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Supported by guidance from training during residency
programs, radiologists learn clinically relevant visual
features by viewing thousands of medical images. Yet
the precise visual features that expert radiologists use in
their clinical practice remain unknown. Identifying such
features would allow the development of perceptual
learning training methods targeted to the optimization
of radiology training and the reduction of medical error.
Here we review attempts to bridge current gaps in
understanding with a focus on computational saliency
models that characterize and predict gaze behavior in
radiologists. There have been great strides toward the
accurate prediction of relevant medical information
within images, thereby facilitating the development of
novel computer-aided detection and diagnostic tools. In
some cases, computational models have achieved
equivalent sensitivity to that of radiologists, suggesting
that we may be close to identifying the underlying visual
representations that radiologists use. However, because
the relevant bottom-up features vary across task context
and imaging modalities, it will also be necessary to
identify relevant top-down factors before perceptual
expertise in radiology can be fully understood. Progress
along these dimensions will improve the tools available
for educating new generations of radiologists, and aid in
the detection of medically relevant information,
ultimately improving patient health.

Introduction

Current models of medical image perception are
incomplete and demonstrate significant gaps in the

current understanding of radiologic expertise (see
Waite et al., 2019 for a review). That is to say, we do
not precisely know what an expert radiologist does:
currently, radiologists achieve peak expertise only after
years of trial-and-error training, during which they
acquire their skillset through veiled principles that are
yet to be articulated. Mentors provide feedback about
mistakes, guidance for what is benign versus malignant,
and other conceptual, factual, and procedural
information. However, pattern recognition is difficult
to teach (Kellman & Garrigan, 2009), and expertise in
viewing radiologic images is therefore gained largely
as a function of the number of images read, rather
than through explicit instruction and understanding
(Krupinski, Graham, & Weinstein, 2013; Nodine
& Mello-Thoms, 2010). The result is a knowledge
base that has not translated into concrete methods
of training derived from critical perceptual features.
Determining the precise features that radiologists use
to discriminate abnormalities in medical images—and
designing innovative heuristics for trainees that enable
efficient learning of informative features—would help
optimize performance in the field.

Error rates in radiology

The long-term goal of most studies of radiologist
performance is to reduce error. Although it is difficult
to determine the precise error rates in current clinical
practice, it is clear that reductions in error rate would
improve patient care. The diagnostic error rate in
a typical clinical practice (comprising both normal
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and abnormal image studies) is between 3% and 4%
(Borgstede, Lewis, Bhargavan, & Sunshine, 2004;
Siegle et al., 1998), which translates into approximately
40 million interpretive errors per year worldwide
(Bruno, Walker, & Abujudeh, 2015). This error rate
is substantially higher—approximately 30%—when
all images contain abnormalities (Berlin, 2007;
Rauschecker et al., 2020; see Waite et al., 2017 for a
review). Detection/omission errors account for 60%
to 80% of interpretive errors (Funaki, Szymski, &
Rosenblum, 1997; Rosenkrantz & Bansal, 2016). Thus
faulty perception is the most important source of
interpretive error in diagnostic imaging (Berlin, 2014;
Donald & Barnard, 2012; Krupinski, 2010).

Radiologic image viewing as a visual search task

Radiologic image viewing is essentially a specialized
visual search task: the first step in medical imaging is the
detection of medically relevant information in an image
(e.g., nodules in a chest x-ray [CXR]), by searching for
abnormalities amid normal anatomy and physiology
(e.g., normal lung tissue). Visual features play a critical
role in such tasks: search is generally faster and targets
easier to detect and recognize when target features are
dissimilar to those of the background and nontarget
distractors (Alexander, Nahvi, & Zelinsky, 2019;
Alexander & Zelinsky, 2011; Alexander & Zelinsky,
2012; Duncan & Humphreys, 1989; Ralph, Seli, Cheng,
Solman, & Smilek, 2014; Treisman, 1991).

