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Abstract: Predicting and interpreting the spatial location and causes of traffic accidents is one of
the current hot topics in traffic safety. This research purposed a multi-dimensional long-short term
memory neural network model (MDLSTM) to fit the non-linear relationships between traffic accident
characteristics and land use properties, which are further interpreted to form local and general rules.
More variables are taken into account as the input land use properties and the output traffic accident
characteristics. Five types of traffic accident characteristics are simultaneously predicted with higher
accuracy, and three levels of interpretation, including the hidden factor-traffic potential, the potential-
determine factors, which varies between grid cells, and the general rules across the whole study area
are analyzed. Based on the model, some interesting insights were revealed including the division
line in the potential traffic accidents in Shenyang (China). It is also purposed that the relationship
between land use and accidents differ from previous researches in the neighboring and regional
aspects. Neighboring grids have strong spatial connections so that the relationship of accidents in a
continuous area is relatively similar. In a larger region, the spatial location is found to have a great
influence on the traffic accident and has a strong directionality.

Keywords: traffic accident; MDLSTM; spatial; interpretation

1. Introduction

According to the report published by the World Health Organization (WHO), road
traffic crashes result in the deaths of approximately 1.35 million people around the world
each year and leave between 20 and 50 million people with non-fatal injuries [1]. Factors
affecting traffic accidents can be divided into subjective and objective aspects at the macro-
scopic level. The objective aspects mainly include regional characteristics, road network
characteristics, climate characteristics and so on. The subjective aspects mainly include
human operation errors, violations of regulations, negligence, vehicle technical reasons
and so on. The involvement of multiple influencing factors complicates the prediction
and analysis of traffic accidents, and makes it difficult to strip out the influence of any
one of these factors. Although current research is centred on quantitatively analyzing the
conditions of different influencing factors and elucidating the most influential factors [2],
gaps in this area of knowledge remain.

The revelation of significant spatial auto-correction in traffic accidents from spatial
analysis brought an inspiration: since the multiple causes of traffic accidents are also spatial
aggregates, the spatial influence on such traffic accidents must contain many valuable
factors that are not directly observed, hence, local land use characteristics and spatial
correlation are analyzed concurrently in this paper, using the multi-dimensional long-
short term memory neural network model (MDLSTM). The method greatly improves the
accuracy of traffic accident prediction by responding to multi-variate inputs with non-
linear relationship. More indicators that make comparisons existing research in the model
input and output are taken into account, which is also the advantage of the MDLSTM
model. In addition, this method can capture the relationship between some variables that
traditional models consider to be unrelated.
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In comparison with the spatial regression models, this study also considers potential
accidents which traffic accidents are based on. The potential accidents not only show
the occurrence or numbers of traffic accidents, but also indicate the date, time, isolation
form and the cross-sectional location of traffic accidents. Due to the lack of explicit prior
information, this complex regulation is modelled using the neural network model.

2. Literature Review

Researchers in the field of traffic safety have been found to trace the source of traffic
demand to excavating the causes of traffic accidents. Decades ago, among objective factors,
researchers also focused on the impact of road network layout, road and traffic design,
traffic control, active risk management and environmental conditions on traffic safety,
and the problem of traffic accidents caused by land use. There were few studies on the
issue of traffic accidents related to land use, and the topic is becoming more and more
critical currently.

To analyze the impact of objective factors on the location of traffic accidents, it must
been found that the spatial characteristics and differences of traffic accidents. For cities, the
fundamental spatial differences include three parts: First are the land use characteristics.
Land use characteristics lead to the differences in traffic demand and form the spatial
distribution of Origin-Destination (OD) pairs. For example, tidal traffic conditions are more
likely to be occurred around educational and office plots since the demand is concentrated
in the morning and evening peaks. However, the traffic conditions around medical plots
are more likely to be affected by emergencies. Second is the location feature. For a general
single-center city, the traffic demand in the central area is often greater than that in the
suburban areas, which is determined by the spatial agglomeration of the choosing behavior
of individuals. Third is the transportation supply represented by road facilities. The
quality of road facilities, road network density, design and construction level, etc. are often
indirectly related to spatial location, but they have the characteristics of continuous stability.
As traffic demand continues to increase, traffic accidents are also gradually increasing. In
some special region, traffic accidents are observed to have strong spatial autocorrelation,
which may lead to an inspiration that there are some gathered characteristics influencing
the accident in the similar way as the statement above.

