acceptable result in case of AREO-CsNe has been associated 
with controlled release of EO from chitosan nanomatrix 
preventing the absorption of EO by stored food commodities. 
Thus, the maintenance of sensory properties of stored S. italica 
seeds after fumigation with AREO-CsNe strengthens its utilization 
as green preservative in food and agricultural industries.

A

B C

D

FIGURE 5

Effect of AREO and AREO-CsNe on of lipid peroxidation (A), phytotoxicity assay (B) 907, (C), and sensory evaluation (D) of S. italica seed samples 
treated with AREO and AREO-CsNe at MIC and 2MIC dose.
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Conclusion

The results of the present investigation showed that AREO-
CsNe exhibited enhanced antifungal, antiaflatoxigenic and 
antioxidant activities under both in-vitro and in-situ conditions. 
The antifungal and antiaflatoxigenic mode of action was linked to 
the disruption of plasma membrane integrity and MG inhibition, 
respectively. Further, the AREO-CsNe showed remarkable efficacy 
in protection of stored millets for 1 year against fungal infestation, 
AFB1 contamination, and lipid peroxidation and presented 
satisfactory safety profile and acceptable sensory properties. 
Overall, AREO-CsNe can be  recommended as safe and 
eco-friendly plant-based preservative to improve the shelf-life of 
stored millets and other agricultural commodities.
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