Outside the field of radiology, researchers often
decompose visual search tasks into two stages: the
initial detection of various simple target features across
the visual field, and the subsequent deployment of
attention and gaze to specific objects, in which more
complex visual information is available on foveation
(Alexander & Zelinsky, 2012; Alexander & Zelinsky,
2018; Castelhano, Pollatsek, & Cave, 2008; Wolfe,
1994a). Radiologic search tasks are similarly thought
to involve an initial feature-processing step across
the visual field, followed by foveation of specific
objects (Krupinski, 2011; Kundel, Nodine, Conant, &
Weinstein, 2007; Nodine & Kundel, 1987; Sheridan &
Reingold, 2017).

Although there is a consensus on a few features
(color, motion, orientation, and size) used by the human
visual system to guide attention and eye movements
during search tasks, the exploration of other potential
features has been limited due to dissenting opinions,
insufficient data, and alternative explanations for
observed data patterns (Wolfe & Horowitz, 2004; Wolfe
& Horowitz, 2017). Further, even if the visual system
can use a feature, it does not mean that the feature will
be used (Alexander et al., 2019). As a result, the features
that guide search in any given context—including
medical image viewing—are not yet fully known.

Types of errors in radiologic search

Some authors have proposed that errors in medical
image perception can be best understood as stemming
from different aspects of the task—leading to three
general types of errors: search, recognition, and
decision errors (Kundel, Nodine, & Carmody, 1978).
“Scanning errors” (also called “search errors”) result
from failures in the first stage of search. Specifically,
peripheral information fails to guide the observer’s gaze
to a relevant location, and high-resolution foveal vision
does not assist interpretation because the observer
never looks at the location directly (Doshi et al., 2019;
Holland, Sun, Gackle, Goldring, & Osmar, 2019;
Ukweh, Ugbem, Okeke, & Ekpo, 2019). In “recognition
errors,” abnormalities are foveated too briefly for
the observer to correctly recognize them (Holland et
al., 2019). Depending on the imaging modality, the
foveation time that suffices to prevent recognition errors
varies from 500 to 1000 ms (Hamnett & Jack, 2019;
Holland et al., 2019). “Decision-making errors” occur
when the observer either fails to recognize relevant
features or actively dismisses them, despite foveating
an abnormality for a relatively long period of time
(Baskaran et al., 2019; Holland et al., 2019). Roughly
one-third of omission errors falls under each of the
earlier mentioned three categories (Kundel et al., 1978).

Traditionally, decision-making errors have been
considered “cognitive” errors (in which the abnormality
is visually detected but the meaning or importance of
the finding is not correctly understood or appreciated),
and both scanning and recognition errors have been
considered “perceptual” errors (in which an abnormality
is not observed) (Kundel, 1989). However, all three
kinds of errors may result from perceptual failures,
and all three kinds of errors might reflect expectation
or cognitive biases, making it sometimes impossible
to determine whether a given search, recognition,
or decision-making error is perceptual or cognitive
in nature. Indeed, both foveal and peripheral search
performance might rely on the same perceptual features,
rather than on different features for peripheral versus
foveal search (Maxfield & Zelinsky, 2012; Nakayama &
Martini, 2011; Zelinsky, Peng, Berg, & Samaras, 2013;
but see Alexander & Zelinsky, 2018). Thus an observer
looking specifically for dark, oriented bands might fail
to foveate a bright, round lesion for the same reasons
they might fail to recognize it if foveated.