2.1. Spatial Analysis of Traffic Accidents

Spatial analysis of traffic accidents have been used in designing road safety mea-
sures for decades, in order to determine how crashes are affected by the neighboring
locations, how the influence of parameters varies spatially, and which locations require
more urgent interventions [2]. Previous researches have focused on the use of different
spatial unit [3], different modelling approaches [4–6], and the corresponding study design
characteristics, including traffic, road environment and area parameters and spatial aggre-
gation approaches, where geographically weight regression [7,8], Bayesian models [9] and
machine learning methods [10,11] were applied.

In 1995, Levine et al. [12] studied the distribution of traffic accidents on the main road
network in Honolulu, Hawaii, and found that traffic accidents are spatial correlated. Levine
et al. [13] used a modified multiple linear regression method to establish the statistical
relationship between the total number of traffic accidents in the block (Census-Block-Group)
and the corresponding population, employment, and road traffic flow. Spatial statistical
methods have been applied more frequently in macro safety analysis. Erdogan [4] used
the Kernel Density Estimation (KDE) method to calculate the density of hotspots along the
Kaduna-Abuja route. The results determined 222 accidents on the road between 2010 and
2014 and 8 different hotspots along the way, including Gonin Gora, Toll stations, Sabon
Gaya, etc. Quddus [14] analyzed the traffic accidents at the Ward-level using the Bayesian
spatial statistical model built for London. Lord et al. [15] proposed the application of
negative binomial regression to establish a traffic safety model with characteristics of the
planned road network, which was used to analyze the safety of planning schemes in traffic
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planning. Lovegrove et al. [16] analyzed the feasibility of applying the macro-safety model
to evaluate traffic improvement schemes in the traffic analysis zone (Traffic-Analysis-Zone,
TAZ) in a case study.

2.2. Influencing Factors of Traffic Accidents

Different factors have different effects on traffic accidents. Previous studies on in-
fluencing factors of traffic accidents mainly focused on the attributes of personnel [17],
vehicles [18], roads [19] and environment [20]. For example, Liu and Fan took traffic acci-
dents from 2005 to 2013 in North Carolina as a sample and found drunk driving behaviors
had huge impact on traffic accidents [21]. Kelley et al. studied the crash data in CIREN
database from 1998 to 2012 and found side impact could be an important influencing factor
on traffic accidents [22]. Cheng et al. researched on traffic accident data from San Francisco
from 2008 to 2013 and found severe weather could be related to serious traffic accidents [23].
None of the existing studies looked at the causes of traffic accidents from the aspects of
urban zoning differences [24], road network topology [25], etc. In our study, factors, such
as plot ratio, point of interest and congestion ration representing urban zoning differences
and road network topology are used to find more specific causes of traffic accidents.

Researchers in the field of traffic safety have been found to use spatial distribution as
clues to track the causes of traffic accidents and focused on environmental factors. Decades
ago, among objective factors, researchers also focused on the impact of road network
layout, road and traffic design, traffic control, active risk management and environmental
conditions on traffic safety, and the problem of traffic accidents caused by land use. There
are little studies on the issue of traffic accidents related to land use, and this topic is
becoming increasingly important.

3. Materials and Methods
3.1. Data
3.1.1. Data Sources

The land use properties and traffic accident data both come from the City of Shenyang
in China, which is also the area of study in this paper. The land use dataset is compiled
from the point of interest (POI) data, the evening peak traffic flow data and road maps,
which are collected from Open Street Map (OSM). Since POI data focus more on commercial
service facilities, such as catering and entertainment, the residential data of POI are verified
with the residential area information on the Anjuke platform. Fourteen basic types of POI
are: Catering, Hotel, Shopping, Life Services, Tourism, Leisure and Entertainment, Sports
and Fitness, Education, Medical, Transportation Facilities, Finance, Residential, Companies,
and Government Organizations. The POI and evening peak traffic flow data are gathered
from the Baidu Map API (Baidu, Beijing, China), and it is the average of the traffic state
data of the evening rush hours from 14 June 2019 to 21 June 2019. Table 1 provides an
overview of the land use dataset.

Table 1. The overview of the land use properties data.

Land Use Properties Unit
Data Range

Minimum (Min) Maximum (Max) Mean Standard Error (Std)

Plot ratio - 0 6.62 0.341 0.777
Number of types of POIs * - 2.00 13.0 4.39 1.92

Centrality m (meter) 4.49 × 103 3.37 × 104 1.31 × 104 5.60 × 103

Distance to CBD * m 643 3.21 × 104 1.00 × 103 5.53 × 103

Number of surrounding
road sections - 0 221 34.1 34.1

Congestion ratio % 0 0.486 0.00245 0.0227

* POI means “point of interest” and CBD means “central business district”.



