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Abstract

Background

With over 3,500 species encompassing a diverse range of morphologies and ecologies,

snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-

level snake relationships and numerous assessments of generic- or species-level phyloge-

nies, a large-scale species-level phylogeny solely focusing on snakes has not been com-

pleted. Here, we provide the largest-yet estimate of the snake tree of life using maximum

likelihood on a supermatrix of 1745 taxa (1652 snake species + 7 outgroup taxa) and 9,523

base pairs from 10 loci (5 nuclear, 5 mitochondrial), including previously unsequenced gen-

era (2) and species (61).

Results

Increased taxon sampling resulted in a phylogeny with a new higher-level topology and cor-

roborate many lower-level relationships, strengthened by high nodal support values (>

85%) down to the species level (73.69% of nodes). Although the majority of families and

subfamilies were strongly supported as monophyletic with > 88% support values, some

families and numerous genera were paraphyletic, primarily due to limited taxon and loci

sampling leading to a sparse supermatrix and minimal sequence overlap between some

closely-related taxa. With all rogue taxa and incertae sedis species eliminated, higher-level

relationships and support values remained relatively unchanged, except in five problematic

clades.

Conclusion

Our analyses resulted in new topologies at higher- and lower-levels; resolved several previ-

ous topological issues; established novel paraphyletic affiliations; designated a new sub-

family, Ahaetuliinae, for the genera Ahaetulla, Chrysopelea, Dendrelaphis, and Dryophiops;
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and appointed Hemerophis (Coluber) zebrinus to a new genus,Mopanveldophis. Although
we provide insight into some distinguished problematic nodes, at the deeper phylogenetic

scale, resolution of these nodes may require sampling of more slowly-evolving nuclear

genes.

Introduction
Phylogenies form the cornerstone of our understanding of evolutionary relationships between
organisms and provide a historical basis for testing and inferring ecological and evolutionary
processes [1–4]. Although phylogenetic methodologies have witnessed an explosion of
advancements, estimating large trees remains costly, time-intensive, and computationally diffi-
cult. Thus, most analyses have concentrated on resolving the relationships of smaller taxo-
nomic groups, culminating in the accumulation of published sequences available for compiling
into larger datasets, or "super-matrices" [5,6]. Coalescent-based species-trees methods are cur-
rently favored over concatenated approaches owing to their greater accuracy, but their use for
large datasets is still impractical [7,8]. Consequently, many researchers rely on the supermatrix
approach [9] or on shortcut coalescence methods [10]. The supermatrix uses concatenated
sequences to estimate large-scale phylogenies with branch lengths [11–17]. This technique has
earned criticism because large amounts of missing data may obscure phylogenetic signal, lead-
ing to uncertainty in topology and branch lengths [18–21], but shortcut coalescence methods
are also prone to these same shortcomings [10]. However, several studies have shown that
concatenated procedures may nonetheless produce similar results to species-trees [8,22], par-
ticularly when there is no agreement among gene trees, and between gene and species trees [7].
This is also the case for deep divergences because shortcut coalescence has difficulty integrating
gene-tree incongruity at this level [10]. Our goal for this study was to estimate a species-level
phylogeny for snakes using the supermatrix technique.

To date, only two studies have estimated a species-level phylogeny of snakes [15,23], with
the latter adding more independent loci to the dataset of the former. These studies featured
1262 known snake species, integrated as part of a larger phylogeny focusing on Squamata,
accounting for merely 39% of the total snake diversity at the time. At greater than 3,500 species
[24], over a thousand more than the estimate provided by Heise et al [25] two decades earlier,
and with the recent recognition of new families and subfamilies [26–31], phylogenetic esti-
mates of the snake tree of life are markedly underrepresented. Indeed, the first phylogenetic
analysis including all families and subfamilies was only recently completed [32], and only
included one representative from each rank. Over the years, researchers have emphasized
resolving higher-level snake relationships [15,22,23,25,27,32–49], and topology within families:
typhlopids [26,29,31,50]; boids [30,51–53]; acrochordids [54]; xenodermatids [55]; homalop-
sids [56,57]; pareatids [58]; viperids [59–61]; elapids and lamprophiids [28,62–64]; dipsads
[65,66]; pseudoxendontids [67]; natricines [68]; sibynophiids [27]; and colubrids [39,40].
Despite these efforts, many unresolved nodes remain scattered throughout the entire snake
tree, such as the monophyly of Scolecophidia [15], topology of Typhlopinae [29], monophyly
of Cylindrophiidae and Anomochilidae [35], topology of Booidea [30,53], placement of Xeno-
phidiidae and Bolyeridae [53], and several issues within Caenophidia [22,39,40]. With higher-
level relationships of snakes still not settled, our understanding of the snake tree of life remains
incomplete.

Although snakes have received a great deal of attention from biologists [69–71], studies of
snake biology from comparative and evolutionary perspectives are scarce relative to other
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reptile taxa such as lizards, in part because of the lack of comprehensive and well-supported
snake phylogenies. Estimating a clade-wide species-level phylogeny for snakes with utility for
testing evolutionary hypotheses will greatly augment our knowledge of snake biology. Here, we
present an updated hypothesis on extant snake phylogeny with increased sampling using the
supermatrix approach comprising 1745 taxa (1652 snake species + 7 outgroup taxa), representing
46.33% of the currently known snake species from all known families and subfamilies (Table 1),
an increase of 7.24% from Pyron et al [15] and Zheng andWiens [23]. Accepting this tree, we
discuss higher-level relationships and highlight taxonomic issues at the genus-level.