Visual search in 3D volumetric imaging

Searching through CXRs and other two-dimensional
(2D) images is superficially similar to search tasks
conducted in traditional laboratory settings. However,
search through three-dimensional (3D) volumetric
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images involves a qualitatively different process than
that through 2D images. When reading a computed
tomography (CT) or a magnetic resonance imaging
scan, a radiologist must scroll through a stack of
images—thin slices of the 3D volume of an organ
(Nakashima, Komori,Maeda, Yoshikawa, &Yokosawa,
2016). When searching for lung nodules in an image
stack from a chest CT, a common strategy is to restrict
one’s eye movements to a small region of the image,
while quickly scrolling (i.e., “drilling”) through the
stack (Drew et al., 2013). An alternative strategy is to
change depth more slowly, and make eye movements
across a larger area of the image (Drew et al., 2013)
(Figure 1). Similar patterns have been found in searches
through digital breast pathology images, in which
observers “zoom” in and out of a single image, rather
than scroll through image stacks (Mercan, Shapiro,
Brunyé, Weaver, & Elmore, 2018). These strategies
may depend on the body part imaged, with “scanning”
being more likely in studies of larger body parts:
when intending to search a small anatomic region, it
makes little sense to make large eye movements. Thus
radiologists typically adopt a “driller” strategy when
viewing CTs of the abdomen and pelvis (Kelahan
et al., 2019). Although some searches through these
anatomic regions involve slower changes in depth—and
those radiologists might be characterized as “scanners”
(as opposed to “drillers”)—their search patterns still
qualitatively resemble the “driller” pattern shown
in Figure 1. Regardless, and despite any differences in
strategy, the vast amount of 3D data that radiologists
must scrutinize effectively prevents the careful foveation
of each image region within a CT stack (Eckstein,
Lago, & Abbey, 2017; Miller et al., 2015). Therefore
because some image regions are only seen peripherally
on some slices, peripheral vision is especially important
in searches of CT images.

As peripheral vision cannot provide the kind of fine
spatial discrimination that characterizes foveal vision,
detectability of certain lesions can differ between
searches through 3D or 2D images. For instance,
Eckstein et al. (2017) found higher detectability for
calcifications in 2D single slice images, and relatively
improved detection of masses in 3D volumetric
imaging, lending support to the notion that observer
performance in 2D search tasks might not generalize to
that in volumetric searches. To address this possibility,
Wen et al. (2016) used a novel dynamic 3D saliency
approach to model naive observers’ gaze distributions
in images designed to mimic lung CTs. They found
that the dynamic 3D saliency model predicted gaze
distributions better than the traditional saliency
approach, especially for observers who scrolled quickly
in depth. Wen et al. (2016) proposed that the success
of the dynamic saliency model might result from the
human visual system’s sensitivity to optic flow (the
apparent motion of objects caused by the relative

Figure 1. Description of 3D scan paths from Drew et al. (2013),
who recorded eye position in each quadrant (left panel) as
observers scrolled through CT scans in depth. Color indicates
the quadrant of the image the radiologist was looking at during
a given time in the trial. “Depth” on the y-axis refers to the 2D
orthogonal slice of the scan currently viewed. In this study,
radiologists looking for nodules on chest CTs could be
characterized into two groups based on their search strategies.
“Drillers,” such as the radiologist whose data appear in the
middle column, tend to look within a single region of an image
while quickly scrolling back and forth in depth through stacks of
images. “Scanners,” such as the radiologist whose data appear
in the right column, scroll more slowly in depth, and typically do
not return to depths that they have already viewed. Scanners
make more frequent eye movements to different spatial
locations on the image, exploring the current 2D slice in greater
detail. Note that although scanners spend more time than
drillers making saccades per slice, neither scanners nor drillers
visit all four quadrants of the image on every slice. Thus some
regions of some slices may never be viewed foveally by either
group. (Reprinted from Drew et al., 2013).

motion between observer and scene). However, evidence
from other studies indicates that optic flow may not
preattentively guide attention or eye movements (Wolfe
& Horowitz, 2004; Wolfe & Horowitz, 2017).

Gaining expertise in medical image analysis

Expert radiologists efficiently direct their gaze to
clinically relevant information using learned features
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in their peripheral vision (Kundel, 2015). That is,
expert radiologists are better at “search,” finding
abnormalities faster than novices because they need
fewer eye movements to foveate an abnormality
that they first detect peripherally (Drew et al., 2013;
Manning, Ethell, Donovan, & Crawford, 2006). The
initial stage of peripheral processing typically produces
the greatest differences between experts and novices in
radiologic search (Drew et al., 2013; Manning et al.,
2006). Researchers have therefore begun to ask whether
performance differences between expert and novice
radiologists may be the result of underlying differences
in search strategies (Brams et al., 2020; Wood, 1999;
Wood et al., 2013).