Int. J. Environ. Res. Public Health 2021, 18, 1430 4 of 18

The accident dataset is based on the statistics of traffic accidents in Shenyang from Jan
2015 to Dec 2017, an overview is provided in Table 2. The following fields are included: text
description of the accident location, date and time, isolation of the road and cross-sectional
location in the road. These indicators are all turned to a digital form to accurately model
the occurrence or characteristics of traffic accidents.

Table 2. The overview of the accident characteristics.

Traffic Accident Characteristics Unit
Data Range

Min Max Mean Std

Accident count - 0 45 11.4 9.39
Accident date d (day) 0 183 117 52.2
Accident time s (second) 300 8.62 × 104 4.54 × 104 2.33

Accident isolation - 0 3 0.490 0.893
Accident cross-sectional location - 0 5 4.60 0.957

3.1.2. Distribution of Accidents Characteristics

The text description of accident location is matched to their latitudinal and longitu-
dinal positions through the Baidu Map API, so that all accidents can be traced. In order
to describe the traffic accidents from a macroscopic perspective, traffic accidents within
3000 m of each grid cell will be recorded as “traffic accident counts” indicator of the grid
cell. The height values in the right-hand side diagram of Figure 1a represents the location
of the accident. The values show the number of traffic accidents that took place within a
radius of 3000 m from the center of the grid cell, as shown in Figure 1b.
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time distance to 15:00 is taken as the value of the indicator. 

Figure 1. (a) The spatial distribution of the “traffic accident counts” indicator; (b) The spatial distribution of real traffic accidents.

The accident date and accident time are processed to linearize the relationship with
the accident frequency. The date of the traffic accident is converted to the number of days
till winter (represented by the winter solstice on 22nd December). Since Shenyang has more
road icing in winter, winter is the season where most traffic accidents occur, as shown by
Figure 2a, where the three peaks in the data distribution of traffic accident data corresponds
to the three winters in 2015, 2016 and 2017.

In Figure 2b, the accident time data is illustrated in a similar fashion as the accident
date data. 13:00–17:00 is the time period when traffic accidents occur frequently, so the
time distance to 15:00 is taken as the value of the indicator.
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and “post meridiem” which means time period before noon (0:00–12:00) and after noon (12:00–24:00).

As shown in Figure 3a, the isolation of the road is one of the effective factors influenc-
ing traffic accidents. There are 4 levels of isolation of the road: the “Center isolation and
motor vehicle-non-motor vehicle isolation”, “Center isolation”, “Motor vehicle and non-
motor vehicle isolation” and “None”, each denoted 4, 3, 2 and 1, respectively. Figure 3b
shows the cross-sectional location is another key feature in traffic accidents. There are 5 lev-
els of cross-sectional location: “Motor vehicle lane”, “Motor vehicle and non-motor vehicle
mixed lane”, “Non-motor vehicle lane”, “sidewalk” and “cross walk”, corresponding to 5,
4, 3, 2, and 1, respectively. The spatial distributions of these two indicators are as follows.
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3.1.3. Rasterization

The data processing in this study is trying to connect the traffic accident data with the
land use properties. The spatial auto-correlation is included to model the unobvious effect.
To achieve this, rasterization is used to break up the land use data into raster shapes. The
traffic accident data and raster data are then matched spatially, so that the MDLSTM model
can capture the spatial relation between accident and land use.

The location of study of this paper is the urban area in the City of Shenyang, as shown
in Figure 4a. Similar to Liu [26] and Yue [27], the rectangular region are rasterized to
grid cells at the scale of around 400 m × 444 m, with the usual method [28,29] as shown
in Figure 4b. In total, 12,110 grid cells (about 96 rows and 125 columns) were collected
in the Shenyang urban area. To speed up learning and convergence when training the
model, layer normalization was performed to scale the data into the range [0, 1] as studied
by Ba J L [30].
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Figure 4. (a) Schematic of the urban area in the City of Shenyang with roads. (b) The plot ratio data after rasterization.

Data processing has many steps, including map acquisition, data matching, grid
transformation, window sampling and batch splitting. After batch splitting, a sliding
window (9 × 9 grids) was used to sample the data and reshape them into bi-dimensional
tensors, resulting in 10,092 windows in the study area. As shown in Figure 5, the windows
were selected by a zero rate index, which means a window is marked as unusable when 80%
of the data in the window is missing for lack of information. Among them, 100 randomly
selected windows are used as the test dataset, and the remaining 9992 windows are used
as the training dataset.

Int. J. Environ. Res. Public Health 2021, 18, 1430 6 of 19 
 

 

 

(a) 

 

(b) 

Figure 4. (a) Schematic of the urban area in the City of Shenyang with roads. (b) The plot ratio data after rasterization. 