Materials and Methods

Tissue data collection and sequence acquisition
We constructed a dataset of 1745 taxa (1659 species), of which the following seven species rep-
resent outgroups: Calotes versicolor, Chamaeleo calyptratus, Elgaria multicarinata, Heloderma
suspectum, Liolaemus darwinii, Plica plica, and Varanus salvator. The dataset consisted of
9,523 bp from the following 10 genes: three mitochondrial protein-coding genes, cytochrome b
(cyt-b; 1,107 bp; 1,398 taxa), NADH subunit 2 (ND2; 1,042 bp; 334 taxa), and NADH subunit
4 (ND4; 802 bp; 986 taxa); two non-coding ribosomal genes (12S; 790 bp; 1,023 taxa) and (16S;
649 bp; 1,167 taxa); and five nuclear protein-coding genes, brain-derived neurotrophic factor
precursor (BDNF; 675 bp; 314 taxa), neurotrophin-3 (NT3; 669 bp; 449 taxa), oocyte matura-
tion factor Mos (c-mos; 753 bp; 957 taxa), and two recombination-activating genes (RAG-1.1;
926 bp; 209 taxa, RAG-1.2; 880 bp; 166 taxa; RAG-1.3; 517 bp; 153 taxa), and (RAG-2; 716 bp;
153 taxa). We split RAG-1 into three separate alignments because the majority of sequences
did not overlap, but instead formed three separate segments of overlapping sequences.
Sequences for seven outgroups and 1591 snake species were downloaded from GenBank (S1
Table). To maximize gene coverage for each species, we combined sequences from multiple
individuals of the same species. We sequenced an additional 150 tissue samples from 88 spe-
cies, of which 61 were not previously sequenced (S2 Table). Eighteen we field collected and 132
we obtained from museum vouchers. For field collected samples, we obtained tissue from tail
clips or ventral scale clips using sterilized scissors, from snakes collected in Costa Rica and Sin-
gapore. We placed all tissue samples in 90% ethanol under the Alexander D. McKelvy Field
Series (ADM). Methods for tissue collection were approved by the University of New Orleans
Animal Welfare Committee and by both permitting agencies for each country: Costa Rica,
Ministerio del Ambiente y Energía Sistema Nacional de Areas de Conservación, permit ACTo-
GASP-PIN-023-2010, and; Singapore, NParks, permit NP/RP11-030. Museum tissue samples
represent a combination of liver, muscle, and heart tissue and were gathered from the following
museums: AMNH, CAS, FMNH, KU, LSUHC, LSUMNS, MVZ, and YPM (refer to S2 Table
for museum codes). Species we sequenced are identified by species name and voucher number
(S2 Table). For taxonomic classification, we consulted The Reptile Database (http://www.
reptile-database.org/). As of October 2015, the database recognizes 3566 species of snakes. Our
dataset accounted for approximately 46.33% of currently recognized snake species.

DNA extraction, amplification, sequencing, and alignment
We extracted genomic DNA from tissue samples following the standard protocol provided for
Qiagen1 DNeasy kits. We sequenced six genes: 16S, c-mos, cyt-b, ND4, NT3, and RAG-1. A
list of the primers used, their source, and annealing temperatures are provided in S3 Table. We
aliquoted a 2 μl portion of each purified DNA extract and combined it with GoTaq Green Mas-
terMix (Promega Corp.), primers from respective gene, and deionized water to create a 10 μl
reaction to be used in the Polymerase Chain Reaction (PCR). We placed all PCR reactions on a
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Table 1. Number of taxa sampled per family or subfamily. Families are listed in order according to Fig 1. For the taxonomy of families and subfamilies,
we use Adalsteinsson et al, [26] for Anomalepididae and Leptotyphlopidae, Pyron andWallach [29] for Gerrhopilidae, Typhlopidae, and Xenotyphlopidae,
Pyron et al [30] for Booidea, and Pyron et al [15] for Alethinophidia. The number of species per clade was taken from The Reptile Database (http://www.
reptile-database.org/) on 10/01/2015. Percentages of the number of species sampled do not include taxa not assigned to species status. Paraphyletic taxa
are included under their traditional family and/or subfamily. In the Total cell for total number of species, the number not in parentheses equals the sum of the
values in the table and the number in the parentheses equals the number returned when a search for Serpentes is conducted in The Reptile Database. Per-
centage for total number of species sampled is based on 3566 species.

Clade Number of Species Sampled (% Sampled) Total Number of Species

Scolecophidia

Anomalepididae 2 (11%) 18

Leptotyphlopidae — —

Epictinae 17 (23%)– 2 sp. 64

Leptotyphlopinae 18 (36%) 50

Gerrhopilidae 2 (11%) 18

Xenotyphlopidae 2 (100%)– 1 sp. 1

Typhlopidae

Typhlopinae 52 (52%)– 19 sp. 64

Afrotyphlopinae 19 (26%)– 3 sp. 61

Madatyphlopinae 2 (15%) 13

Asiatyphlopinae* 49 (33%)– 8 sp. 124

Alethinophidia

Aniliidae 1 (100%) 1

Tropidophiidae 10 (29%) 34

Calabariidae 1 (100%) 1

Candoiidae 3 (60%) 5

Sanziniidae 3 (75%) 4

Charinidae

Charininae 3 (75%) 4

Ungaliophiinae 3 (100%) 3

Erycidae 9 (75%) 12

Boidae 24 (80%) 30

Cylindrophiidae 2 (15%) 13

Anomochilidae 1 (33%) 3

Uropeltidae 15 (28%)– 1 sp. 54

Xenopeltidae 1 (50%) 2

Loxocemidae 1 (100%) 1

Pythonidae 32 (80%) 40

Bolyeridae 1 (50%) 2

Xenophidiidae 1 (50%) 2

Acrochordidae 3 (100%) 3

Xenodermatidae 4 (22%) 18

Pareatidae 16 (80%) 20

Viperidae

Viperinae 66 (67%) 98

Azemiopinae 1 (50%) 2

Crotalinae 190 (82%)– 1 sp. 231

Homalopsidae 26 (47%)– 1 sp. 53

Lamprophiidae

Psammophiinae 45 (87%)– 3 sp. 52

Prosymninae 5 (31%) 16

Pseudaspidinae 2 (100%) 2

(Continued)
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thermal cycler under the following protocol: 95°C for 2 min; 95°C for 30 s; 50°C for 30 s for 40
cycles; 72°C for 1:15 min; 72°C for 3–5 min; and chilled at 4°C until taken off cycler. Next, we
cleaned the PCR products using 1 μL of ExoSap-IT (USB Corp.) per 10 μL of PCR product. We
performed cycle sequencing on purified PCR products using 1 μL primer (10 μM), 2 μL tem-
plate, and 5 μL deionized water along with a Big Dye Terminator 3.1 (Amersham Pharmacia
Biotech) reaction premix for 50 cycles of 96°C for 10 s; 45°C for 5 s; and 60°C for 4 min and
purified using a Sephdex column, then used an ABI 3130XL Genetic Analyzer to determine
nucleotide sequences of each sample.

We aligned all sequences using the default parameters of the Geneious alignment, and refined
alignments using the default parameters of the MUSCLE alignment [72] in the program Geneious
v4.8.4 (http://www.genious.com; [73]). We then edited alignments by eye and trimmed ambiguous
end regions. For some genes, a few species had identical sequences with other taxa so we retained
the first taxon in alphabetical order ([15]; S1 Table). Finally, we used Geneious to concatenate all
genes to create a supermatrix. This matrix contained 71.41% of missing data; however, previous
studies have shown that missing data does not negatively influence topology, branch length esti-
mates, and node support [15,23,40,41]. We deposited all sequences generated from this study in
GenBank (S2 Table). The final alignment is available in Phylip format in S1 File.

