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Abstract: Trauma-induced coagulopathy (TIC) is a recently described condition which traditionally 
has been diagnosed by the common coagulation tests (CCTs) such as prothrombin time/international 
normalized ratio (PT/INR), activated partial thromboplastin time (aPTT), platelet count, and fibrinogen 
levels. The varying sensitivity and specificity of these CCTs have led trauma coagulation researchers 
and clinicians to use Viscoelastic Tests (VET) such as Thromboelastography (TEG) to provide Targeted Thromboelasto-
graphic Hemostatic and Adjunctive Therapy (TTHAT) in a goal directed fashion to those trauma patients in need of he-
mostatic resuscitation. This review describes the utility of VETs, in particular, TEG, to provide TTHAT in trauma and ac-
quired non-trauma-induced coagulopathy. 
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1. TRAUMA INDUCED COAGULOPATHY AND AC-
QUIRED COAGULOPATHY 

1.1. Introduction 

Coagulopathy is found in approximately 25% of severely 
injured trauma patients on admission to the emergency de-
partment (ED). Patients with Trauma-Induced Coagulopathy 
(TIC) are at a higher risk for increased transfusion require-
ments and death compared to those without TIC [1-5]. The 
etiology of TIC has been a matter of speculation. Trauma 
induced disturbances of compensatory activation of activated 
protein C (APC), hypofibrinogenemia, Tissue Factor (TF) 
release, coagulation factor consumption and dilution, platelet 
dysfunction, and fibrinolysis have been cited as possible 
causes of TIC [1-9]. In addition, it has been argued by Gando 
and others that TIC is a variant of disseminated intravascular 
coagulation [10, 11]. Most recently, Dobson et al. have de-
scribed the etiology of TIC in relation to four paradigms of 
hemostatic derangement which are: 1) the DIC/ consump-
tion/ fibrinolysis hypothesis 2) the activated protein-C hy-
pothesis 3) the glycocalyx hypothesis and 4) the “fibrinogen-
centric” hypothesis. These hypotheses are not mutually ex-
clusive. It is necessary to refer to this theoretical aspect of 
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TIC in order to understand the significance of VETs as an ex 
vivo manifestation of the fine balance between anti-
coagulant, prothrombotic, fibrinolytic pathways, endothe-
lium, and circulating platelets whose function is uniquely 
manifest with the VETs as opposed to the single point indi-
cations of clot potential as measured by the prothrombin time 
and activated partial thromboplastin time [12]. 

As an understanding of TIC increases, the limitations of 
conventional coagulation tests (CCTs) such as prothrombin 
time/international normalized ratio (PT/INR), activated par-
tial thromboplastin time (aPTT), platelet counts, and fibrino-
gen levels have become more evident. These tests were not 
designed for assessment of hemostatic integrity in the preop-
erative period and they have been shown to lack accuracy in 
trauma settings. This has led to increased investigations into 
point-of-care (POC) viscoelastic tests (VETs) [13-18]. Re-
cently, it has been suggested that Thromboelastography 
(TEG) may replace CCTs for the guidance of Blood Compo-
nent Therapy (BCT) in the trauma population [19]. In addi-
tion, the interest of the POC VETs in TIC has led to their use 
to guide BCT in acquired coagulopathy [13-19].  

CCTs are based on the coagulation cascade model of he-
mostasis and provide only a static evaluation of clot forma-
tion [18, 19]. The cell-based theory of hemostasis, unlike the 
coagulation cascade concept of hemostasis, describes the 
mechanism of thrombus formation as successive steps of 
initiation, amplification, propagation, and termination 
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through fibrinolysis. These steps, which reflect the cell-based 
theory of hemostasis, are best delineated by POC testing, 
which includes VETs [18-20]. 

CCTs’ inconsistent sensitivities and specificities not only 
fail to identify deficiencies in coagulation factors, fibrinogen 
and fibrin, but also do not describe platelet function and fi-
brinolysis in the setting of TIC. CCTs also take a much 
longer time to perform and provide less pertinent data about 
coagulopathy when compared to VETs [14-19]. VETs pro-
vide a rapid and accurate assessment of clot formation, sta-
bility, and firmness, which allows for individualized treat-
ment of patients with TIC [19-23].  

Guidance of BCT and the administration of adjunct he-
mostatic agents (AHA) for trauma patients has taken on new 
importance given the large number of elderly trauma patients 
who are taking some form of anticoagulant prior to trauma. 
The increased use of warfarin and antiplatelet agents among 
the elderly will result in more patients involved in trauma 
requiring some form of Targeted Thromboelastographic 
Hemostatic and Adjunctive Therapy (TTHAT) for trauma 
resuscitation [24-30]. 

Finally, the emergence of new oral direct and indirect 
thrombin inhibitors (dabigatran, rivaroxaban, apixaban, 
edoxaban) is promising and more patients are now on these 
agents. However, the safety of these drugs in the trauma pa-
tient remains a matter of continued scrutiny [19, 31-33].  

In this setting of novel oral anti-coagulants (NOAC) and 
insensitive and nonspecific CCTs, TEG is a unique tool that 
can assist in guiding reversal of anticoagulants and hemo-
static agents for patients who have significant hemorrhage 
related to trauma while on anticoagulants [19, 22, 32, 34-36].  

We conducted a review using computer database litera-
ture searches which was performed using the indexed online 
database MEDLINE/ PubMed. Lists of cited literature within 
relevant articles were also screened. The goal of the biblio-
graphic methodology of this review was to identify prospec-
tive randomized controlled trials (RCTs) and non-RCTs, 
existing systematic reviews and guidelines. In addition, rele-
vant, case-control studies, observational studies, and case 
reports were considered. This paper focuses on the TEG 
which is used primarily in the United States. 

1.2. History 

In 1948, Hellmut Hartert illustrated hemostatic function 
for whole blood samples using TEG [37, 38]. TEG was then 
used to guide BCT during the Vietnam War [39]. In the 
1980s, BCT for liver transplant surgery was made more effi-
cient by TEG [40].  

Subsequently, a similar reduction in blood component 
use was described for cardiac surgery patients, which con-
firmed the TEG-guided blood product reduction of the liver 
transplant a decade earlier [41, 42]. By the late 1990s, TEG 
had also been used to provide targeted BCT in patients who 
require resuscitation in trauma [43].  

Evidence from European and United States combat and 
civilian data demonstrated the utility of VETs in providing 
targeted BCT in a goal directed fashion in the military as 
well as the civilian population [14, 19, 44-48]. 

Subsequent studies have confirmed the value of VETs 
in targeting BCT for trauma patients who require blood 
component resuscitation as well as adjunct hemostatic 
agent resuscitation with Prothrombin Complex Concentrate 
(PCC), fibrinogen concentrate, activated recombinant Fac-
tor VIIa (rFVIIa), and the antifibrinolytic tranexamic acid 
(TXA) [49-59]. 

1.3. VETs’ Methodology and Interpretation of Results 

TEG demonstrates hemostatic integrity and measures the 
ability of whole blood samples to form a clot. This is per-
formed by placing an aliquot of 0.36 mL of whole blood into 
a cup that has been pre-warmed to 37°C. A pin, attached by a 
wire to a transducer, is suspended in the sample of whole 
blood. The cup rotates around the pin in the TEG autoana-
lyzer at an angle of 4.45 degrees every 10 seconds. As the 
clot forms, the pin and the cup are joined by the formation of 
the clot. This causes the pin and the cup to rotate together. 
The subsequent change in tension mediated by the pin at-
tached to the cup is detected by a transducer. A graphical 
output is then plotted as change in strength, measured in 
millimeters, on the y-axis over time, measured in minutes, on 
the x-axis [22, 46, 47] (Fig. 1). 