Data processing has many steps, including map acquisition, data matching, grid 
transformation, window sampling and batch splitting. After batch splitting, a sliding win-
dow (9 × 9 grids) was used to sample the data and reshape them into bi-dimensional ten-
sors, resulting in 10,092 windows in the study area. As shown in Figure 5, the windows 
were selected by a zero rate index, which means a window is marked as unusable when 
80% of the data in the window is missing for lack of information. Among them, 100 ran-
domly selected windows are used as the test dataset, and the remaining 9992 windows 
are used as the training dataset. 

 
Figure 5. The window sampling and batch splitting. 

3.2. Validation of the Spatial Autocorrelation 
The premise of this study is that traffic accidents have significant spatial auto-corre-

lation, which give rise to the assumption that the multiple causes of traffic accidents are 
also spatial aggregates, and the spatial influence of such traffic accidents contains many 
valuable factors that are not directly observed. In this section, the spatial auto-correlation 
is first validated to show that these indicators do have spatial correlation. 

The spatial dependency was tested using Global Moran’s I and Global Geary’s C sta-
tistics. The results are shown in Table 3. A statistically significant spatial cluster was 
found, and both results are significant at p < 0.001 significance level. 

Figure 5. The window sampling and batch splitting.

3.2. Validation of the Spatial Autocorrelation

The premise of this study is that traffic accidents have significant spatial auto-correlation,
which give rise to the assumption that the multiple causes of traffic accidents are also spa-
tial aggregates, and the spatial influence of such traffic accidents contains many valuable
factors that are not directly observed. In this section, the spatial auto-correlation is first
validated to show that these indicators do have spatial correlation.

The spatial dependency was tested using Global Moran’s I and Global Geary’s C
statistics. The results are shown in Table 3. A statistically significant spatial cluster was
found, and both results are significant at p < 0.001 significance level.
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Table 3. Global Moran’s I and Global Geary’s C spatial dependency test.

Global Moran’s I 0.128

I
p-value 1.76 × 10 − 10
z-score 6.38

Global Geary’s C 0.868

C
p-value 0.000171
z-score −3.58

3.3. MDLSTM Model

The basic model of MDLSTM is the recurrent neural network (RNN) model developed
to simulate the regulation of sequence data. RNN can be widely applied in natural language
processing (NLP), since it has the strength of fitting the non-linear relationship between
words’ occurrence in a specific location and other words in the context. The advantage of
this model is that it can retain the information transferred between distanced words. Take
Figure 6 as an example.
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Figure 6. Application of recurrent neural network in natural language processing. “t” means the
word step while “t − 1” means the previous step of “t”. The “h(t)” means the output of step “t”
and the “x(t)” means the input of step “t”. The “?” means the word that needs to be predicted
corresponding to the predicting result word “Lied”.

The word “Dentist” is the input of the second step (t − 1) of the model, and the next
word “Lied” is the expected output. In this process, the occurrence of “Lied” is affected by
not only the word “Dentist”, but also the previous inputs, such as “The”. MDLSTM is the
bi-dimensional version of the developed form of RNN, which has the structure below:

As shown in Figure 7a, the improvements made on the model to a basic RNN are
in two aspects. The first is the increases of the long-distance impact through the widely
known “Gate” structure, which gave rise to the development of the Long-Short Term
Memory neural network model in 1997 [30]. The second is the expansion of the dimension
of LSTM in 2007 [31], which made the model more suitable for spatial analysis. In the
traffic accident context, every cell in the bi-dimensional network represents a grid cell in
the urban area, as shown in Figure 7a.

Influences among the grids cells are further expanded, as shown in the following
figures. Figure 8 represents the cell (t, s) in the MDLSTM model shown in Figure 7a, with
the input xt,s and the output ht,s. It also represents the grid cell located at (t, s) in the urban
area shown in Figure 7b; since all grid cells have the same trained parameters, the A used
are duplicated in every cell. The structure consists of input, output and transfer.
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Figure 8. The structure of MDLSTM cell. Arrows in the figure shows the linear transformation from
the variable behind the arrow to the variable in front of the arrow.

In the urban safety context, the input xt,s is the land use properties, including the plot
ratio, number of types of POIs, centrality, distance to the CBD, number of surrounding
road sections and the congestion ratio of grid cell located at (t, s). The output ht,s is the
accident characteristics, including the accident counts, date, time, isolation, cross-sectional
location of the grid cell (t, s). Others are intermediate variables, including St,s, it,s, ft,s,j, and
ot,s, which vary between grid cells. Weights and bias, including WC, Wi, W f ,j, Wo, bC, bi,
b f ,j, and bo are the same for every cell in the entire network.