Phylogenetic inference
We performed phylogenetic analyses on the 10-gene concatenated matrix using the maximum
likelihood (ML) criterion in the program RAxML HpC-2 v8 [74] on the CIPRES portal (http://
www.phylo.org; [75]). First, we analyzed each gene separately to check topological congruence
by performing rapid bootstrap analyses and pruned misplaced taxa with suspect placement out
of the alignment, before concatenating them into the final alignment. The following five species
were removed from the alignment due to poor placement for all genes: Boiga siamensis

Table 1. (Continued)

Clade Number of Species Sampled (% Sampled) Total Number of Species

Atractaspidinae 7 (30%) 23

Aparallactinae 11 (23%) 47

Lamprophiinae 31 (43%) 72

Pseudoxyrhophiinae 61 (64%)– 4 sp. 89

Elapidae 195 (54%)– 1 sp. 358

Colubridae

Sibynophiinae 6 (55%) 11

Natricinae 110 (47%)– 3 sp. 226

Pseudoxenodontinae 5 (36%)– 1 sp. 11

Dipsadinae 242 (32%)– 2 sp. 754

Grayiinae 3 (75%) 4

Calamariinae 4 (5%) 87

Ahaetullinae subfam. nov. 27 (48%) 56

Colubrinae 315 (47%)– 3 sp. 670

Incertae Sedis 4† 22

TOTAL 1652 (46.33%) 3549 (3566)

*Number of species of Xerotyphlops is included in Asiatyphlopinae.
†Buhoma depressiceps, Buhoma procterae, andOxyrhabdium leporinum are all listed as incertae sedis on The Reptile Database, butMicrelaps bicoloratus
is not. We list these four species as incertae sedis because of their variable topological history (see Fig 1).

doi:10.1371/journal.pone.0161070.t001
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FMNH267726, Chrysopelea ornata LSUHC7158,Dipsadoboa werneri, Emydocephalus ijmae,
and Psammodynastes pictus FMNH267940. We conducted analyses by generating starting trees
under the default parsimonymodel and obtained node support from 100 non-parametric bootstrap
replicates using the GTRGAMMAmodel for all genes and codon partitions since the GTRGAMMA
model is recommended over GTR + Γ + I as the 25 rate categories implemented with GTRGAMMA
accounts for potentially invariant sites [76]. After concatenating the genes, we performed a rapid
bootstrap analysis on the data partitioned by gene and codon position and obtained node support
from 1000 non-parametric bootstrap replicates using the GTRGAMMAmodel.

Rogue taxa can present themselves in phylogenetic estimates due to ambiguous or insuffi-
cient phylogenetic signal [77]. These taxa decrease resolution and support in any best tree esti-
mate because they cannot be placed with any confidence anywhere in the tree due to occupying
numerous different phylogenetic positions in a set of trees [78]. Thus to produce a more infor-
mative best tree estimate with improved clade support, we identified and eliminated rogue taxa
with the webserver version of RogueNaRok at http://rnr.h-its.org/submit [79] using the sup-
port on best tree estimate threshold, optimizing support, and maximum dropset size of 1. To
avoid pruning a large number of taxa, we only pruned 22 taxa that had a random improvement
score (i.e., fraction of improvement in bootstrap support values throughout the tree when the
selected taxon is pruned and all rogue taxa above it are also pruned) above 0.8 (S4 Table). We
acknowledge that excluding additional rogue taxa will improve clade support values, but we
wanted to include a maximum number of taxa to estimate a more comprehensive phylogeny.
After pruning rogue taxa, the final dataset resulted in 1745 taxa (1659 species). We then per-
formed 10 ML searches on 10 random stepwise addition parsimony-based starting trees using
the GTRGAMMAmodel. Next, we executed a final topology optimization on the best scoring
ML tree to produce a nearest-neighbor interchange (NNI)-optimized estimate of the ML tree
also using the GTRGAMMAmodel. Finally, we assessed node support using the non-paramet-
ric Shimodaira-Hasegawa-Like (SHL) implementation of the approximate likelihood-ratio test
(aLRT; [80]) based on several advantages over other support methods and considered SHL val-
ues of 85% or greater as strong support [15]. We also estimated the tree with all rogue taxa
from the first analysis and species classified as incertae sedis, all within the family Lamprophii-
dae (Buhoma depressiceps, Buhoma procterae,Micrelaps bicoloratus, and Oxyrhabdium lepori-
num), eliminated to scrutinize their influence on higher-level relationships.

Nomenclatural acts
The electronic edition of this article conforms to the requirements of the amended Interna-
tional Code of Zoological Nomenclature, and hence the new names contained herein are
available under that Code from the electronic edition of this article. This published work and
the nomenclatural acts it contains have been registered in ZooBank, the online registration sys-
tem for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associ-
ated information viewed through any standard web browser by appending the LSID to the
prefix “http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub:
3966804E-D532-4C52-92AC-BECAE776E434. The electronic edition of this work was pub-
lished in a journal with an ISSN, and has been archived and is available from the following digi-
tal repositories: PubMed Central, LOCKSS.

Fig 1. Abridged phylogeny on final dataset of 1652 snake species and seven outgroup taxa displaying higher-level
relationships.Maximum-likelihood phylogenetic estimate based on 10 concatenated genes. Tips represent families and sub-families.
Commonly recognized higher-level clades are labeled in all caps and bold. Species classified as Lamprophiidae incertae sedis are also
shown since they did not place within a subfamily. Node values represent SHL support values. Skeleton of the species tree is displayed
on the left, colored and labeled as they appear in Figs 2–10.

doi:10.1371/journal.pone.0161070.g001
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Results and Discussion

Higher-level phylogeny
As in previous studies, we find very strong support (SHL = 100) for the clade Serpentes
[15,23,36,42,48,81]. In Fig 1 we display a summary of the full ML tree (lnL = -919390.188) to
exhibit relationships above the genus-level and present the full species-level tree in Figs 2–10,
made available in Newick format in S2 File. Overall, more than half of the nodes in the full spe-
cies-tree received strong support (73.45% of nodes with SHL values> 85). In the following sec-
tion we largely compare our tree to Pyron et al [15], since they provide a recent detailed
comparison to preceding publications and because theirs is the only other clade-wide species-
level tree (but see [23]). In general, we substantiate many of the higher-level relationships
reported in Pyron et al [15]; however, several differences also exist. Support for monophyly for
each family and subfamily was above 88%, except for Gerrhopilidae (SHL = 48), and Cylindro-
phiidae was paraphyletic with Anomochilidae [23,35,53].

Scolecophidia. Similar to many prior examinations, we find relationships within Scoleco-
phidia unresolved [15,23,25,31,32,41,42,46–48,82–85], with studies showing either Scolecophi-
dia [25,31,84,85], Anomalepididae [15,41] or Leptotyphlopidae + Typhlopoidea
[23,42,46,47,48] as sister to all snakes. Morphology also reveals uncertainty surrounding Scole-
cophidia (reviewed in [84]), but based on the presence of vestigial supratemporal and ectopter-
ygoid bones, absent in other scolecophidians, Anomalepididae may be the most basal
scolecophidian [85]. We believe future work will lead to a reclassification of Scolecophidia, but
until then relationships within the infraorder remain problematic. In addition, we find weak
support for the placement of Asiatyphlopinae, Afrotyphlopinae, and Madatyphlopinae within
Typhlopidae as in previous studies [15,23,29,31,50,86]. The issue appears to lie primarily with
the placement of Argyrophis [50] and Xerotyphlops [15,23,50], which together formed Asia-
typhlopinae I. Xerotyphlops is represented by two species, one occurring in the eastern Mediter-
ranean and the other on Socotra Island [86], and Argyrophis is distributed from western Asia
to Southeast Asia [29,86]. Discordance in topology therefore appears associated with these two
genera being intermediate in distribution between African and Asian typhlopids, which may
show affinities to clades from both regions.