 

 

Fig. (1). Schematic of TEG with 0.36 mL aliquot of whole blood in 
cup with pin attached to torsion wire measuring pin synchronization 
with the cup, reflecting the stages of clot formation. 

TEG provides continuous monitoring of the clotting 
process from its steps of initiation, amplification, propaga-
tion, and termination through fibrinolysis, generating pa-
rameters and producing values related to each step [22, 44, 
46, 47, 60].  

The “R” value of TEG represents the first step of clot 
formation. The “R” is a measure of “reaction time” denoting 
the amount of time it takes the blood to begin forming a clot 
and to move the pin 2 mm on the “y” axis. It indicates the 
initiation phase of enzymatic clotting factor activation, also 
known as the fluid phase of coagulation, which correlates 
with INR and PTT. The “K” represents the time to move the 
pin to 20 mm on the y-axis. The slope of the curve caused by 
that movement to 20 mm on the y-axis is called the “alpha 
(�)-angle.” A software system calculates this angle between 
the slope and the aforementioned axis of time. It has been 
noted that the TEG system calculates, by default, the “�-
angle” as the angle formed by the tangential line to the curve 
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starting from the split point of the trace [61]. “K” and “�-
angle” are interpreted correlatively and reflect clot kinetics 
or the rate of clot formation. Both the “K” and the “�-angle” 
denote the rate at which the clot strengthens and are most 
representative of thrombin cleaving available fibrinogen into 
fibrin. The maximum height of the curve is called the Maxi-
mum Amplitude (MA), representing maximum clot strength, 
which is the result of the maximal fibrin-platelet interaction. 
[44, 46]. The final stage, “termination,” begins with the fibri-
nolytic induced dissolution of the fibrin-platelet bond between 
the pin and the cup. This dissolution is manifested by the trac-
ing returning to baseline. The percentage return to baseline of 
the total MA at 30 minutes after the MA was reached is de-
scribed as the lysis at 30 minutes (LY30) [22, 46, 47, 60, 62]. 
Although this paper concerns itself with the application of 
TEG to guide blood component, pharmacologic, and hemo-
static adjuncts in traumatic and acquired coagulopathy, it is 
important to note that the rotational thromboelastometry (RO-
TEM), which is more frequently used in Europe, possesses a 
similar ability to predict BCT use in patients with traumatic 
and acquired coagulopathy [63]. The principles of ROTEM 
are the same as those of the TEG except that the pin is sup-
ported by a ball-bearing and rotates through an angle 4.75 
degrees. The subsequent curve is similar to the TEG curve, 
although the terminology is different [64-66]. The results of 
the TEG/ ROTEM systems vary depending on the activation 
mode or assay (Fig. 2; Table 1). 

 

 
Fig. (2). Basic TEG/ROTEM parameters at 30 minutes after 
MA/MCF.  TEG in black and ROTEM in red. 

The standard-kaolin TEG reflects partial platelet function 
when only 5% of thrombin is produced in the clot. Complete 
platelet function can be studied using TEG via the method of 
modified thromboelastography with platelet mapping (TEG/ 
PM), which measures the ability of the platelet agonists 
thromboxane A2 to activate arachidonic acid (AA) and 
adenosine diphosphate (ADP) to stimulate a fibrin-platelet 
clot independent of thrombin [68] (Fig. 3). The recent stan-
dard protocol for those who use the ROTEM is to add multi-
ple (multiplate) electrode aggregometry (MEA) to test for 
platelet function [6]. 

Finally, functional fibrinogen can be measured using a 
glycoprotein IIb/IIIa inhibitor, abciximab. This allows as-

sessment of clot strength under platelet inhibition and the 
calculation of the percentage contribution of fibrinogen and 
platelets to the clot in patients with traumatic coagulopathy 
[69].  

The TEG Functional Fibrinogen assay measures the fi-
brinogen that contributes to the structure and strength of the 
clot. Platelet function is blocked by an inhibitor, abciximab, 
and the resulting maximal amplitude of functional fibrinogen 
(MAFF) reflects the fibrin component of the clot [69] (Fig. 
4). The ROTEM has an equivalent test to MAFF called FIB-
TEM which uses cytochalsin D to inhibit platelets rather than 
abciximab [70, 71]. Darlington and colleagues showed corre-
lation of platelet count, � angle and Clauss fibrinogen con-
centration [72]. Harr and colleagues showed that MA was 
correlated significantly to both platelet count and, Clauss 
fibrinogen concentration [69]. The Functional Fibrinogen 
assay is needed to identify whether treatment with fibrinogen 
or platelets is needed when a low value of MA is observed 
with standard kaolin TEG.  

1.4. Protocols for TEG Targeted Blood Component And 
Hemostatic Therapy in Multiple Trauma 

On the TEG tracing, prolongation of “R” reflects coagu-
lation factor deficiency, and it indicates the need for admini-
stration of fresh frozen plasma (FFP) and/or PCC. A long 
“K” and a low or flat �-angle correspond to a deficiency in 
fibrinogen and/or fibrin production or function. It indicates 
the need for treatment with cryoprecipitate or fibrinogen 
concentrate. A narrow MA reflects a lack of clot formation 
mediated by the fibrin-platelet mesh. It demonstrates the 
need for treatment with platelets. Finally, an increase in 
LY30% reflects fibrinolysis, which is treated with an antifi-
brinolytic agent [19, 22, 43-48, 54, 73, 74]. The relative con-
tribution of fibrinogen and platelets as related to the � angle 
has been recently delineated by a number of publications. 
For example, Solomon et al. state that the � angle reflects 
the combined effects of platelets and fibrinogen to clot for-
mation [61]. Ellis and colleagues described in 2007 that the 
� angle is a reflection of the speed with which clot strength 
is increasing and the MA is the combined contribution of 
platelets and fibrin to clot strength [75] (Fig. 5, Table 2). 
Similar algorithms with different nomenclature exist for 
ROTEM. The ROTEM is more commonly used in Europe 
and the TEG is more frequently utilized in the United States. 
In the United States as opposed to Europe, the TEG without 
platelet mapping and without functional fibrinogen is the 
most common VET used to determine POC clot integrity. As 
a result, published guidelines in the United States utilize the 
� angle as a temporary bedside surrogate for evaluating the 
need for fibrinogen replacement [19, 22, 46-48, 70, 71, 76-
78]. Solomon et al. have most recently clarified the best test 
for assessing the need for fibrinogen and platelets. When 
available, the most accurate initial assessment for plasma 
fibrinogen contribution to clot strength would be the maxi-
mum amplitude functional fibrinogen (MAFF) on the TEG 
or the FIBTEM maximum clot firmness (MCF) on the RO-
TEM when combined with some form of platelet functional-
ity [61, 79]. 
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Table 1. Correlative normal parameters of the TEG and ROTEM with coagulation function measured for each parameter [67]. 