Based on the three steps, which outlines the basic flow of the model, the relation-
ship among the land use properties of every grid cell, the accident characteristics of the
surrounding cells, and the accident characteristics of the current cell (t, s) are as follows:

Input: St,s = tanh(WC·It,s + bC) (1)

Transfer: Ct,s = it,s·St,s + ft,s,1·Ct−1,s + ft,s,2·Ct,s−1 (2)
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Output: ht,s = ot,s·tanh(Ct,s) (3)

It,s = (xt,s, ht−1,s, ht,s−1) (4)

where St,s is the state from the local land use. Ct,s is the total state. tanh is a commonly used
“hyperbolic tangent function” function in the machine learning method. WC and bC are the
weight matrix and bias matrix of the state St,s. xt,s is the input of the grid cell (t, s), ht−1,s
and ht,s−1 are the output of grid cells (t − 1, s) and (t, s − 1). It,s is the integrated matrix
including the input of grid cell (t, s) xt,s and the output h of grid cell (t − 1, s) and (t,s − 1).
it,s, ft,s,1, ft,s,2 and ot,s are the intermediate variables of grid cell (t, s).

Ct,s can be transformed to the output ht,s that represents the traffic accident character-
istics through an output rate ot,s. Ct,s can be interpreted as the traffic accidents potential.
Within Ct,s, the elements corresponding to the accident counts, date, time, isolation and
cross-sectional location can be viewed as the most dangerous location, date, time, isolation
and cross-sectional location. If the second element in Ct,s grows larger, the potential of the
current grid cell will move to a date closer to winter, meaning the traffic accident will be
more likely to happen in the winter.

The intermediate variables can be interpreted as follows. The ot,s shows the propor-
tion of potential traffic accidents manifested as real traffic accidents. The it,s shows the
proportion of land use properties that affects the traffic accident characteristics, and the
ft,s,j shows the proportion of surrounding traffic accident characteristics that generates
an impact to the traffic accident characteristics of the current cell. In the training process
of the model, although the intermediate variables are not directly determined, the basic
parameters are weights and bias. Through these parameters, every grid cell resolves its
own value of the intermediate variables St,s, it,s, ft,s,j, and ot,s:

it,s = σ(WiIt,s + bi) (5)

ft,s,j = σ(Wf,jIt,s + bf,j) (6)

ot,s = σ(WoIt,s + bo) (7)

where Wi and bi, Wf,j and bf,j, Wo and bo are the weight matrix and bias matrix of the
intermediated variables.

4. Discussion

The discussion section is organized as follow: Section 4.1 first presents the validation
of the model comparing to the LSTM, RNN, and BPNN. This proves the effectiveness of the
model and show its advantages over other neural network structures. Section 4.2 interprets
the state Ct,s of each grid cell to show the characteristics of traffic accident potential. The
spatial aggregation of the traffic accident count, date, time, isolation and cross-sectional
location are explained to discuss the accident potential. Section 4.3 detailed explains the
intermediate variables in the urban safety context to reveal the influencing factors on these
characteristics of traffic accident potential. The example conclusion can be drawn, as grid
cells with higher ot,s are more likely for potential traffic accidents to occur. Section 4.4
summarizes the position of all grid cells, and some general rules are proposed based on
weights and bias interpretations. The potential of accident date is found to be largely
influenced by the local indicators; the potential of cross-sectional location is found to be
less influenced by the local land use properties.

Corresponding to the three levels, Section 4.2 focuses on the spatial distribution of the
potential by explaining the accident potential. Section 4.3 focuses on an example grid cell
by discussing the intermediate variables that influence the potential. Section 4.4 focuses on
a general rule for the entire urban area through interpreting the weight matrix.

4.1. Validation of the MDLSTM Model

Before explaining the mechanism of the model, its accuracy and reliability are first
tested in comparison with the other neural network models. In this section, backpropaga-
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tion neural network (BPNN), recurrent neural network (RNN), long-short term memory
neural network (LSTM), and the multi-dimensional long-short term memory neural net-
work (MDLSTM) are used to show the differences in modeling the land use properties and
accident characteristics. The results are as follows.

Figure 9 shows the mean square error (MSE) of the MDLSTM, LSTM, RNN and BPNN
models trained based on the training dataset. In the MDLSTM model, a 3 × 3 window,
at the center of the 9 × 9 windows introduced in Section 3.1, is selected as the object for
calculating MSE. This greatly reduces the impact of window sampling on the accuracy of
the model. The windows are also applied in LSTM, RNN and BPNN models, so that the
accuracy can be compared fairly. It shows that MDLSTM not only converges faster than
the other three models on the training dataset, but also has a higher accuracy. In order to
demonstrate whether the model is overfit, the performance of MDLSTM and LSTM, RNN,
BPNN on the testing dataset are also compared. MDLSTM is proved to perform better, as
shown in Table 4.
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Table 4. Performance of MDLSTM, LSTM, RNN and BPNN on the testing dataset.