Search tasks that are initially performed slowly
and inefficiently can become faster and efficient with
practice, as the searchers learn task-relevant features
(Frank, Reavis, Tse, & Greenlee, 2014; Sireteanu &
Rettenbach, 2000; Steinman, 1987). Thus performance
in one study’s initially slow search task—searching
for red-green bisected disks among green-red bisected
disks—improved dramatically across eight training
sessions spread over eight different days, and this
improvement was still present when the same subjects
were retested 9 months later (Frank et al., 2014).
Radiologists similarly become faster at searching for
abnormalities as they gain expertise (Krupinski, 1996;
Kundel et al., 2007; Nodine, Kundel, Lauver, & Toto,
1996.

Perceptual learning in radiology

Like any other perceptual skill, the ability to
detect radiologic abnormalities can improve through
perceptual learning, that is, experience-induced
improvements in the way perceptual information is
extracted from stimuli. Perceptual learning techniques
have been developed to accelerate the acquisition of
perceptual expertise in domains as varied as flight
training and mathematics, as well as in histopathology
and surgery (Guerlain et al., 2004; Kellman, 2013;
Kellman & Kaiser, 2016; Kellman, Massey, & Son,
2010; Krasne, Hillman, Kellman, & Drake, 2013). One
example from radiology is that novice mammography
film readers’ sensitivity toward low-contrast information
in x-rays improves with increasing practice viewing
x-ray images (Sowden, Davies, & Roling, 2000; Sowden,
Rose, & Davies, 2002).

Several studies have demonstrated transfer of
learning from trained images to new images. For
instance, performance improvements resulting from
training through exposure to CXR images can
transfer from positive contrast images to negative
contrast images, and vice versa (Sowden et al., 2000).
Recent research has shown that training to ascertain
if abdominal CTs are consistent with appendicitis

can transfer both to previously unseen abdominal
CT images and to different image orientations
(Johnston et al., 2020). Another recent study (Li,
Toh, Remington, & Jiang, 2020) presented novice
nonradiologist participants with pairs of CXRs,
one of which always contained a tumor. Across four
sessions, observers practiced discriminating which CXR
contained the tumor and locating the tumor within the
image. Perceptual learning resulted in discrimination
performance improvements both for old images and for
novel images.

Transfer of learning to novel images has also been
demonstrated when training to identify bone fractures
on pelvic radiographs (Chen, HolcDorf, McCusker,
Gaillard, & Howe, 2017). Studies on the effects of
image variability have produced mixed results: whereas
one study found that greater variability of training
images led to greater transfer effects (Chen et al., 2017),
another study found comparable performance after
training with either a larger number of images or more
repetitions of a smaller number of images (Li et al.,
2020).

The earlier mentioned evidence of limited transfer
notwithstanding improvements in detection or
discrimination of visual stimuli are usually constrained
to the particular tasks (Ball & Sekular, 1987; Saffell
& Matthews, 2003) or to the features (Ball & Sekular,
1987; Fahle, 2005) used during training (see Karni &
Sagi, 1991; Sagi, 2011; Watanabe & Sasaki, 2015 for
reviews). Similarly, the perceptual skills that radiologists
develop over the course of their training are restricted
to specific radiologic image perception tasks. Indeed,
radiologists are no better at performing nonradiologic
search tasks than nonradiologists are (Nodine &
Krupinski, 1998). Thus radiologic expertise does not
arise from general perceptual improvements, but instead
results from the learning of features and task demands
specific to radiologic search tasks. This is consistent
with findings from laboratory studies suggesting that
perceptual learning primarily improves radiologic
search as a result of the learning of task-relevant visual
features (as opposed to the learning of other task
demands [Frank et al., 2014]).