Henophidia. As mentioned above, Cylindrophiidae is paraphyletic with Anomochilidae.
Difficulty in resolving this relationship is likely due to the representation of Anomochilus by
one species and two genes (12S and 16S), and Cylindrophis by two species with greater gene
coverage. Both of these families were formerly shown as part of or paraphyletic with Uropelti-
dae [41,42,47,48]. Based on the history of paraphyly between these families, Burbrink and
Crother [84] recommended synonymizing Cylindrophiidae and Anomochilidae with Uropelti-
dae to resolve these families. However, we recommend retaining the current classification until
more species are sampled (Table 1) on the grounds that Cylindrophiidae + Anomochilidae
share morphological features not present in Uropeltidae [35,84] and since strong support has
been shown distinguishing them from Uropeltidae [15,23,32,41]. For boids, our analysis vali-
dates the taxonomic changes made in Pyron et al [30], but differs in topology from previous
assessments in the placement of Calabariidae, Candoiidae, and Sanziniidae [15,23,53].
Although the relationship Erycidae + Boidae is recovered in all studies [15,23], except one [53],
support for this relationship is low. Thus, the only node we can have confidence in is the one
joining Charininae and Ungaliophiinae [15,23,53].

Xenophidiidae and Bolyeridae. Perhaps the most notable difference from the topology of
Pyron et al [15] was the placement we recovered for Xenophidiidae + Bolyeridae (SHL = 91).
Earlier studies showed them as sister to various clades within Henophidia [23,32,38,41,42], but
we found very strong support (SHL = 100) for them as sister to Caenophidia (SHL = 100), as
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also shown in other studies [53,85]. In addition, these snakes possess morphological characters,
particularly within the palate, bolstering their close relationship with Caenophidia and not to
Henophidia [85]. Pyron et al [15] is the only study showing a disassociation between these fam-
ilies placing Xenophidiidae as sister to Alethinophidia, with the exception for Aniliidae + Tropi-
dophiidae, and Bolyeridae as sister to Booidea. Currently, both clades are represented by one
species and Xenophidiidae by only one gene (cyt-b). Both clades contain two species; for Xeno-
phidion, both species are known only from one specimen each, and for Bolyeridae, Bolyeria is
extinct, and Casarea is rare [38], so obtaining additional sequences for either clade is unlikely.
If this placement is retained, then Caenophidia should be redefined to include Xenophidiidae
and Bolyeridae, or they should be given their own taxonomic grouping.

Caenophidia. Pyron et al [22] recently reviewed and attempted to resolve several prob-
lematic issues within Caenophidia. The major problems hindering resolution of this clade are 1)
placement of Xenodermatidae inside or outside of Colubroidea; 2) placement of Homalopsidae;
3) topology of Lamprophiidae; and 4) topology of Colubridae. Previous studies have placed Xeno-
dermatidae as sister to Acrochordidae [15,37] or as basal in Colubroidea [23,27,40,42,47,87], have
placed Homalopsidae as sister to Lamprophiidae + Elapidae [15,27,40] or as sister to (Lampro-
phiidae + Elapidae) + Colubridae [23,32,39,42,45,47], and have shown conflicting topologies for
the subfamilies within Lamprophiidae and Colubridae [15,23,27,28,37,40,45,47]. Pyron et al [22]
used seven methods to examine these relationships showing Xenodermatidae as basal in Colu-
broidea with varying support and Homalopsidae as sister to (Lamprophiidae + Elapidae) + Colu-
bridae with strong support. However, they expressed little confidence in resolving the topology
within Lamprophiidae and Colubridae since several divergences were defined by low support. We
confirm their findings that Xenodermatidae is sister to the rest of Colubroidea (SHL = 100) and
that relationships within Lamprophiidae and Colubridae remain unresolved, but our findings for
the placement of Homalopsidae contradicted theirs, as we recovered strong support (SHL = 91)
for Homalopsidae + Lamprophiidae, and found Elapidae to be nested within Lamprophiidae.
Typically, Lamprophiidae and Elapidae are recovered as distinct clades [15,22,28,39,40,41,64], but
we found strong support (SHL = 96) for Elapidae + Buhoma depressiceps as sister to Pseudoxyr-
hophiinae (SHL = 99), shown previously only in Pyron and Burbrink [32]. The topology of Lam-
prophiidae is complicated by the presence of several incertae sedis taxa (see Lamprophiidae
[28,32,39,41]), but Elapidae remains nested within Lamprophiidae even when these taxa are
removed (S1 Fig). In addition, we found the placement of Pareatidae and Viperidae within
Colubroidea unresolved. Pareatidae is consistently placed as sister to Viperidae, which is sister to
Colubridae, Elapidae, Homalopsidae, and Lamprophiidae [15,22,23,27,32,41,42]. A possible
explanation for this is that our dataset includes the greatest sampling of pareatids, adding seven
additional species previously not included in higher-level relationships, two we sequenced and
five from You et al [58].

Lamprophiidae. Part of the issue with resolving the topologies within Lamprophiidae,
and within Colubridae, is that they exemplify rapid radiations manifested by the presence of
short internodes [22]. Yet another major issue hindering progress within Lamprophiidae is the
presence of several incertae sedis taxa, not identified as rogue taxa by RogueNaRok. These taxa
constantly show contrasting phylogenetic placement between studies [15,23,28,39,40,64,87].

Fig 2. Species-level phylogeny on final dataset of 1652 snake species.Maximum-likelihood phylogenetic estimate based on 10
concatenated genes. Node values represent SHL support values. Seven outgroup taxa are not shown. Colors of clades indicate their
position in the overall tree, shown at left. Newly sequenced taxa are highlighted in bold. Skeleton of the species tree is displayed on the left
with displayed subfamilies/families highlighted. Letters denoted by i and ii represent parts of the tree where external branches do not
connect to the part of the tree immediately preceding it. A) Anomalepididae, Epictinae, Leptotyphlopinae, Gerrhopilidae, Xenotyphlopidae,
and Typhlopinae. B) Asiatyphlopinae I, Afrotyphlopinae; Madatyphlopinae, and Asiatyphlopinae II.

doi:10.1371/journal.pone.0161070.g002
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Fig 3. Phylogenetic tree of Serpentes continued. A) Aniliidae, Tropidophiidae, Calabariidae, Candoiidae, Sanziniidae, Charininae,
Ungaliophiinae, Erycidae, and Boidae. Bi) Cylindrophiidae + Anomochilidae, Uropeltidae, Xenopeltidae, Loxocemidae, and Pythonidae.
Bii) Bolyeridae, Xenophidiidae, Acrochordidae, Xenodermatidae, and Pareatidae.