Parameter TEG® ROTEM® 

Clotting time (2 mm amplitude) 
R (reaction time) 

Normal (citrate/ kaolin) = 3-8 min 

CT (clotting time) 
Normal (EXTEM) = 42-74 s 

Normal (EXTEM) = 137-246 s 

Clot formation/ kinetics  
(20 mm amplitude) 

K (kinetics) 
Normal 

(citrate/kaolin) = 1-3 min 

CFT (clot formation time) 
Normal (EXTEM) = 46-148 s 

Normal (INTEM) 40-100 s 

Clot strengthening  
(angle of clot formation) 

Alpha angle (slope between R and K 
points) 
Normal 

(citrate/kaolin) = 55-78º 

Alpha angle (slope of tangent at 2 mm amplitude) 
Normal (EXTEM) = 63-81º 
Normal (INTEM) = 71-82º 

Amplitude/ maximal firmness 
MA (maximal amplitude) 

Normal (citrate/kaolin) = 51-69 mm 

MCF (maximum clot firmness) 
Normal (EXTEM) = 49-71 mm 
Normal (INTEM) = 52-72 mm 
Normal (FIBTEM) = 9-25 mm 

A5, A10, etc.-amplitudes at dedicated time points predicting the final 
clot firmness 

Lysis LY30, CL30, CL60, CL LI30, LI60, ML 

 

Test Activator/ Inhibitor Description 

TEG® Tests   

Kaolin TEG Kaolin Test of “intrinsic pathway” 

RapidTEG Kaolin + tissue factor Test of both “intrinsic and extrinsic pathways” 

Functional fibrinogen Kaolin + GpIIb/ IIIa inhibition Test of fibrin net polymerization after platelet inhibition 

ROTEM® Tests   

EXTEM Tissue factor Test of “extrinsic pathway” - fastest clot analysis 

INTEM Elegiac acid Test of “intrinsic pathway” 

FIBTEM Tissue factor + platelet inhibitor Test of fibrin net polymerization after inactivation of platelets 

APTEM Tissue factor + aprotinin Test of fibrinolysis 

 
Human clinical experience has shown that quality assur-

ance and local standardization variability is a concern [73]. 
For example, clinical correlation with industry standardized 
values, such as a higher LY30% of 7.5% for kaolin TEG, is 
associated with more morbidity as well as in those patients 
with an LY30% of greater than 3% with RapidTEG [19, 74] 
(Fig. 5, Table 2).  

2. APPLICATION OF VETs IN TRAUMA PATIENTS 

2.1. Primary TIC 

Multiple studies have been conducted on VET-guided 
resuscitation of trauma patients using goal directed BCT 
[22, 47-54, 74]. VETs, including standard kaolin TEG and 
RapidTEG, can detect early changes in coagulation and 
may be used to predict which patients will progress to 
hemorrhagic shock or will need a massive transfusion (de-
fined as 10 units of packed red blood cells [PRBC] within 
6-24 hours) [47, 54, 80, 81]. This proves to be highly impor-

tant when initiating early BCT on trauma patients in guiding 
the proper ratios of PRBC, FFP, platelets, cryoprecipitate, 
and AHA to these patients.  

2.2. Damage Control Resuscitation (DCR) Guided By 
TEG For Multiple Trauma 

2.1.1. Packed Red Blood Cells (PRBC)/Fresh Frozen 
Plasma 

Experience from the Iraq War was published in May 
2005 at an international expert conference at the United 
States Army Institute of Surgical Research. This research 
proposed the concept of Damage Control Resuscitation 
(DCR) for the management of patients with massive hemor-
rhage using a 1:1:1 ratio of PRBC to platelets to FFP [82-
84]. This 1:1:1 ratio was chosen based on how closely this 
combination resembles whole blood [81, 83, 84]. However, 
the optimum ratio of blood components remains an object of 
continued study. Large clinical trials have been published 
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and are underway to determine the optimal physiologic ratios 
of blood products that can be given to the trauma population 
[85, 86]. The Updated European Guidelines for the manage-
ment of bleeding and coagulopathy in major trauma are 
quoted verbatim for clarity: “the initial administration of 
plasma (fresh frozen plasma (FFP) or pathogen-inactivated 
plasma) (Grade 1B) or fibrinogen (Grade 1C) in patients 
with massive bleeding. If further plasma is administered, we 
suggest an optimal plasma: red blood cell ratio of at least 
1:2. (Grade 2C) We recommend that plasma transfusion be 
avoided in patients without substantial bleeding (Grade 1B).” 
[54].  
 

 
Fig. (4). The standard-kaolin TEG provides the baseline maximum 
amplitude (MA) which is compared to the MA of a second cup that 
contains abciximab. This results in the assessment of clot strength 
under platelet inhibition, which is represented by the green MA. 

2.2.2. VETs Guidance of Blood Component Therapy and 
Procoagulant Hemostatic Agents 

VETs may be used to anticipate the need for BCT or pro-
coagulant hemostatic agents such as PCC, rFVIIa, fibrinogen 
concentrate, and TXA in hypocoagulable patients with high 
Injury Severity Scores (ISS) and coagulopathic VET trac-
ings. It has been proposed that the coagulopathy of trauma 

reflected by VETs finds its etiology in part due to progres-
sive, catecholamine-induced endothelial activation, which is 
reflected by the severity of the trauma as manifested by the 
ISS [11]. In moderately traumatized patients, there is a sub-
set of hypercoagulable patients that can be identified by TEG 
[11]. These patients, who may potentially benefit from deep 
vein thrombosis (DVT) prophylaxis, can be identified by 
TEG [87, 88].  

Targeted Thromboelastographic Hemostatic and Adjunc-
tive Therapy (TTHAT) can provide BCT and AHA in an 
individualized, adaptable, and protocol-driven fashion which 
responds to the immediate needs of the bleeding trauma pa-
tient. This protocolized therapy minimizes the overuse and 
waste of blood products and AHA, instead of a “blindly” 
fixed ratio therapy [19, 22, 44-54, 62, 81, 89, 90].  

The limited use of blood components and AHA is impor-
tant because excessive use of these products can lead to 
complications such as an venous thromboembolism (VTE), 
Transfusion Related Acute Lung Injury (TRALI), Transfu-
sion Associated Cardiac Overload (TACO), acute respiratory 
distress syndrome (ARDS), infections, allergic reactions, and 
thrombotic complications [54, 91-99].  

2.2.3. Platelets 

2.2.3.1. Primary Platelet Dysfunction in Trauma As De-
termined By the Modified TEG With Platelet Mapping 

The etiology of platelet dysfunction in TIC has recently 
been established [6, 8]. TIC has been found to be a conse-
quence of severe hypotensive multiple traumas and/or isolated 
Traumatic Brain Injury (TBI), and is correlated with increased 
rates of injury severity. In hypotensive multiple trauma pa-
tients without TBI, base deficit and platelet dysfunction as 
represented by TEG/PM, predict the presence of coagulopathy 
and the need for blood component transfusion [8]. However, 
in the isolated TBI patient, TIC is not dependent on tissue hy-
poperfusion as in patients with multiple trauma without TBI 
[100]. In addition, the recently described thrombocytopathy of 
TBI correlates with a greater severity as measured by the 
Glasgow Coma Scale (GCS) [6, 8, 101-107].  

 
Fig. (3). Cup 1 is a standard-kaolin TEG that represents baseline clotting. Heparin is added to cups 2-4 in order to neutralize thrombin, while 
factor XIIIa and reptilase stimulate isolated fibrinogen formation so that the ADP and AA receptors in cups 3 and 4 platelet can be activated 
by ADP and AA respectively to create an isolated fibrinogen-platelet clot. 
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Therefore, different types of injury such as hypotensive 
non-traumatic brain injury versus isolated non-hypotensive 
TBI may require different strategies of blood component and 
adjunctive hemostatic resuscitation. This requires POC test-
ing devices such as TEG/PM that can provide information on 
the individual trauma patient’s platelet function [8]. 

Isolated TBI causes intracerebral, epidural, and subdural 
hemorrhage leading to morbidity. The progression of cere-
bral contusions reflects the severity of TBI. This progression 
is known as hemorrhagic progression of a contusion (HPC) 
after TBI and can be explained by two mechanisms. The first 
mechanism is the coagulopathy caused by immediate and 
delayed bleeding from fractured microvessels during the 
initial injury. The second mechanism proposes that the initial 
microvascular injury in the penumbra does not cause a frac-
ture of vessels, but results in a series of maladaptive molecu-
lar events, causing further structural damage of the mi-
crovasculature. The differentiation between these mecha-
nisms is important because the therapies counteract each 
other. For the coagulopathy associated with initial injury 
caused by microvasculature fracture, the goal should be to 
correct coagulopathy. For subsequent brain hemorrhage 
caused by maladaptive molecular events at the penumbra, the 
therapy should be aimed at reversing the maladaptive events 
in the microcirculation [107-110]. The coagulopathy could 
be a combination of both hypo- and hypercoagulative states, 

potentially regulated by the extent of injury, eventually re-
sulting in life threatening ischemic and/or hemorrhagic 
events [106, 108-110].  