Testing Indicator MDLSTM LSTM RNN BPNN

Mean squared error of the whole test dataset 0.16 0.27 0.30 0.34

4.2. Characteristics of Traffic Accident Potential

It is known that the characteristics of traffic accident potential has a spatial distribution
that disclose some significant, essential information about where or which kind of accidents
could take place.

According to the model structure, the potential Ct,s of a grid cell is based on the
input land use properties xt,s, surrounding accident characteristics ht−1,s and ht,s−1 and
the intermediate variables St,s, it,s, ft,s,j, and ot,s. The accident characteristics ht,s can be
determined by the potential Ct,s and the intermediate variable ot,s.

In Figure 10, the two axes (length and width) indicates the spatial location of the
grid cell, and the ordinate shows the size of the hidden danger of each traffic accident
characteristics. For example, the higher black points are grid cells with high quality
isolation, such as center isolation.

As for the accident count, the gathering area of traffic accident can be restricted to a
certain area because of the training input and output data. However, comparing to the
distribution of the accident, this area is much larger (see Figure 3). Considering the value of
the accident count potential shown in Figure 11a, the accident count potential is gathered
at several locations within the whole traffic accident potential area. Except for the scattered
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points, the horizontal line, which represents the 64th row, corresponds to the “Hunnan
middle road”, where hidden dangers in traffic accident concentrate.
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As for the accident date shown in Figure 11b, the dividing line of values lower than
10 and higher than 10 is at a similar position as the 64th row, which means that accidents
are more likely to take place closer to winter on the north side of the line, and less likely on
the south side of the line. In addition, the trend shows traffic accidents in the south-east of
the urban center are more likely to occur in winter, and specific measures should be taken.

As for the accident happening time, shown in Figure 12a, 15:00 is found to be the
period of high traffic accidents (see Section 3.1.2), except in regions close to the dividing
line. This indicates comparatively more accidents in the daytime. The north and west part
of the urban area are also more dangerous at times. Since the isolation is decided by the
presenting facilities, the results in Figure 12b only shows the distribution of the facilities,
such as the isolation form of each road.

4.3. The Impact of Land Use Properties and Spatial Effect on the Traffic Accident

Summarizing the intermediate variables in the training dataset, the impact of the land
use properties and the spatial effect on traffic accidents are analyzed. In this section, the
values of intermediate variables of the grid cell (50, 40) are used as an example to show
some local rules about the relationship between the land use properties and traffic accident
characteristics. Then a surrounding region of the grid cell (50, 40) is discussed to show the
regional similarities. This process and method could be promoted as a general method for
urban safety and traffic accident investigation.

The value of intermediate variables of the grid cell (50, 40) (t = 3, s = 316) shown in the
Table 5 brings several interesting insights. The element in the table shows the value of the
intermediate variable corresponding to the accident characteristics.



Int. J. Environ. Res. Public Health 2021, 18, 1430 12 of 18Int. J. Environ. Res. Public Health 2021, 18, 1430 12 of 19 
 

 

 

(a) 

 

(b) 

Figure 11. (a) The spatial distribution of potential of accident count. (b) The spatial distribution of date away from winter. 

As for the accident date shown in Figure 11b, the dividing line of values lower than 
10 and higher than 10 is at a similar position as the 64th row, which means that accidents 
are more likely to take place closer to winter on the north side of the line, and less likely 
on the south side of the line. In addition, the trend shows traffic accidents in the south-
east of the urban center are more likely to occur in winter, and specific measures should 
be taken. 

As for the accident happening time, shown in Figure 12a, 15:00 is found to be the 
period of high traffic accidents (see Section 3.1.2), except in regions close to the dividing 
line. This indicates comparatively more accidents in the daytime. The north and west part 
of the urban area are also more dangerous at times. Since the isolation is decided by the 
presenting facilities, the results in Figure 12b only shows the distribution of the facilities, 
such as the isolation form of each road. 

 

(a) 

 

(b) 

Figure 12. (a) The spatial distribution of the potential of accident time. (b) The spatial distribution of the isolation form. 

4.3. The Impact of Land Use Properties and Spatial Effect on the Traffic Accident 
Summarizing the intermediate variables in the training dataset, the impact of the 

land use properties and the spatial effect on traffic accidents are analyzed. In this section, 
the values of intermediate variables of the grid cell (50, 40) are used as an example to show 

Figure 11. (a) The spatial distribution of potential of accident count. (b) The spatial distribution of date away from winter.