doi:10.1371/journal.pone.0161070.g003
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Fig 4. Phylogenetic tree of Serpentes continued. Ai) Viperinae. Aii) Azemiopinae and Crotalinae. B) Crotalinae continued.

doi:10.1371/journal.pone.0161070.g004
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Fig 5. Phylogenetic tree of Serpentes continued. A) Homalopsidae, Psammophiinae, Buhoma procterae, Prosymninae,
Pseudaspidinae, Atractaspidinae, and Aparallactinae. Bi)Oxyrhabdium leporinum and Lamprophiinae. Bii) Ditypophis sp. +Micrelaps
bicoloratus and Pseudoxyrhophiinae.

doi:10.1371/journal.pone.0161070.g005
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Fig 6. Phylogenetic tree of Serpentes continued. A) Buhoma depressiceps and Elapidae. B) Elapidae continued.

doi:10.1371/journal.pone.0161070.g006
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Fig 7. Phylogenetic tree of Serpentes continued. A) Sibynophiinae and Natricinae. B) Pseudoxenodontinae and Dipsadinae.

doi:10.1371/journal.pone.0161070.g007
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Fig 8. Phylogenetic tree of Serpentes continued. A) Dipsadinae continued. B) Dipsadinae continued.

doi:10.1371/journal.pone.0161070.g008
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Fig 9. Phylogenetic tree of Serpentes continued. A) Grayiinae, Calamariinae, Ahaetullinae subfam. nov., and Colubrinae. Bi)
Colubrinae continued. Bii) Colubrinae continued.

doi:10.1371/journal.pone.0161070.g009
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Fig 10. Phylogenetic tree of Serpentes continued. A) Colubrinae continued. B) Colubrinae continued.

doi:10.1371/journal.pone.0161070.g010
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We are reluctant in placing any confidence in the topology between subfamilies recovered for
Lamprophiidae, despite high support values. However, the topology after all rogues and incer-
tae sedis taxa were pruned remained essentially the same (S1 Fig) adding supplementary sup-
port for this topology. Nonetheless, our topology differs from earlier studies. Previous studies
have consistently recovered the sister relationship between Aparallactinae + Atractaspidinae
[15,22,28,32,39,40,41,64]; however, we found this relationship unresolved, likely due to the
strong placement (SHL = 95) of Atractaspis irregularis as sister to these two clades, and this
taxon is represented by only one gene. The topology recovered here was Psammophiinae + ((B.
procterae + Prosymninae) + (Pseudaspidinae + (Atractaspidinae + Aparallactinae) + (O. lepori-
num + Lamprophiinae)) + (((Ditypophis sp. +M. bicoloratus) + Pseudoxyrhophiinae) + (B.
depressiceps + Elapidae)))). All nodes received strong support (SHL> 88), except for subclades
B. procterae + Prosymninae and Ditypophis sp. +M. bicoloratus. Pyron et al [15] had aug-
mented the definition of Pseudaspidinae to include Buhoma and Psammodynastes. With added
sampling of Psammodynastes, we recovered this genus as paraphyletic with Rhamphiophis oxy-
rhynchus (SHL = 100) within Psammophiinae, making Rhamphiophis paraphyletic (Fig 5A).
Buhoma, on the other hand, was split with B. procterae sister to Prosymninae and B. depressi-
ceps sister to Elapidae. Oxyrhabdium leporinum was sister to Lamprophiinae andMicrelaps
bicoloratus was placed within Pseudoxyrhophiinae. In all preliminary and final analyses, Psam-
modynastes constantly occupied the same phylogenetic position; however, placement of the
other four species was erratic and always differed. Therefore, we tentatively include Psammody-
nastes as part of Psammophiinae. Due to their perpetual variable placement, we continue rec-
ognizing Buhoma,M. bicoloratus, and O. leporinum as Lamprophiidae incertae sedis.

Colubridae. For Colubridae, we recovered the following four subclades: i) Sibynophiinae +
Natricinae (SHL = 80); ii) Pseudoxenodontinae + Dipsadinae (SHL = 82); iii) Grayiinae + Cala-
mariinae (SHL = 70); and iv) Ahaetuliinae subfam. nov. + Colubrinae (SHL = 95). The nodes
between these subclades all received very strong support (SHL> 97). The only consistently
recovered clade among these is subclade ii [22,27,32,40,41]; although other studies do not recover
this subclade [15,23,65]. Several studies also regularly recovered the subclade Natricinae + (Pseu-
doxenodontinae + Dipsadinae) [22,27,32,40], but we do not uncover that relationship here.
Instead, Natricinae formed a subclade with Sibynophiinae, also reported in [41]. The subfamily
Sibynophiinae was only recently included in molecular analyses, originally grouped with Cala-
mariinae [27], then subsequently placed as sister to Grayiinae + Colubrinae [15,23], and to Cala-
mariinae + (Colubrinae + Grayiinae) [22]. The subfamily Grayiinae was also recently described
[45] and grouped with Calamariinae in that study, also recovered in Pyron and Burbrink [32].
However, Grayiinae has most frequently been grouped with Colubrinae [15,22,23,27,39–41].
Dipsadinae is exclusively a NewWorld family, but recent placement of Stichophanes and Ther-
mophis as sister to Dipsadinae [15,88,89] expanded its distribution into the OldWorld. Pyron
et al [15] did not include Stichophanes, and they mentioned that Thermophismay even warrant
its own subfamily. However, our results do not uphold this view since we show Stichophanes +
Thermophis (SHL = 96; Fig 7B) as placed within Dipsadinae. Wang et al [89], on the other hand,
supported Stichophanes + Thermophis as sister to Dipsadinae, but their dataset was not as exten-
sive and did not include T. zhaoermii. Until now, the basal node of Colubrinae has remained
ambiguous. Pyron et al [15] suggested that monophyly of Ahaetulla, Chrysopelea, andDendrela-
phis at the base of Colubrinae, may warrant recognition as a distinct subfamily, but support for
division of these taxa in their study was low. Due to increased sampling, and the inclusion of
Dryophiops, we established strong support for recognizing these taxa as a new subfamily, using
the name proposed by Pyron et al [15], Ahaetuliinae subfam. nov.