Intracerebral hemorrhages, either spontaneous (sICH) or 
traumatic (tICH), often expand over time. An association 
between hemorrhage expansion and clinical outcomes has 
been described for sICH. The role of hemostatic agents in the 
treatment of patients with ICH, whether spontaneous or as-
sociated with trauma, is a matter of current basic scientific 
and clinical research [108, 109, 111, 112]. Reduced platelet 
activity correlates with early hemorrhage growth and re-
duced survival for patients with sICH. Increasing platelet 
activity through platelet transfusion reduces hemorrhage 
volume growth in those patients with sICH [111, 112]. 
Treatment with platelets improves mortality in this group of 
patients with sICH [112]. A similar primary platelet dysfunc-
tion has been described in the TBI animal model as well as 
in the human with TBI induced ICH and is an area of vigor-
ous and ongoing research [6, 8, 102-107].  

Guided platelet transfusion in patients with ICH due to 
TBI is of importance because the brain’s microcirculatory 
penumbra is more sensitive than the extra cerebral microcir-
culation to thrombosis associated with trauma. This further 
emphasizes the importance of a targeted approach to the ad-
ministration of procoagulants to patients with TBI. Because 
of the competing interests of the TBI brain’s microcircula-

Table 2. Fibrinogen concentrate may be substituted for cryoprecipitate and the use of rFVIIa is controversial and, is therefore, not 
included. *MAFF/FIBTEM MCF are more accurate guides for fibrinogen supplementation, however, the availability of 
MAFF/FIBTEM MCF is not universal [61, 79]. 

Recommendations Based on Abnormal TEG Tracing 1,7 

Potential Therapeutic Intervention Significant Finding on “Standard” TEG Tracing 

Plasma and/or prothrombin complex concentrate Prolonged R-value (>7 minutes) 

Cryoprecipitate/fibrinogen concentrate Low or flat � angle (<45), MAFF* 

Platelets+/Cryoprecipitate/fibrinogen concentrate Narrow MA (<48 mm) 

Anti-fibrinolytic agent Increased LY30 (>7.5%)* 

 

 
Fig. (5). Normal TEG tracing (in black) resembles a wide flat (non-functional) shovel with a short handle. The superimposed "shovel" (in 
red) demonstrates a tracing with a prolonged R, flat �-angle, small MA and increased LY30%, indicative of a systemic coagulopathy with 
fibrinolysis. *Some recommend LY30% >3% as threshold for anti-fibrinolytic agent [19,74]. 
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tory penumbra, it seems rational to guide platelet transfusion 
based on reliable and reproducible tests for platelet dysfunc-
tion. Since there is evidence as mentioned above of reduced 
platelet activity that correlates with early hemorrhage growth 
and reduced survival, and that increasing platelet activity 
through platelet transfusion reduces hemorrhage volume 
growth, it seems reasonable that future clinical research will 
confirm the utility of the TEG/PM to predict platelet dys-
function for those patients who have TBI with and without 
associated antiplatelet therapy [101, 103-107, 110].  

2.2.4. Platelet Transfusion Guidelines Not Dependent On 
Platelet Function Testing 

The updated 2013 European Guidelines recommend the 
administration of platelets for counts below 100,000 in pa-
tients with multiple trauma, massive bleeding, and TBI by 
treatment with a single donor apheresis pack (SDAP) [54]. 
Normal platelet counts are present in the majority of trauma 
patients. The platelet count does not identify platelet dys-
function caused by severe trauma or pre-trauma antiplatelet 
medication use and therefore is an insufficient marker for 
platelet transfusion requirements in trauma [8, 102-106]. 
Improved survival rate among resuscitated trauma patients 
receiving a high platelet to PRBC ratio has been reported in 
retrospective and observational studies. These studies may 
have been influenced by confounding factors such as survi-
vor bias. The optimal ratio of platelet to PRBC transfusion 
remains elusive [113-121]. TEG/PM may help guide the 
traumatologist in determining those patients who need plate-
lets in severe trauma [8, 107]. Recently, the Pragmatic, Ran-
domized Optimal Platelet and Plasma Ratios (PROPPR) trial 
by Holcomb et al. proposed the concept of “platelet first” 
strategy after the second round of PRBC/platelets/FFP in a 
fixed ratio 1:1:1 damage control resuscitation for hemor-
rhagic shock. Forty-five percent of the PROPPR patients 
received massive transfusion using this strategy. The ration-
ale for this “platelet first” strategy may be in part due to the 
recently recognized platelet dysfunction as an early manifes-
tation of TIC and the observed increased platelet: RBC ratios 
associated with the reduction in death by exsanguination and 
the improved time to hemostasis in the 1:1:1 group in the 
PROPPR trial [6, 8, 86, 122].  

In order to properly gauge the need for platelet admini-
stration there also should be an assessment of fibrinogen 
functionality that is a assayed by the MAFF or FIBTEM 
MCF as noted above in order to demonstrate the relative 
contributions of platelet and fibrin/fibrinogen to clot strength 
[61, 79]. 

2.2.5. Cryoprecipitate 

Cryoprecipitate has been recommended for significant 
bleeding that is accompanied by thromboelastographic signs 
of functional fibrinogen deficit or a plasma fibrinogen level 
of less than 1.5-2.0 g/L. The dose of cryoprecipitate is 50 
mg/kg or approximately 15-20 single donor units. Repeat 
doses may be guided by VETs monitoring and laboratory 
assessment of fibrinogen levels [49, 54, 64]. Such monitor-
ing by VETs and Clauss of determining fibrinogen levels is a 
matter of intense clinical research. We have described above 
that, when available, the MAFF/FIBTEM MCF are the most 
accurate assays for determining the need of fibrinogen re-

placement. It has been shown that the administration of 
cryoprecipitate and TXA may improve the survival in seri-
ously injured patients requiring transfusion. The effect of 
cryoprecipitate appears to be additive to that of TXA, sug-
gesting that the repletion of fibrinogen may be as important 
as preventing its degradation in this setting [123].  

2.3. Importance of Early Monitoring of TIC 

Early monitoring of TIC by POC VETs and CCTs is nec-
essary to identify specific abnormalities of initiation, ampli-
fication, propagation, and termination by fibrinolysis in this 
group of patients with severe hemorrhage [124, 125]. The 
early coagulopathy of trauma that occurs in the hypoperfused 
patient manifests with an arterial base deficit greater than 6 
mEq/L [5, 7, 126]. Such early diagnosis of TIC leads to early 
intervention with improvement of CCTs with subsequent 
reduction in the need for PRBC, FFP, and platelets [14, 19, 
22, 23, 44-54, 123-131]. Early diagnosis of TIC and the ad-
ministration of goal directed or predefined ratios of blood 
products leads to more efficient use of blood components, 
AHA such as fibrinogen concentrate and PCC with less 
multi-organ failure [50, 81, 89, 132, 133].  