Int. J. Environ. Res. Public Health 2021, 18, 1430 12 of 19 
 

 

 

(a) 

 

(b) 

Figure 11. (a) The spatial distribution of potential of accident count. (b) The spatial distribution of date away from winter. 

As for the accident date shown in Figure 11b, the dividing line of values lower than 
10 and higher than 10 is at a similar position as the 64th row, which means that accidents 
are more likely to take place closer to winter on the north side of the line, and less likely 
on the south side of the line. In addition, the trend shows traffic accidents in the south-
east of the urban center are more likely to occur in winter, and specific measures should 
be taken. 

As for the accident happening time, shown in Figure 12a, 15:00 is found to be the 
period of high traffic accidents (see Section 3.1.2), except in regions close to the dividing 
line. This indicates comparatively more accidents in the daytime. The north and west part 
of the urban area are also more dangerous at times. Since the isolation is decided by the 
presenting facilities, the results in Figure 12b only shows the distribution of the facilities, 
such as the isolation form of each road. 

 

(a) 

 

(b) 

Figure 12. (a) The spatial distribution of the potential of accident time. (b) The spatial distribution of the isolation form. 

4.3. The Impact of Land Use Properties and Spatial Effect on the Traffic Accident 
Summarizing the intermediate variables in the training dataset, the impact of the 

land use properties and the spatial effect on traffic accidents are analyzed. In this section, 
the values of intermediate variables of the grid cell (50, 40) are used as an example to show 

Figure 12. (a) The spatial distribution of the potential of accident time. (b) The spatial distribution of the isolation form.

For example, the first cell in this table, 0.3, means that 30% of the accident potential
caused by the land use properties can join the potential calculation and be transferred to
the final number of accidents. 0.12 in the first column and the second row shows every
1 unit change in land use properties will cause a 0.12 units change in land use potential,
regardless of the it,s. The third and fourth value in the first column, 0.74 and 0.05, shows
that 74% and 5% of the accident potential can be transferred from the north and west
neighboring grid cells. 0.6 in the first column and the last row shows at least 60% of the
potential of accident count will take place in reality. Since these variables are from either
σ (1st, 3th, 4th and 5th row) function or tanh (2nd row) function, the 2nd row has both
negative and positive values.

Table 5. The value of intermediate variables of the grid cell (50, 40).

Intermediate
Variable Accident Count Accident Date Accident Time Accident Isolation

Accident
Cross-Section

Location

it,s 0.30 0.77 0.41 0.29 0.23
St,s 0.12 −0.27 0.97 0.61 0.70
ft,s,1 0.74 0.65 0.26 0.59 0.66
ft,s,2 0.05 0.05 0.07 0.08 0.06
ot,s 0.60 0.56 0.62 0.45 0.47
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For the grid cell (50, 40), among all accident characteristics, the accident date (0.77)
has the highest proportion of accident potential depending on the land use properties. In
contrast, the accident date is negatively affected by the land use properties (−0.27). The
one with the highest conversion rate (0.97) are from land use properties to the potential of
accident time. From the direction point of view, it is clear that the ft,s,j in the first dimension
is much larger than in the second dimension. That may reflect the road form, since this
point is near a high level vertical road. In addition, the ot,s shows that about 60% of the
traffic accidents potential on the plot will cause accidents. The date and time of the accident
are relatively closer (0.56 and 0.62, while 0 is the closest and 1 is the farthest) to winter
and night.

The regional regulation is based on the 30 usable windows behind the grid cell (50, 40),
as shown in Figure 13. It shows the volatility and distribution of the intermediate variables
in this region. In general, the intermediate variables have little change among the grid cells
in this area.
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4.4. General Rules Based on the Interpretation of the Weight Matrix

As discussed in Section 3.3, the weight matrix shows the basic rule that traffic acci-
dents obey. By sorting out and summarizing the relationship of each grid cell among the
land use properties, intermediate variables, traffic accident potential and traffic accident
characteristics, a general rule can be devised.

4.4.1. Relationship between Land Use Properties xt,s and Accident Potential St,s

WC plays an essential role in the model, since it transforms a grid cell’s land use
properties to the accident potential. Meanwhile, WC itself is also generated based on the
land use properties. In this section, elements in WC are first explored and interpreted to
show the basic relationship between land use and traffic accident potential. Table 6 shows
the WC after training.

Negative values in WC suggest land use properties contribute negatively to the traf-
fic accident potential. For example, the most negative effect is the impact of umber of
surrounding road sections on the accident cross-section location (−0.57), which indicates
that higher accessibility may lead to a higher possibility for non-motorized lanes traffic
accidents than in motorized lanes.