Perceptual learning regimens have been shown to
improve performance even in medical students who had
already seen thousands of images prior to perceptual
training (Krasne et al., 2013; Sowden et al., 2000).
Further, even small amounts of practice in a relatively
short interval can produce significant improvements
in radiologic performance. For example, Krasne et al.
(2013) used web-based perceptual and adaptive learning
modules to enhance histopathology pattern recognition
and image interpretation in a test group of medical
students. The many short classification trials in the
learning modules were combined with a continuous
assessment of accuracy and reaction time, which was
used both to track progress and to adapt trials to focus
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perceptual learning on the categories of patterns that
needed the most practice. The training led to improved
accuracy and reaction times from pretest to posttest,
with a delayed posttest (6–7 weeks later) showing that
much of this learning was retained. In a different
perceptual learning study with other radiologic tasks,
improvement was appreciated after just a few hours of
training (Johnston et al., 2020).

Detailed feedback may be particularly important for
the perceptual learning of radiologic features: in people
with no prior experience viewing mammographic
images, sensitivity to lesions with complex visual
structures only improved when feedback about both
response correctness and correctness of the identified
location of the lesion was provided (Frank et al., 2020).
In such conditions, performance improvements were
significantly retained 6 months after training. Using a
different radiologic task (Johnston et al., 2020) similarly
found stronger perceptual learning when participants
received feedback about both accuracy and location,
compared with accuracy alone.

Training to recognize the often-subtle diagnostic
features in radiology may thus benefit more from
specific feedback during instruction than from
learning the simple features that are often used
in perceptual learning tasks (e.g., orientation). In
particular, subtle structural feature layouts may be
both difficult to perceive and vary substantially across
different radiologic images. Although observers can be
successfully trained in perceptual learning of difficult-
or impossible-to-perceive patterns (Seitz, Kim, &
Watanabe, 2009; Watanabe, Náñez, & Sasaki, 2001),
explicit feedback can help radiologists learn how to
better resolve subtle critical features (Seitz, 2020).
This does not necessarily mean that feedback must
be provided after each image: blocked feedback (i.e.,
explicit messages indicating the percent of images that
were correctly diagnosed) has been shown to boost
perceptual learning (Seitz et al., 2010).

The main caveat for this general approach is that
developing the perceptual skills needed for successful
detection of abnormalities requires practice within the
correct task context and with the correct set of features.
Thus the key is: how do we determine the features that
expert radiologists use when searching through medical
images?

Saliency models and guiding features in
radiologic images

In visual search, eye movements are often directed
to the most “salient” or “informative” regions in an
image (McCamy, Otero-Millan, Di Stasi, Macknik,
& Martinez-Conde, 2014; Otero-Millan, Troncoso,
Macknik, Serrano-Pedraza, & Martinez-Conde,

2008). Salient regions are thus a reasonable place for
radiologists to explore first when searching medical
images for clinically relevant abnormalities. Several
studies have therefore attempted to use computational
models of saliency to specify the features radiologists
use when searching for abnormalities. Tests of saliency
models may provide insights into the importance of
different features in radiologic image viewing. For
instance, if a saliency model fails to accurately predict
human performance, it may be that the model neglects
relevant visual features. Conversely, if a model identifies
salient lesions that radiologists miss, the model may rely
on overlooked image features that radiologists might
incorporate in future searches.