3. THE UTILITY OF TEG IN GUIDING BCT FOR 
PATIENTS ON ANTICOAGULANTS 

3.1. TEG in NSAIDS and Antiplatelet Drugs 

Platelet dysfunction is a much more common phenome-
non than originally believed in the trauma population [6, 8, 
102, 103, 105, 107]. A significant percentage of patients with 
sICH have reduced platelet activity without a history of 
antiplatelet agent use [134]. Inhibition of platelet function 
has also been described in patients with multiple trauma and 
severe TBI not taking antiplatelet agents [6, 8, 103, 107]. 
This suggests that traumatologists cannot rely on history 
alone, but in addition they may need a test to determine 
platelet function in trauma patients because of the aforemen-
tioned association with platelet dysfunction in trauma. The 
standard kaolin TEG and RapidTEGs (rTEG) do not provide 
information regarding isolated platelets function. TEG/PM, 
however, does test for platelet function at the AA and ADP 
receptors, which have been shown to be abnormal in patients 
on AA and ADP antagonists such as aspirin, clopidogrel, and 
the newer anti-P2Y12 inhibitors [135-138]. It has been pro-
posed that the early dysfunction of platelets associated with 
Multiple Trauma and Traumatic Brain Injury (TBI) may of-
fer therapeutic opportunities similar to those for patients on 
platelet inhibitors who require cardiac surgery [138, 139]. 
One area of interest is the association of platelet dysfunction 
and ICH whether spontaneous or iatrogenic. 

There are few data to guide platelet transfusion for those 
patients with platelet dysfunction associated with ICH while 
on antiplatelet agents. The potential benefit of platelet trans-
fusions in patients with sICH or tICH who are on pre-injury 
antiplatelet agents remains an object of current clinical re-
search. Nevertheless, published algorithms exist for the re-
versal of platelet dysfunction for those patients with TBI and 
ICH that use varying types of platelet function assays [140]. 
The benefit of the modified TEG/PM is that with one test, 
the patient’s entire coagulation status can be assayed, includ-
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ing platelet function. No other VET is able to reproduce this 
[6, 8, 68, 103, 107].  

3.2. TEG Anticoagulants and Herbal Products 

3.2.1. Warfarin, Heparin and TEG 

Industry standard normal values for the R-value or “reac-
tion time” of TEG correlate with significant changes in INR. 
Reversal of warfarin by rFVIIa causes normalization of the 
TEG tracing. Further research is needed to determine the 
TEG's ability to monitor warfarin [141, 142].

1
 However, rou-

tine monitoring of warfarin therapy by TEG is not indicated 
at this time, although it may be used as an adjunct to INR in 
the guidance of reversal of warfarin induced coagulopathy in 
patients with trauma who require immediate blood product 
resuscitation [19]. 

While the TEG does not correlate with the prothrombin 
time for patients on warfarin, it has been used with success 
in treating patients with unfractionated heparin [40, 41]. 

3.2.2. Direct and Indirect Thrombin Inhibitors 

Although routine monitoring of the direct and indirect 
thrombin inhibitor agents are not currently routinely per-
formed, a POC VET would give a better understanding and 
direction of treatment for trauma patients using these agents 
[143].  

Dabigatran, rivaroxaban, apixaban, and edoxaban cause 
lower rates of severe hemorrhage and intracranial bleeding 
events than warfarin [33, 144, 145]. Many reversal strategies 
have been suggested which involve the use of PCC, rFVIIA, 
and TXA in varying sequences and doses; however, this has 
not yet been standardized in the literature [31, 143, 146-159]. 
Bleeding events involving these agents will continue to be a 
clinical challenge until satisfactory monitoring tests and re-
versal strategies are found [158]. For dabigatran-associated 
bleeding, preliminary clinical data reveals that kaolin TEG 
and RapidTEG with or without ecarin can be used as a 
method of measuring the anticoagulant activity of dabigatran 
and quantifying reversibility [34-36, 67, 159-162]. 

Anti-factor Xa levels have been recognized as the defini-
tive test for determining the degree of factor Xa inhibition 
and to aid in the prediction of those patients who will require 
DVT prophylaxis. However, the anti-factor Xa assay is not 
immediately available at most trauma centers. In contrast, 
TEG is a functional POC assay that can be collected and 
completed within 30-50 minutes. For prediction of the hy-
percoagulable patient in need of DVT prophylaxis, on the 
other hand, TEG may be more useful than anti-factor Xa 
levels in assessing critically ill patients on anti-factor Xa 
inhibitors [88]. 

Very recently, the FDA has approved of the use of idaru-
cizumab, a monoclonal antibody specific for the dabigatran 
molecule as an antidote. Similar antibodies are in process for 
requesting FDA approval for reversal of Xa inhibitors known 
as Andexanet Alpha (ANNEXA-A for Apixaban and AN-
                                                        

1 A 2004 abstract by Lipski, I and Pivalizza, E titled “The thrombelastograph in pa-
tients taking coumadin.” 

NEXA-R for Rivaroxaban). It is probable that the TEG/ 
ROTEM will be utilized in determining efficacy of these 
antidotes since the thrombin time and the ecarin clotting time 
which can quantify coagulation with the NOACs are not 
universally available. The RapidTEG activated clotting time 
test and the kaolin test appear to be capable of detecting and 
monitoring NOACs. The kaolin TEG ecarin test may be used 
to differentiate between Xa inhibitors and direct thrombin 
inhibitors. Therefore, TEG may be a valuable tool to investi-
gate hemostasis and the effectiveness of reversal strategies 
for patients receiving NOACs in the future [162-165]. 

3.2.3. Heparin and Low Molecular Weight Heparin 

For many years, reversal of heparin with protamine in 
cardiac surgery has been guided by TEG. TEG is also useful 
in diagnosis and treatment of heparin induced coagulopathy 
[41, 42]. The TEG has been used to document anti-Xa effi-
cacy of anti-Xa inhibitors in small studies and detect low 
molecular weight heparin activity [162].  

3.2.4. Herbal Products That Cause Anticoagulation 

Many herbal agents, such as Saw Palmetto, can magnify 
the effect of anticoagulation medications or even cause anti-
coagulation [166, 167]. For a bleeding trauma patient in the 
ED with an unexplained thrombocytopathy, the surreptitious 
use of herbal agents should be considered if platelet dysfunc-
tion is detected by TEG/PM [167]. 

4. REVERSAL OF TIC WITH HEMOSTATIC 
AGENTS: THE UTILITY OF TEG 

4.1. Tranexamic Acid (TXA) and Fibrinolysis 

The Clinical Randomisation of Anti-fibrinolytic in Se-
vere Hemorrhage trial (CRASH-2), a 2010 study published 
in “The Lancet” by Shakur et al., found that the use of anti-
fibrinolytic agent TXA was a safe treatment for trauma pa-
tients [168]. This is an important benchmark study for the 
future use of the procoagulant, hemostatic, antifibrinolytic 
agent, TXA, to treat TIC. However, this large randomized 
controlled trial treated a large number of patients who may 
not have required antifibrinolytic treatment. The lack of 
clinical criteria to define significant fibrinolysis in trauma 
patients was another limitation in this study [169]. 

The definition of clinically significant fibrinolysis in the 
trauma patient has varied [19, 21, 22, 169]. In the literature 
published by the manufacturer of TEG (Haemonetics), 7.5% 
fibrinolysis is thought be an “abnormal” amount of fibrinoly-
sis by measure of VETs, and antifibrinolytics have been rec-
ommended for this population [18]. However, levels of fibri-
nolysis as defined by an LY30% of 3-15% have been pro-
posed as pathologic in trauma [69, 170, 171]. To date, there 
is no clinical definition of pathologic fibrinolysis. There are 
ongoing studies searching for acceptable clinical surrogates 
for fibrinolysis that might guide the use of antifibrinolytics 
in the setting of trauma. Currently, there is experimental 
work regarding the ability of plasmin-antiplasmin (PAP) 
levels to predict clinically significant fibrinolysis [170]. 

The CRASH-2 trial was the first randomized, placebo-
controlled trial to evaluate the effects of antifibrinolytic TXA 
in trauma patients [168]. A more selective population of pa-
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tients requiring blood transfusions was evaluated in the Mili-
tary Application of Tranexamic Acid in Trauma Emergency 
Resuscitation (MATTERs) Study trial. This trial evaluated 
896 patients in southern Afghanistan to look at the effective-
ness of TXA in patients needing massive transfusion. The 
MATTERs study showed the effectiveness of TXA in de-
creasing mortality and the numbers of necessary blood prod-
ucts in the massively transfused trauma patient [169, 172]. 
TXA seems to exert its best effects when administered 
within the first 3 hours. The MATTERs study showed that 
rates of Pulmonary Embolism (PE) and DVT among patients 
who received TXA were 9 and 12 times higher, respectively, 
than those who did not [92, 169, 173].  