Higher-level phylogeny with all rogue taxa eliminated. With all rogue taxa (101) and
incertae sedis species (4) eliminated, higher-level relationships and support values remained
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relatively unchanged (S1 Fig). Where changes in topology or support values occurred, it was in
the problematic clades discussed above, specifically Typhlopidae, Booidea, Pareatidae + Viperi-
dae, Lamprophiidae, and Colubridae. For Typhlopidae, Xerotyphlops formed a clade by itself,
sister to all other typhlopids. Madatyphlopinae formed a moderately supported (SHL = 87)
clade with Typhlopinae. However, the placements of Afrotyphlopinae and Asiatyphlopinae
remained unresolved. In Booidea, the placement of Calabariidae + Candoiidae swapped with
Sanziniidae, greatly altering support values throughout Booidea, except in Charininae + Unga-
liophiinae. Within Colubroidea, the placement of Pareatidae and Viperidae remains unre-
solved. Interestingly, with incertae sedis species removed from Lamprophiidae, topology of the
subfamilies and of Elapidae within Lamprophiidae remained the same and the relationship
between Atractaspidinae and Aparallactinae was strongly resolved, providing compelling sup-
port for the topology recovered. However, the node joining Prosymninae to all other lampro-
phiids became ambiguous. Relationships within Colubridae remained stable, except that
Pseudoxenodontinae placed as sister to all other colubrids. In addition, we note that the sister
relationship of Xenopeltidae to Loxocemidae + Pythonidae became ambiguous, and that with
the exclusion of Xenophidiidae as a rogue taxon, Bolyeridae still placed as sister to Caenophidia
with high support (SHL = 99), upholding its position outside of Henophidia.

Genus- and species-level phylogeny
Of the 147 samples we sequenced, two genera (Dryophiops, and Liopeltis) and 61 species were
not previously incorporated in any phylogenetic analyses. Dryophiops placed within Ahaetulli-
nae subfam. nov. as sister to Ahaetulla (SHL = 99), and Liopeltis fell within Colubrinae as sister
taxon (SHL = 97) to Ptyas + Cyclophiops. We recovered strong support for the phylogenetic
placement of 105 of our samples (SHL> 85). For taxa where our sequences resulted in multiple
terminals of the same species, the following species were not monophyletic: Ahaetulla nasuta,
A. prasina, Chironius exoletus, C. fuscus, C.monticola, C.multiventris, Dasypeltis fasciata, Den-
drelaphis cyanochloris, D.marenae, Dendrophidion percarinatum, Philothamnus natalensis,
Phrynonax poecilonotus, P. shropshirei, Psammodynastes pictus, Sibynomorphus turgidus, Spi-
lotes sulphureus, and Trimeresurus fucata. Throughout the entire tree, most genera were mono-
phyletic with varied node support. Space does not allow for exhaustive scrutiny at the generic
and species level of our tree with previous publications, although a cursory examination reveals
consistency with previous publications. Instead, we focus on assessing the placement of para-
phyletic genera, most of which require greater sampling of species and genes, or perhaps indi-
viduals, to provide an improved appraisal of their phylogenetic positions.

Paraphyly at the lower-level of the tree emerged due to various reasons. For some clades
paraphyly is well-established and confirmed here, more notably in Brachyophidium, Pseudo-
typhlops, Rhinophis, and Uropeltis in Uropeltidae (Fig 3Bi) [15,41,53,90]; Ovophis and Trimere-
surus in respect to Ovophis okinavensis + Trimeresurus gracilis as basal to Gloydius (Fig 4B)
[61,91]; Adelophis, Amphiesma, Atretium, Nerodia, Regina, Thamnophis, Tropidoclonion, and
Xenochrophis in Natricinae (Fig 7A) [15,68,92,93]; and Dipsas, Geophis, and Sibynomorphus in
Dipsadinae (Fig 7B) [15,49,65,66]. Additional taxa include: variable placement ofMorelia viri-
dis (Fig 3Bi) [15,38,52,94] and Bothrocophias campbelli (Fig 4B) [95]; and Suta with Parasuta
(Fig 6B) [15,96]. Clearly, these clades require further inspection. On the other hand, we were
able to rectify other paraphyletic taxa with strong support, specifically within Colubrinae:
Boiga, Chironius, Coronella, Crotaphopeltis, Dasypeltis, Dipsadoboa,Hapsidophrys, and Phi-
lothamnus, Rhinechis, and Scaphiophis.

In some taxa, such as Cerrophidion wilsoni (Fig 4B), Atractus irregularis (Fig 5A), Ditypo-
phis sp. (Fig 5Bii), Aspidelaps irregularis (Fig 6A), Pseudonaja guttata (Fig 6A), Geophis with
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Atractus (Fig 7B), Sibon noalamina (Fig 7B), Philodryas chamissonis and P. trilineata (Fig 8A),
Conophis and Conopsis (Fig 8A & Fig 10B), Ptyas korros (Fig 10A), Tantilla melanocephala
(Fig 10B), and Salvadora hexalepis (Fig 10B), sequence overlap with related taxa was zero or
minimal. Whereas for the following taxa, their placement were unresolved: Typhlopidae, Rhi-
notyphlops unitaeniata (Fig 2B); Uropeltidae, Rhinophis philippinus (Fig 3B); Pythonidae,
Simalia oenpelliensis (Fig 3B); Viperidae, Atropoides picadoi and Bothrops lojanus (Fig 4B); Ela-
pidae, Toxicocalamus loriae (Fig 6A); Natricinae,Macropisthodon rhodolemas ADM0003 (Fig
7A); Dipsadinae, Oxyrhopus fitzingeri LSUMNS6586 and Siphlophis cervinus (Fig 8A); Cala-
mariinae, Pseudorabdion oxycephalum (Fig 9A); and Colubrinae, Hierophis andreanus and
Dolichophis cypriensis (Fig 9Bi), Pantherophis and Pituophis (Fig 10A), Drymobius rhombifer,
Dendrophidion dendrophis, Chilomeniscus stramineus, Tantilla melanocephala, and Salvadora
hexalepis (Fig 10B).We do not classify Calliophis and Sinomicrurus as paraphyletic until the
identity of Calliophis sp. is known.

For some clades, paraphyly was strongly supported allowing us to synonymize these taxa.
Within Psammophiinae, we synonymize Rhagerhis moilensis with Malpolon. This species con-
sistently forms a monophyletic clade withMalpolon [15,28,62,97] (Fig 5A), but two studies
[64,98], inaccurately cite Kelly et al [62] as providing evidence for their separation. In Aparal-
lactinae, we synonymize Xenocalamus with Amblyodipsas (Fig 5A), also recovered in Pyron
et al [15], the only other study including these taxa. Within Colubrinae we synonymize several
clades. First, we synonymize Lepturophis and Dryocalamus with Lycodon, which forms a strong
clade (SHL = 100) with these taxa strongly embedded within [15,99] (Fig 9Bii). Next, we syn-
onymize Rhinechis scalaris, a species with an erratic phylogenetic history [100,101], with Zame-
nis, but the addition of more genes shows it related to Zamenis [15,102] (Fig 10A), with which
it has morphological affinities to [103]. Finally, we also synonymize Cyclophiops with Ptyas.
Previously recovered as sister clades [15,104], our increased sampling for both genera shows
that Ptyas forms a strong clade (SHL = 95) with the two species of Cyclophiops strongly nested
within two separate subclades (Fig 10B). Conversely, in other clades paraphyly was strong, but
we do not propose taxonomic changes, specifically inHebius sauteri placing with Amphiesma
(Fig 7A), Balanophis ceylonensis within Rhabdophis (Fig 7A), Thamnodynastes pallidus placing
with Sibynomorphus (Fig 7B), Pliocercus split (Figs 7B & 8A), Ninia split (Figs 7B & 8A), Dis-
pholidus typus within Thelotornis (Fig 9A), Chionactis occipitalis placing with Sonora (Fig
10B), and P. shropshirei LSUMNS7806 within Spilotes (Fig 10B), mainly because these taxa, or
taxa they placed with, are presented for the first time in a phylogenetic analysis.