CXRs, the radiologic test most ordered in hospitals
(Pirnejad, Niazkhani, & Bal, 2013), produce 2D
images with overlapping structures that have different
luminance or optical densities. The larger the difference
in thickness or density in the anatomy between two
structures (e.g., air and dense tissue), the larger the
resulting difference in radiographic density or contrast.
Salient regions in these images are therefore typically
those that differ in density from the regions around
them: for example, nodules differ in density from their
surround, and can be salient on CXRs (Jampani,
Ujjwal, Sivaswamy, & Vaidya, 2012). Alzubaidi,
Balasubramanian, Patel, Panchanathan, and Black
(2010) found that image regions that typically capture
radiologists’ gazes in CXRs are characterized by
oriented edges and textures. Jampani, Ujjwal, et al.
(2012) moreover found that, in the case of CXR’s
demonstrating pneumoconiosis (a lung disease caused
by breathing in certain kinds of dust), saliency maps
generated using the graph-based visual saliency
(GBVS) computational model performed relatively
well compared with radiologists’ fixations. In a more
recent and comprehensive study, Wen et al. (2017)
evaluated 16 representative saliency models and ranked
them by how well the saliency maps agreed with
radiologists’ eye positions during interpretation of
CXR, CT scans, and positron emission tomography
(PET) scans. Relative to CXR, CT scans produce higher
resolution views of nodules and other abnormalities,
as well as better visualization of soft tissue. Scrolling
through 3D CT scans can produce feature dimensions
not present in 2D images, such as apparent motion
and optic flow. In PET, the customary use of a dye
containing radioactive tracers yields stronger signals
in the regions to which the tracer flows, and therefore
higher saliency. Wen et al. (2017) found that the
rank orders of the models over medical images were
different from the benchmark rank-order over natural
images, and that the models’ performance differed
across medical imaging modalities (Figure 2). This
pattern is consistent with reports that radiologic search
uses different features than other search tasks, and
that the skills involved may differ across imaging
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Figure 2. Examples of saliency models applied to PET, CT, and
CXR. Saliency maps are represented as heat maps, with color
indicating the saliency at that location: red is more salient than
blue. The left column displays representative images. The
middle column shows examples of saliency maps that
accurately highlighted the regions of interest in the images. The
right column shows examples of saliency maps that highlighted
task-irrelevant regions in the images. Models with accurate
predictions may provide insight into the features that
radiologists use to view images, and models with inaccurate
predictions may help narrow the list of potential features that
need to be assessed. Image signature (ImgSig; Hou, Harel, &
Koch, 2012), fast and efficient saliency (FES; Tavakoli, Rahtu, &
Heikkilä, 2011), and RARE (Riche et al., 2013) were top-ranked
models for PET, CT, and CXR. (Reprinted fromWen et al., 2017).
SIM, Saliency by induction mechanisms; CovSal, Covariance
saliency; AIM, Attention based on information maximization.

modalities (Gunderman, Williamson, Fraley, & Steele,
2001; Nodine & Krupinski, 1998). Further, certain
saliency models matched the performance of individual
radiologists better than that of others (Wen et al.,
2017). For example, the “Saliency in Context” or
“Salicon”model—which operates very differently from
most saliency models—uses high-level semantics in
deep neural networks to recognize objects, rather than
relying solely on low-level feature differences (Huang,
Shen, Boix, & Zhao, 2015). As one might expect, the
Salicon model did not correlate strongly with any of
the other saliency models tested, but it outperformed
most other models in predicting the eye movements
of two participants (a radiologist faculty member and
a fellow) when viewing CT scans. However, Salicon
ranked 15th or 16th among 16 models for predicting the
eye movements of each of the four other radiologists,

suggesting that individual differences in gaze behavior
and performance may result at least partly from
different radiologists using different image features, or
employing different task strategies, during visual search
(Wen et al., 2017; see also Wen et al., 2016).

Visual features that have predicted the gaze patterns
of expert radiologists in 2D medical image models
include orientation, pixel intensity, and size (Alzubaidi
et al., 2010; Jampani, Sivaswamy, & Vaidya, 2012).
Intensity and orientation also predict the gaze patterns
of expert radiologists in 3D volumetric images, as
is optic flow, although the features relevant to 3D
images may partly depend on the search strategies
that radiologists adopt (e.g., “scanning” slices before
scrolling in depth versus “drilling” more quickly in
depth) (Wen et al., 2016; Wen et al., 2017).