In MATTERs, VETs were also used to guide BCT. Since 
the effect of TXA in the trauma population may be associ-
ated with increased risk of DVT, as noted in the MATTERs 
trial, it seems reasonable to use the TEG definition of fibri-
nolysis when guiding the use of TXA. In fact, the following 
guidelines for the use of TXA in trauma resuscitation of 
adult trauma patients have been proposed: severe hemor-
rhagic shock (SBP < 75 mm Hg) or known predictors of fi-
brinolysis detected by TEG (LY30% > 3%). LY30% and 
Lysis Index at 30 minute values from 3% to 30% for the 
VETs have been noted in the literature as the threshold diag-
nosis for fibrinolysis for patients receiving BCT and AHA. 
Currently, there is no consensus regarding the level of fibri-
nolysis that indicates administration of TXA [62, 64, 169, 
174-177].  

Significant questions remain regarding the indications for 
the near ubiquitous use of TXA in trauma resuscitation as 
recommended by the CRASH-2 trial. For this reason, there 
has been a substantial delay in the implementation of TXA in 
trauma protocols [169, 173].  

Professor Martin Schreiber MD, the military trauma sur-
geon, was the first to question the CRASH-2 trial and its 
findings at the 2010 NIH Conference section on the Current 
Practice of Medicine for Severe Bleeding stating, “I think the 
bottom line here is that we really haven’t found a way to beat 
that qualified trauma surgeon with the $0.50 silk suture. 
There are no magic bullets when it comes to drugs for stop-
ping bleeding”.

2 

Building on his concern, further criticism of the CRASH-
2 trial findings and methodology was initiated by the De-
partment of Defense (DoD) Priority trial into TXA, 
coauthored by Dr. Ken Mattox among others, where the term 
“knowledge gap” was first introduced to describe the incon-
sistencies of the CRASH-2 trial [173]. Immediately follow-
ing in June 2013, Napolitano et al.’s paper in the Journal of 
Trauma delineated several major problems of the CRASH-2 
trial [169]. The major flaws pointed out were the “difficult to 
believe” 100% follow-up of 20,000 patients among 274 hos-
pitals in 40 low-to-moderate income countries, the lack of 

                                                        

2 Professor Martin Schreiber MD, in a talk entitled “Current Practice of Medicine for 
Severe Bleeding. Product Development Program for Interventions in Severe Bleeding 
Due to Trauma or Other Causes.” In 2010 at Masur Auditorium, Bldg. 10, National 
Institutes of Health, 8800 Rockville Pike, Bethesda, MD, 20894: U.S. Food and Drug 
Administration. 

looking for and reporting of complications, and the absence 
of TXA’s mechanism of action as the survival benefit was 
not associated with transfusion [169].  

Four major Randomized Controlled Trial (RCT) studies 
were launched to address and investigate these shortcomings. 
The same year, 2013, the first RCT study, the Pre Hospital 
Antifibrinolytics for the Coagulopathy of Traumatic Hemor-
rhage or the PATCH trial, by Dr. Russell Gruen et al., high-
lighted the same problems of the CRASH-2 trial raised by 
Mattox and Napolitano while proposing the mechanistic pos-
sibility that TXA may have caused the increased rate of DVT 
of 12 times and PE of 9 times in the MATTERs trial [92, 172]. 
Subsequently, in 2014, three trials were launched to delve 
into the mechanism of TXA and directly address these 
knowledge gaps. The first is the Study of Tranexamic Acid 
during Air Medical Prehospital Transport (STAAMP) Trial 
from the University of Pittsburgh [178]. The second is the 
Tranexamic Acid Mechanisms and Pharmacokinetics In 
Traumatic Injury (TAMPITI) Trial from Washington Uni-
versity Saint Louis, which will look at the mechanistic 
analysis of pro-inflammatory markers for TXA in trauma.

3
 

Finally, the last is the newly NIH registered Study of TXA in 
acute orthopedic fractures from the University of Tennessee.

4
 

Since early 2013, these 5 RCT studies have been designed 
specifically to clarify the uncertainties surrounding TXA and 
to fill the “knowledge gaps” that originated from the 
CRASH-2 trial. 

In addition, in June of 2014, Valle et al. published their 
experience in the Journal of Trauma at Jackson Memorial 
Hospital in Miami, Florida regarding more than 1,200 
trauma patients, of whom 300 were evaluated for TXA in 
“shocked” patients [179]. They described propensity 
matched study populations in shock-one half of whom re-
ceived TXA and the other half of whom did not. The surpris-
ing finding was that the TXA group was associated with 
greater mortality. There are two possible, contributing expla-
nations. One possibility is that the bolus infusion of TXA 
required a larger dose of crystalloid, which is well known to 
worsen coagulopathy [179]. Another possibility is that TXA 
may have caused hypotension [179]. Every patient in the 
Valle et al. study was in severe shock and those who re-
ceived TXA and hemostatic control with surgery and trans-
fusion did so within a very short amount of time. In Valle et 
al.’s hands TXA was administered in the OR after the patient 
had already received a transfusion. Valle et al. therefore 
recommended that in mature trauma systems the ubiquitous 
use of TXA in the prehospital and hospital trauma systems 
needs to be further investigated [179]. 

Similar conclusions regarding the ubiquitous use of 
TXA in mature trauma systems with limitation to its use in 

                                                        

3 Tranexamic Acid Mechanisms and Pharmacokinetics in Traumatic Injury (TAMPITI 
Trial); Study Investigators: Dr. Philip Spinella, MD, Dr. Grant Bochicchio, MD, MPH; 
Study is Currently Ongoing through Fall 2015-Spring 2017 
http://www.tampiti.wustl.edu/ 
��ClinicalTrials.gov. Tranexamic Acid in Orthopaedic Trauma Surger 2015. Available 
from: 
https://clinicaltrials.gov/ct2/show/NCT02080494?term=Tennessee+tranexamic+acid+o
rthopedics&rank=1. 
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“shocked patients” have been noted by the CRASH-2 
authors in a non-randomized, controlled, prospective ob-
servational study. Cole et al. in this study “could not iden-
tify a clear outcome benefit to patients without shock,” and 
therefore, “the findings give a clear signal for using TXA in 
severely injured, shocked civilian patients.” They also 
found that “VTE was more common in patients who re-
ceived TXA… in the more severely shocked population.” 
Their analysis states: “there was a fourfold increase in the 
thromboembolic events in the TXA group (No TXA: 2% vs 
TXA: 8%, P < 0.01).” They note that: “TXA was inde-
pendently associated with a reduction in MOF… and was 
adjusted for all-cause mortality in shocked patients.” These 
findings of limitation to the benefit of TXA to severely 
injured and shocked patients with associated increased rates 
of VTE are not consistent with the initial CRASH-2 trial 
[180]. 

Finally, Holcomb and his group have recently studied 
the impact of TXA on mortality in injured patients with 
hyperfibrinolysis with LYS30> 3% as determined by a 
RapidTEG, which uses tissue factor (TF) as an initiator 
[181]. They found that the use of TXA was not associated 
with a reduction in mortality [181]. It was noted that the 
rTEG compared to kaolin-TEG is less accurate at identify-
ing functional hyperfibrinolysis [181]. Therefore, when 
combined with the studies of Valle et al., they suggest that 
mandatory use of TXA as advocated by the CRASH-2 in-
vestigators may not be applicable to mature level 1 trauma 
centers where prompt blood product resuscitation can be 
initiated and prompt surgical control of hemorrhage can be 
obtained, reiterating Schreiber’s point concerning the ad-
ministration of hemostatic adjuncts such as recombinant 
factor VIIa, PCC, and TXA, which may have a place in 
trauma protocols with or without viscoelastic-test guidance 
[179, 181].2 

In summary, a solution to the above mentioned contro-
versy regarding the indications for TXA in hemorrhage has 
led to suggestions that TXA be given to patients with 
TEG/ROTEM values indicative of hyperfibrinolysis [19, 22, 
74, 89, 171]. 