In the case ofHemerophis, after the genus Bamanophis was erected for Coluber dorri [105],
H. zebrinus remained as the only Old World Coluber representative, until it was recently recog-
nized as Hemerophis without justification [24,106]. Yet, the two are distantly-related within a
clade of Old World racers [15,40,107,108].H. zebrinus is typically placed in a clade sister to
Bamanophis andMacroprotodon, but a very recent study incorporating new sequence data for
Rhynchocalamus, not included here, placesH. zebrinus as the basal lineage within this clade sis-
ter to (Bamanophis +Macroprotodon) and all other Old World racers [109]; while H. socotrae,
occupies a branch away from this clade. Nagy et al [108] shows weak support for a sister rela-
tionship between the two using maximum parsimony, but shows them separated with greater
support using Bayesian inference and ML. Therefore, we create a new genus for H. zebrinus,
Mopanveldophis gen. nov.

Supermatrix approach
Despite the utility of the supermatrix approach, this method is also potentially responsible for
uncertainty in some nodes. Compiling available molecular data from numerous studies leads
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to a sparse data matrix with a substantial portion of missing data unequally scattered through-
out the alignment due to sampling differences between studies [11]. Our dataset consisted of
71.41% of missing data with several taxa represented by a single gene to taxa with data span-
ning all loci. Heterogeneity in sparse data matrices can alter topological relationships and nega-
tively impact tree support by increasing the presence of rogue taxa [110]. Rogue taxa typically
are characterized by little character data that do not overlap with closely-related taxa [21]. We
identified and removed 22 rogue taxa from our data matrix, 12 of which were delineated by
one gene and eight by two genes. The genes 12S, 16S, c-mos, and ND4 were most associated
with rogue taxa. These genes evolve more slowly and are not adequate for delimiting species-
level relationships (see methods), and several families in our tree are only represented by one
or two individuals with few sequenced loci (i.e., Anomalepididae, Anomochilidae, Bolyeridae,
Cylindrophiidae, and Xenophidiidae; Table 1). Many taxa in the tree with low support were
also represented by a single gene. Furthermore, lack of sequence overlap between closely-
related species can also lead to misplacement of taxa in the tree, sometimes with high support
as mentioned above. However, many taxa with extensive missing data were placed correctly in
the tree (e.g., Chironius multiventris, Pseudocerastes urarachnoides, Rhabdophis chrysargos, Tri-
meresurus wiroti), grouping with closely-related taxa with high support, confirming that
increased taxon sampling is a favorable choice for improving phylogenetic accuracy [111],
even with a high percentage of missing data [112]. This can occur when the overall number of
characters in the data matrix is high [5,113–116], especially for SHL support values since they
are not negatively affected by the amount of missing data in the data matrix [40].

In many cases, denser sampling influenced phylogenetic relationships and node support
[117]. For example, adding 30 samples of 18 species (14 never before sequenced) to Ahaetuliinae,
resolved the basal Colubrinae node and distinguished Ahaetuliinae as a new subfamily. Increased
taxon sampling also resolved several paraphyletic issues at the generic level, identified new associ-
ations of paraphyly, mostly due to poor gene sampling, resulted in new phylogenetic hypotheses
for some taxa such as Scaphiophis, Stichophanes + Thermophis, and Xerotyphlops, and prompted
us to make some taxonomic changes. Moreover, our sequencing contribution resulted in com-
plete or nearly complete taxonomic coverage of several genera, including Ahaetulla, Asthenodip-
sas, Chrysopelea,Dendroaspis, Dryocalamus,Dryophiops, Phrynonax, Ptyas, andUngaliophis, and
greatly increased representation of species of the speciose genera Boiga and Dendrelaphis. None-
theless, many challenges exist to estimating the snake tree of life.

Taxonomic descriptions
Subfamily Ahaetuliinae subfam. nov. urn:lsid:zoobank.org:act: 22C47597-1DEF-
45A4-ABAC-11C4911557AD

Type genus: Ahaetulla Link [118]
Content: Four genera containing 56 species. Ahaetulla (8 species), Chrysopelea (5 species),

Dendrelaphis (41 species), and Dryophiops (2 species).
Etymology: From the Sri Lankan language Sinhala, ahaetulla/ahata gulla/as gulla, meaning

“eye plucker” or “eye picker” for belief that they pluck out the eyes of humans as accounted by
the Portuguese traveler João Ribeiro in 1685 (as cited in [119]).

Diagnosis and definition: Snakes of this subfamily are arboreal and are diagnosed by
keeled ventral and subcaudal scales (laterally notched in some species), and enlarged posterior
grooved fangs lacking in some Dendrelaphis. Support for monophyly of this clade is very strong
(SHL = 100) as also reported in Pyron et al [15]. Ahaetuliinae is further split into two mono-
phyletic groups: 1) Dryophiops and Ahaetulla (SHL = 96) and; 2) Chrysopelea and Dendrelaphis
(SHL = 100). Diagnostic characteristics of the first group include, elongate and laterally-
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compressed bodies, elongate heads, 15 smooth mid-body dorsal scale rows, and large eyes with
horizontal pupils and well-developed canthus rostralis outfitting these snakes with binocular
vision [120]. Features diagnostic of the second group include, slender body, rectangular slightly
compressed heads, large eyes with round pupils, 13–17 smooth to weakly-keeled mid-body
dorsal scale rows. Chrysopelea are celebrated for their unique gliding behavior, whereas Den-
drelaphis are capable of jumping [121].

Sister taxon: Previously placed within Colubrinae, Ahaetuliinae forms a strong (SHL = 95)
sister relationship with Colubrinae, also weakly supported by Pyron et al [15].

Distribution:Members of this subfamily inhabit various habitats, but are mostly associated
with forests distributed from Pakistan, Sri Lanka and India, north to Nepal and Bangladesh,
eastwards all throughout Southeast Asia to southern China, Philippines, Papua New Guinea,
and northeast Australia.

Remarks: The name Ahaetulla has suffered from a tumultuous nomenclatural history
[122]. In addition, members of these genera have historically been grouped with unrelated taxa
based on absence or presence of hypapophyses [123,124].

GenusMopanveldophis gen. nov. urn:lsid:zoobank.org:act: 3B0CB6A0-1EEC-4512-
9E77-B105C22ACABB

Type species:Mopanveldophis zebrinus.
Content: The genus is monotypic containing only the species,Mopanveldophis zebrinus.
Etymology: The generic nomenMopanveldophis is derived from the word “mopanveld”,

the name of the type of habitat the specimens were found in, and the Greek adjective ophis,
meaning “snake”. This name refers to veld habitat distributed in Southern Africa, from the
Afrikaans word “field”, that is dominated by the mopane tree, Colophospermum mopane, from
the Sechuana word “mopani”.