We note that the earlier mentioned saliency models
do not consider different task strategies. Instead,
these models are “bottom-up,” or solely driven by the
low-level visual features of an image. The bottom-up
modeling approach assumes that certain parts of an
image are salient enough to be attended and looked
at, regardless of the ongoing goals of the viewer (e.g.,
(Theeuwes, 2004). Bottom-up features are particularly
important for the detection of unexpected or incidental
findings. Yet, attention and eye movements are
also affected by “top-down” information: recurrent
feedback processing can bias the direction of eye
movements and attention as a result of the viewer’s
goals and expectations (Alexander et al., 2019; Chen
& Zelinsky, 2006; Folk, Remington, & Johnston,
1992). Top-down mechanisms are known to play
powerful roles in search, by restricting exploration
to image regions that are likely to contain targets, by
preventing salient but task-irrelevant features from
capturing as much attention as task-relevant features
(Alexander & Zelinsky, 2012; Chen & Zelinsky, 2006;
Folk et al., 1992; Wolfe, Butcher, Lee, & Hyle, 2003),
and by “filling-in” missing information about search
targets (Alexander & Zelinsky, 2018). In the case
of radiologists, previous knowledge and expertise
(including their a priori expectations about a task)
can change the features they may use to accomplish
their task goals. Further, the interpretation of medical
imaging is highly task-dependent: radiologic expertise
in one domain does not necessarily rely on the same
skills as expertise in another domain (Beam, Conant,
& Sickles, 2006; Elmore et al., 2016; Gunderman
et al., 2001). Task demands can similarly change
within a specific domain and therefore affect search
behavior: for example, in patients with known renal
cell cancer, radiologists may prolong their search of
the lungs, looking carefully for nodules that might
represent metastatic lesions. Thus “top-down” features
likely play a large role in radiologic search, in which
relevant information may not be salient from a low-level
perspective. For instance, a fat-containing tumor may
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resemble normal fat—and therefore fail to be detected
by bottom-up models—but could be displaced spatially,
appearing in a location where there should not be
fatty tissue. Similarly, air in the lungs is normal, but
air in the heart is abnormal. In addition, knowledge
of the typical appearance of lesions and the normal
appearance of the surrounding organ/tissue also aids
radiologists in searching for lesions. Understanding
the patient’s clinical scenario can help ensure that the
radiologist carefully examines the relevant regions of
the image with the right features in mind. Consequently,
including top-down information is a major challenge in
developing accurate models of radiologic search.

Computational models may theoretically make use of
such top-down information, and some have begun to do
so. Jampani et al. (2012) found that although the lung
regions cover only approximately 40% to 50% of the
area in a typical 2D CXR, they contain approximately
84% of all fixations, which is indicative of their
top-down importance. A modified saliency model that
combined bottom-up and top-down saliency (and
thus avoided unimportant image regions) performed
better than the standard bottom-up GBVS model in
predicting eye fixations (Jampani, Ujjwal, et al., 2012).
To incorporate top-down factors in their saliency
models, Wen et al., (2017) segmented relevant anatomic
regions (i.e., the liver and aorta in CT images), so that
other regions (e.g., the kidney on CT images) were not
allowed to be salient.

Potential future approaches

As promising candidate features continue to be
identified by models that accurately predict radiologist
performance, further studies will need to confirm
that these are the features radiologists do use, rather
than features that are correlated with actual critical
features. One approach to confirming that the correct
features have been identified is to create faux radiologic
images that are matched to real images in terms of such
features. Recently, Semizer, Michel, Evans, and Wolfe
(2018) took this approach, testing whether a texture
model (the Portilla-Simoncelli texture algorithm;
[Portilla & Simoncelli, 2000]) accurately captured
features used by radiologists (for similar approaches
in other domains; see Alexander, Schmidt, & Zelinsky,
2014; Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz,
Huang, Raj, Balas, & Ilie, 2012). This study used
the texture algorithm to generate faux images that
perfectly matched real medical images in terms of the
modeled texture features, but which were otherwise
different. When no visible lesion was present in the
image, radiologists’ performance was comparable for
real images and faux images, suggesting that both
types of images were equivalent in terms of the critical
features that radiologists use to render judgment.