The use of VETs to deliver TTHAT has been proposed 
in postpartum hemorrhage. Postpartum hemorrhage is a 
major cause of women’s death around the world. An inter-
national randomized placebo controlled trial is ongoing 
right now to provide valuable scientific evidence on 
whether the use of TXA can reduce postpartum hemorrhage 
[182, 183].5

 

4.2. Prothrombin Complex Concentrate and Fibrinogen 
Concentrate 

In Europe, where PCCs and fibrinogen concentrates are 
more commonly used as a substitute for FFP and cryopre-
cipitate, traumatologists have presented data regarding the 
use of PCC and fibrinogen concentrate guided by POC VETs 
for the resuscitation of trauma patients [49, 52, 54, 64, 131, 
175-177].2 When paired with the trauma ISS, a decrease in 
the mortality rate is observed when guiding administration of 
fibrinogen concentrate and PCC as first-line hemostatic ther-

apy with ROTEM compared with the mortality rate of pa-
tients not guided by VETs. Patients treated in accordance 
with an algorithm for ROTEM-guided administration of fi-
brinogen concentrate and PCC had lower mortality than that 
predicted by The Trauma and Injury Severity Score (TRISS) 
revised or RISC. Fibrinogen concentrate was given as first-
line hemostatic therapy when maximum clot firmness (MCF) 
measured by FIBTEM (fibrin-based test) was <10 mm. PCC 
was given in case of recent warfarin intake or clotting time 
measured by extrinsic activation test (EXTEM) >1.5 times 
normal [49]. However, the non-randomized controlled ob-
servational studies from Europe promoting the use of hemo-
static adjunctive agents (for example fibrinogen concentrate, 
PCC and tranexamic acid) have not involved significant 
penetrating trauma and may not be relevant to a combat or 
urban United States population. For example, the incidence 
of penetrating trauma in Europe is lower than the incidence 
in the urban population of the United States [122, 179, 184]. 
Early treatment algorithms for VET guided hemostatic ther-
apy with fibrinogen concentrate and PCC can help to mini-
mize the risk of thrombosis in trauma patients by ensuring 
that excessive dosing is avoided [23]. 

There are no large randomized controlled trials to support 
the use of PCC in trauma other than in its use in hemophilia 
and for the rapid reversal of the effect of oral vitamin K an-
tagonists. However, it is recommended to use PCC early for 
the emergency reversal of vitamin K-dependent oral antico-
agulants. In the setting of trauma patients treated with pre-
injury warfarin, a retrospective analysis shows that the use of 
PCC results in a more rapid time to reversal of the INR [54]. 
Four factor PCC has been used for NOAC reversal as well. 
There is limited literature on reversal of the new oral direct 
and indirect thrombin inhibitors, such as dabigatran, rivarox-
aban, apixaban, and edoxaban with PCC. However, small 
case reports and series have demonstrated successful use of 
PCC to completely reverse the anticoagulant effects of ri-
varoxaban. Currently there is little literature for using TEG-
monitored PCC reversal of patients with acquired coagulopa-
thy [31, 143, 146-159]. 

4.3. Bypassing Agents 

The optimal use of bypassing agents, rFVIIa and Factor 
VII Inhibitor Bypassing Agent (FEIBA) (a plasma-derived 
activated prothrombin complex concentrate [APCC]), needs 
a reliable laboratory method to predict and monitor their 
effects [185].  

The initial use of rFVIIa for trauma resuscitation was 
greeted with great promise for patients with multiple trau-
mas with and without TBI. However, subsequent studies 
have rendered its use problematic because of an increased 
incidence of thrombosis without survival benefit. Studies 
have shown no utility of rFVIIa in treating severely aci-
dotic, coagulopathic trauma patients with high rates of 
bleeding (4 units of RBC/h) and, therefore, restriction has 
been set on its usage. However, rFVIIa has shown benefit 
in coagulopathic TBI patients, although this is controversial 
[110, 186-192]. 
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For TBI, a prospective, randomized, placebo-controlled 
study regarding the preliminary effectiveness of rFVIIa to 
limit ICH progression has shown that rFVIIa was able to 
more quickly and less expensively correct the INR into nor-
mal ranges in preparation for surgery in coagulopathic TBI 
patients [193]. This study revealed that rVIIa allowed a more 
rapid neurosurgical intervention with less blood product 
transfusion and even a reduced need for cranial surgery 
[194].  

rFVIIa has been shown to be effective for the reversal of 
dabigatran associated hemorrhage. rFVIIa corrected the lag 
time of a thrombin generation test [158]. Currently, rFVIIa is 
recommended for use in reversing Factor Xa inhibitors and 
antithrombin medications in some algorithms [146].5 Patients 
with autoimmune idiopathic thrombocytopenia undergoing a 
splenectomy, who require transfusion have benefited from 
TEG guided administration of rFVIIa administration with 
active bleeding [195]. Agreed upon guidelines regarding the 
use of rFVIIa for the bleeding trauma patient do not cur-
rently exist. Since VETs have been shown to be able to guide 
BCT in the trauma patient, they may be able to guide physi-
cians to help determine which patients should receive rFVIIa 
[196]. However, the effectiveness of rFVIIa for reversal of 
dabigatran has been questioned. Also, rFVIIa is not univer-
sally recommended for reversing Factor Xa inhibitors [197, 
198]. 

FEIBA has been shown to be effective for the reversal of 
warfarin-induced coagulopathy [199]. However, as noted 
above, four factor PCC is now indicated for emergency war-
farin reversal for severe hemorrhage. And in the emergency 
setting, the TEG may be used for initial evaluation of succes-
sive reversal [19]. 

5. FUTURE USES OF TEG 

Recently, there has been a surge in the interest of using 
TEG for diagnosis and guidance of BCT for TIC and patients 
needing massive transfusions with particular emphasis on the 
use of TEG to guide TXA administration for hemorrhaging 
trauma patients. The CRASH-2 trial recommendations of 
near ubiquitous TXA use in trauma has prompted the search 
for objective markers of fibrinolysis such as LY30%, but this 
recommendation is controversial and needs further vetting 
[168].  

Currently, there are no Evidence-Based Medicine (EBM) 
studies looking at the use of TEG in the orthopedic patient 
population to guide BCT. Another area in need of research is 
the use of serial platelet mapping with TEG in the orthopedic 
patient population. This could be used to reduce blood prod-
uct wastage and simultaneously, to guide BCT with fluid 
resuscitation. Additional prospective randomized clinical 
trials are still needed on the use of VETs in providing goal-
directed therapy with fibrinogen concentrate, PCC, and 
rFVIIa in trauma patients. 
                                                        

�� ClinicalTrials.gov. Study in Healthy Volunteers of the Reversion by Haemostatic 
Drugs of the Anticoagulant Effect of New Anti-thrombotics. Available from: 
https://clinicaltrials.gov/show/NCT01210755 

6. LIMITATIONS 

Though VETs have multiple strengths compared to 
CCTs, there are nonetheless several weaknesses or limita-
tions that cannot be overlooked. For example, VETs are 
limited by its varying sensitivity for diagnosing hyperfibri-
nolysis [170, 171]. VETs are performed at standard human 
body temperature, 37°C. For the hypothermic patient, the 
patient must be rewarmed. Also, it is hypothesized by 
Brooks et al. that the MA and �-angles are elevated due to 
stereotactic interference from the paucity of red cells in 
anemic patients, which is another limitation of VETs ne-
cessitating further research [200]. However, recent clinical 
observations regarding the effect of hematocrit on VETs 
reveals that the direct effects of anemia rather than an im-
balance between thrombin and antithrombin may explain 
the findings of the elevation of the MA and � angles after 
hemodilution. Low hematocrit most likely worsens bleed-
ing in vivo but improves the TEG variables in vitro, there-
fore, the TEG results should be interpreted with the knowl-
edge of the severity of anemia, hemodilution, and other 
clinical parameters such as microvascular bleeding in pa-
tients after trauma [56, 201]. Finally, it has been noted that 
the effect of hematocrit is not reflected by plasma fibrino-
gen concentration, in contrast to FIBTEM MCF, which 
incorporates the contribution of the hematocrit to whole 
blood firmness. However, this effect appears to be negligi-
ble in hemodiluted patients [202]. Therefore, hematocrit 
does not represent a bias; rather, it is an integral part of the 
VET methodology.  