Diagnosis and definition: As described in Broadley and Schätti [125] and Bauer et al [126],
a snake with pale grey dorsal coloration and irregular broad, dark crossbands becoming faint
in coloration posteriorly and on tail. Ventrals are uniform white with irregular lateral black
spots, and subcaudals are also white with lateral grey stippling. Dorsal portion of head is uni-
form grey-brown with yellowish orange snout and labials, and dark markings on supralabials
2–6. Dorsal scales with two apical pits, 23 scale rows near neck, 23 at midbody, and 17–19 ante-
rior to the vent. Approximately 195 ventrals, 90 paired subcaudals, and divided anal scute.
Nine supralabials with the fifth and sixth entering the orbit, one anterior subocular smaller
than the loreal shield and situated above the fourth and anterior part of the fifth supralabials,
and two preoculars and two postoculars. Also, diagnosed by a single large lower anterior tem-
poral shield above the 7th and 8th supralabials, two upper anterior temporal, three posterior
temporal, and maxillary with 17 + 2 teeth separated by a diastema. Its banded pattern was sug-
gested as Batesian mimicry of the sympatric spitting cobra, Naja nigricollis. Bamanophis differs
by having 25–27 scale rows near neck, 29–33 at midbody, and 17 near vent, 229–265 ventral
scale and 75–95 paired subcaudals, lacking an anterior subocular, having one posterior subocu-
lar, 10 supralabials, and 15–19 maxillary teeth with diastema [105].

Sister taxa:M. zebrinus is basal lineage to a clade including Bamanophis +Macroprotodon,
placed within a larger clade of Old World racers [15,40,107,108].

Distribution: Currently recognized as endemic to northern Namibia, Africa [127], but its
range may extend into Angola, Africa [126].

Remarks: First described from a dead specimen collected in 1991 [125], the species is cur-
rently known from only three specimens [126]. Upon its description it was assigned to the
genus Coluber, presumably on basis of similar morphology, but then switched to Hemerophis
[24,106] with no published reasoning. Schätti and Trape [105] provide an account detailing the
differences of Bamanophis to other racer species, includingM. zebrinus.
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Conclusions
At less than half (46.33%) of the total snake diversity sampled, we provide the most compre-
hensive sampling effort to date, but remain far from fully estimating the snake tree of life. This
sampling effort pales in comparison to larger clades such as birds that have approximately 70%
of more than 10,000 species sequenced [11]. Although our results provide resolution for several
higher-level nodes, these nodes may continue to prove problematic. Collectively, future analy-
ses should target or pay special attention to the following ten issues: 1) resolving topology of
Scolecophidia; 2) resolving topology of Typhlopinae; 3) resolving paraphyly of Cylindrophiidae
with Anomochilidae; 4) placement of Xenophidiidae and Bolyeridae; 5) resolving topology of
Booidea; 6) placement of Xenodermatidae; 7) placement of Pareatidae; 8) placement of Homa-
lopsidae; 9) resolving topology of Lamprophiidae + Elapidae; and 10) resolving topology of
Colubridae. Clearly, greater taxon and gene sampling will help better formulate a picture of
snake relationships and resolve ambiguous nodes in the tree [111,117]. Taxa most lacking in
representation are fossorial clades, mainly Afrotyphlopinae, Anomalepididae, Aparallactinae,
Calamariinae, Cylindrophiidae, Epictinae, Gerrhopilidae, Madatyphlopinae, Uropeltidae, and
Xenodermatidae at below 30% (Table 1). Similar deficiencies occur at the genus level, but are
not listed here. The genes most frequently sampled for snakes are 12S, 16S, c-mos, cyt-b, and
ND4, and should be considered as candidate genes in future studies. Sampling more nuclear
genes will also be crucial in resolving deeper nodes [23]. Where coalescence-based methods are
practiced, researchers should place emphasis on short and weakly supported branches since
they are more prone to incomplete lineage sorting and thus, conflict most often with branches
on species-trees [8]. This phylogeny has major implications on snake evolution such as on the
evolution of gape size and the evolution of venom-delivery systems [44,46,85], and serves as a
resource for formulating future studies on snake phylogenetics.
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S1 Fig. Abridged phylogeny displaying higher-level relationships with all rogue taxa and
incertae sedis species eliminated.Maximum-likelihood phylogenetic estimate based on 10
concatenated genes. Tips represent families and sub-families. Commonly recognized higher-
level clades are labeled in all caps and bold. Node values represent SHL support values. Skeleton
of the species tree is displayed on the left, colored and labeled as they appear in Fig 1.
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S1 File. Data supermatrix comprising 1745 taxa representing 1652 snake species and 7 out-
group taxa, and 9523 base pairs from 10 loci.
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S2 File. Newick format maximum-likelihood phylogeny for 1745 taxa representing 1652
snake species and 7 outgroup taxa displayed in Figs 2–10.
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S1 Table. List of GenBank accession numbers for 7 outgroup taxa and 1615 snake species.
Two sequences were deleted during preliminary tree searches and 21 were identified as rogue
taxa and pruned from the dataset leaving 1592 snake species from GenBank in the tree. Names
represent species names as listed on The Reptile Database (http://www.reptile-database.org/)
as of October 2015. Refer to S4 Table for list of rogue taxa. Taxa deleted during preliminary
tree searches are highlighted in red, rogue taxa are highlighted in yellow, and sequences that
were deleted because they were identical to other sequences are highlighted in green.
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S2 Table. List of taxa, institutional voucher numbers, and GenBank accession numbers for
tissue samples extracted and sequenced in this study. Tissue samples for Boiga siamensis
FMNH267726, Chrysopelea ornata LSUHC7158, and Psammodynastes pictus FMNH267940
were represented by clear chromatograms, but placed poorly in preliminary phylogenetic trees,
so they were not included in the final data matrix. Tropidolaemus subannulatus KU327425 was
identified as a rogue taxon by RogueNaRok and was pruned from the dataset and thus, is not
represented in the phylogeny.
(DOCX)

S3 Table. Six loci, gene type, gene length, primer name, PCR annealing temperature and
primer source.
(DOCX)

S4 Table. Rogue taxa as identified by RogueNaRok Web-Server (http://rnr.h-its.org/
submit). Each taxon is associated with a raw improvement score (R.I.S.), which represents the
fraction of improvement in bootstrap support values throughout the tree when the selected
taxon is pruned and all rogue taxa above it are also pruned. We performed one run and chose
to sacrifice relatively lower node support values to maximize the number of taxa represented in
the phylogeny. Thus we elected to only prune taxa with R.I.S. greater than 0.8, resulting in a
total of 22 pruned taxa (highlighted in bold).
(DOCX)
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