However, when visible lesions were present, radiologists
performed better with real than with faux images,
suggesting that they used additional information
other than texture to conduct the task (Semizer et al.,
2018). One possibility is that the spatial relationships
between image elements are also important: the
Portilla-Simoncelli texture algorithm discards spatial
relationships between local features, thereby removing
the global or configural shape, which previous research
has found to be important in the targeting of visual
attention during search (Alexander et al., 2014).

We believe that the texture approach can prove
fruitful in conjunction with the correct features or
model. Although a simple grayscale object (e.g., a
white bar on a black background) can be described
by first-order cardinal image statistics—including
contrast, spatial frequency, position, entropy, and
orientation—none of these dimensions individually
indicates that a radiologic image region is normal or
abnormal. These dimensions may guide the targeting of
eye movements (Wolfe, 1994a), but are not necessarily
task relevant, and therefore do not provide a complete
picture of the relationship between informativeness
and ocular targeting (McCamy et al., 2014). The
identification of some combinations of features
has proven efficient in other contexts (Rappaport,
Humphreys, & Riddoch, 2013; Wildegger, Riddoch, &
Humphreys, 2015; Wolfe, 1994b; Wolfe et al., 1990),
and may apply to efficient radiologic search. Krupinski,
Berger, Dallas, and Roehrig (2003) found that individual
features (signal-to-noise ratio, size, conspicuity,
location, and calcification status) did not predict the
gaze patterns of radiologists, but their combination
did. Although Semizer et al. (2018) suggested that
more than texture is involved in radiologic search,
their model might have relied on the wrong features
or combination of features. Because texture space is
so large, with many potential dimensions and feature
values along those dimensions, it remains unknown
what values are important. However, just as normal
images may be represented as statistical combinations
of features (i.e., visual texture), abnormal images
are theoretically detectable as deviations from such
statistical combinations or textures.

Having said that, understanding of eye movements
will be important for determining these features. One
of the main results from the study of radiologic search
is that experts can find tumors faster than novices—
meaning that experts can find relevant features in their
peripheral vision and direct their central vision to those
features (Drew et al., 2013; Manning et al., 2006). A
key difference between expert and novice radiologic
search is therefore the ability to detect critical peripheral
features. Where a general approach in radiology has
been to determine the features that distinguish normal
from abnormal image regions—a process that has
aided the growth and development of computer aided
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detection and diagnostic tools—we propose that
future work should be directed to identifying the key
features that experts locate in their visual periphery.
Such features, critical for radiologists’ peripheral
advantage, have not yet been determined. Longitudinal
studies of how gaze dynamics change as a function
of expertise may be particularly valuable toward
this goal. Once these features are known, follow-up
studies may develop heuristics based on them, to help
optimize radiologists’ eye movements and foveation
during radiologic screening. Many of the approaches
outlined earlier use purely visual information, without
considering the additional knowledge that radiologists
rely on, such as the patient’s history or the context
in which a test was ordered. Although much can be
achieved through visual-only approaches, current
models are likely to constitute the first few steps along
the way to future models that may combine bottom-up
visual information with oculomotor behavior, top-down
expectations, and other contextual data (e.g., patient
history) to more fully characterize expert radiologists’
perceptual experience. As current understanding of the
features that radiologists use becomes more refined, it
will become possible to design heuristics for radiologists
in training, which may specifically target the perceptual
learning of relevant image features. Such tools have
the potential to enhance student instruction, decrease
perceptual errors, and help improve patient health and
well-being.

Conclusions

Perceptual errors in radiology are a significant
contributor to patient harm (Waite et al., 2019; Waite
et al., 2017). Educational and practical interventions
to improve human perceptual and decision-making
skills are therefore needed to improve diagnostic
accuracy and to reduce medical error (Ekpo, Alakhras,
& Brennan, 2018; Waite et al., 2020; Waite et al., 2019).
However, the features used by expert radiologists
during visual inspection of medical images are not yet
well specified. Feature-based modeling approaches,
including the saliency models discussed in this review,
may help isolate such features—a practical matter
critically important to the perceptual training of future
radiologists, and ultimately to patient safety.

Keywords: attentional targeting, medical image
perception, perceptual learning, radiology, visual search
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