The limitations of TEG also include lack of standardiza-
tion in the following: use of kaolin and Tissue Factor as 
initiators, quality assurance, and consistency in interpreta-
tion of test results. In the United States, TEG is often per-
formed by personnel trained in the nuances of VETs. Tradi-
tionally, perfusionists have operated TEG during cardiac 
surgery and therefore may be considered for performing 
this test in the trauma setting [62]. Another option is to 
have laboratory technicians perform the procedure while 
trauma physicians interpret the data [19]. In European 
trauma centers, VET laboratory technicians assist anesthe-
siologists specialized in trauma. These VET technicians 
and anesthesiologists assume a very prominent role in 
trauma resuscitation therapy. In addition, European trauma 
centers have greater access to products that require close 
monitoring, such as PCCs and fibrinogen concentrate [54, 
64, 203].  

A significant limitation to the TEG/ROTEM has been 
noted recently regarding the applicability of the results to 
trauma with specific concerns regarding the variation of 
definition of fibrinolysis as determined by the TEG/ROTEM 
and of the indirect nature of the measurements of fibrinogen 
and functional fibrinogen [204]. 
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One final limitation regarding the TEG and the ROTEM 
is the lag time required to perform and read the test. During 
times of MT, the approach is to initially offer a “Foundation 
Ratio” of 6 PRBC to 3 FFP or to pursue a ratio of 
PRBC/platelets/FFP/Cryoprecipitate that approximates 
whole blood while the TEG is being prepared and run. In the 
PROPPR trial, the mean time to “anatomical hemostasis” an 
euphemism for local surgical and radiologic control of hem-
orrhage, was 100 minutes, meaning resuscitation resulted in 
local control of bleeding within two hours [86, 205, 206] 
(Fig. 6). For patients with severe coagulopathy, the parame-
ters can be anticipated within approximately the first 35-40 
minutes by looking at the initial TEG/PM tracing. Blood 
products, as well as hemostatic agents, can be given at this 
point and new samples drawn and inserted into another TEG 
channel which will allow downstream evaluation of the ear-
lier treatment. While the rTEG saves approximately 10 min-
utes in reading, the previously mentioned inaccuracy for 
fibrinolysis is a concern as well as the lack of the accuracy of 
the ACT as a surrogate for the “R” [80]. For this reason, we 
recommend only the kaolin-TEG performed on multiple 
TEG channels that are sequentially overlapping during MT. 
Of concern is the delay in fibrinolysis determination which 
requires 30 minutes following the MA. However, it has been 
suggested that TXA be given to those hypotensive patients in 
shock regardless of the LY30% and therefore it would be 
reasonable to administer TXA to all shocked trauma patients 
[168, 169]. 

CONCLUSION 

Viscoelastic tests utilize whole blood samples as op-
posed to plasma based coagulation tests. They provide a 
rapid, more accurate point of care assessment of the coagu-
lation status in the coagulopathic trauma and non-trauma 
patient. The use of TEG and ROTEM may reduce the waste 

of blood products as well decrease mortality rates in the 
coagulopathic patient. However, before VETs and TEG can 
be accepted universally, their limitations need to be ad-
dressed, namely quality assurance and the availability of 
personnel to perform and interpret the test. Regardless, the 
use of targeted thromboelastographic blood component 
therapy and adjunctive hemostatic agents for damage con-
trol resuscitation (DCR) is becoming a more widely ac-
cepted strategy for traumatic patients. There will be an in-
creasing need for emergency physicians, trauma surgeons, 
anesthesiologists, and other trauma related staff to be fa-
miliar with VETs. VETs, both TEG and ROTEM, provide 
rapid assessment of the immediate coagulation status of the 
patient, which is critical in trauma-induced coagulopathy 
and useful in guiding blood component therapy in the man-
agement of TIC and other types of acquired coagulopathy 
in the emergency setting [63, 65, 206, 207]. Very recent 
studies have shown the ability of the TEG/ROTEM to 
guide therapeutic decisions for patients on subcutaneous as 
well as oral Xa inhibitors and oral direct thrombin inhibi-
tors [160-162]. 

The most recent development of new cartridge-based sys-
tems for VETs known as TEG6s and ROTEM Sigma sys-
tems are soon to be released. These easy to perform tests that 
can be done by the most basic of laboratories will allow for 
the expansion of these VETs to assess hemostatic compe-
tence in the trauma and non-trauma settings [208].6,7 

                                                        

� ClinicalTrials.gov. ROTEM® Sigma Performance Evaluation - Method Comparison 
With Predicate Device and Reference Intervals (ROSI-EVA). Available from: 
https://clinicaltrials.gov/ct2/show/NCT02379104 

�
� ClinicalTrials.gov. Trauma Equivalency Study of the CORA® and TEG® 5000 

Systems 2015. Available from: https://clinicaltrials.gov/ct2/show/NCT02408029�

 
Fig. (6). MTP TEG/PM-guided BCT Algorithm. TEG/PM is performed upon arrival and every 30-45 minutes thereafter depending on 
severity of shock. Note: Where available order fibrinogen concentrate, PCC and rarely rFVIIA.. *Some algorithms recommend TXA for 
LY30 > 7.5% [48]. †Time to “anatomic hemostasis” was 100 minutes according to the PROPPR trial. [86, 122, 169]. ‡ With central venous 
access foundation ratio of 6PRBC, 3FFP, 1 SDAP, 10 U Cryoprecipitate given in first 20 minutes with subsequent ratios determined by clini-
cal, laboratory and TEG/PM parameters. 
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Regardless of whether the ROTEM or TEG system is 
used to gauge hemostatic competence of those trauma and 
non-trauma patients in need of targeted BCT and AHA, the 
choice of modality is not as important as making the choice 
since the information gained from these tests has been shown 
to greatly assist in the guidance of targeted therapy. The lack 
of randomized controlled trials regarding the use of VET to 
provide targeted BCT and AHA for trauma patients has been 
a stumbling block for some clinical researchers. The best 
rebuttal to these critics was recently voiced most eloquently 
by Spahn: “This is by no means to say that we should stop 
doing outcomes research on coagulation management in se-
verely injured patients, but that we should not dismiss exist-
ing evidence in favour of TEG/ROTEM-based goal-directed 
individualized coagulation algorithms on the basis that we 
lack the ultimate 'perfect' study. As a matter of fact, today all 
hospitals should have an individualized and goal-directed 
coagulation algorithm: don’t wait - act now!” [209]. It is not 
so important whether we choose ROTEM or TEG with the 
many iterations that come with these choices; rather, it is 
important that we begin to utilize VETs that are based on the 
cell-based theory of hemostasis and offer a much more 
physiologic and useful analysis of the hemostatic integrity of 
a bleeding patient [210]. 
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