Positive values suggest the land use properties have a positive impact to the accident
characteristics. For example, the most positive effect is congestion ratio on the accident
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date (2.11), which indicates that higher congested areas may lead to accident occurrences
further away from winter.

Table 6. WC after training.

Key Features Accident Count Accident Date Accident Time Accident Isolation
Accident

Cross-Section
Location

Plot ratio −0.39 0.13 0.09 0.00 −0.49
Number of types of POIs −0.12 0.32 0.37 0.25 −0.27

Centrality −0.12 0.22 0.32 −0.28 0.04
Distance to CBD 0.41 −0.24 0.30 0.19 0.49

Number of surrounding
road sections −0.49 0.39 0.08 0.04 −0.57

Congestion ratio 1.02 2.11 −0.73 1.66 0.21
Sum 0.31 2.93 0.42 1.86 −0.59

The comparison of numbers in the “Sum” row indicates the relative impact of all the
chosen land use properties on the accident potential. The accident date is found to be
largely influenced by the land use properties (2.93), which shows great variations in the
dates of accidents potential in different regions, and the need for more targeted measures
in seasonal control. Every type of land use properties has a positive impact on the accident
date, except for the distance to CBD. However, the accident cross-sectional location is
negatively affected by the land use properties (−0.59).

4.4.2. Accident Potential Ct,s Based on the Local One St,s

The it,s shows the proportion of local state St,s that will influence the accident potential
Ct,s. This it,s is further generated based on the input weight Wi. Therefore, elements in
Wi reflects the impact of land use properties on the proportion of hidden traffic accidents
caused by local land use properties. Table 7 shows Wi after training.

In the Wi which differs from WC, negative values suggest the land use properties
has lower contribution to the traffic accident potential. For example, the most negative
effect is the impact of congestion ratio on the accident count (−1.34), which indicates the
higher the level of congestion, the lower the number of accidents affected by local land
use properties. Positive values, such as the congestion ratio on the accident date (3.24),
indicates that the date of traffic accident occurrences in higher congested area may be
further away from winter.

The comparison of numbers in the “Sum” row indicates the relative impact of all the
chosen land use properties on the accident potential. In accordance to Equation (2), the
impact of this Wi is very similar to the WC, since the accident potential is affected by the
product of it,s and St,s.

Table 7. Wi after training.

Key Features Accident Count Accident Date Accident Time Accident Isolation
Accident

Cross-Section
Location

Plot ratio 0.19 0.09 −0.03 0.31 0.27
Number of types of POIs 0.00 −0.27 0.01 0.07 −0.99

Centrality 0.03 0.34 0.16 −0.26 0.64
Distance to CBD 0.71 −0.85 1.09 −0.50 1.61

Number of surrounding
road sections −0.01 0.13 −0.03 0.13 −0.23

Congestion ratio −1.34 3.24 0.62 1.15 −2.05
Sum −0.43 2.69 1.82 0.89 −0.74
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4.4.3. Accident Potential Transfer from the Neighboring Grid Cells Ct−1,s and Ct,s−1

As discussed in Section 3.3., W f ,j represents the impact of land use properties on the
transferred accident potential from the neighboring grid cells. This is the main step for
considering the spatial effects in the model. Since we suppose the unit values of the spatial
effect in east-west direction and the north-south direction are equivalent, the focus is placed
on W f ,1&2, the sum of W f ,1 and W f ,2. Table 8 shows the first part of the transfer weight
matrix W f ,1&2 after training.

Table 8. W f ,1&2 after training.

Key Features Accident Count Accident Date Accident Time Accident Isolation
Accident

Cross-Section
Location

Plot ratio −0.43 −0.26 −0.35 0.90 −0.05
Number of types of POIs 0.04 0.02 0.39 0.99 −0.15

Centrality −0.87 0.72 −0.18 −1.35 −0.48
Distance to CBD 0.22 0.13 0.01 −0.95 −0.36

Number of surrounding
road sections 0.01 0.60 0.15 −0.71 0.17

Congestion ratio −1.55 −0.14 −0.86 4.15 −0.10
Sum −2.58 1.08 −0.84 3.04 −0.97

In the W f ,1&2, negative values suggest the land use properties has lower contribution
to the transfer ratio of traffic accident potential. For example, the most negative effect is the
impact of congestion ratio on the accident count (−1.55), which indicates the higher the
level of congestion, the lower the number of accidents affected by surrounding accident
potential. Positive values, such as the congestion ratio on the accident isolation (4.15),
indicates that the isolation form is affected more by the neighboring grid cells.

Moreover, the comparison between numbers in the “Sum” row shows a similar
conclusion that the potential of accident count is less influenced by the neighboring accident
potential. The 3.04, corresponding to the accident isolation, shows that the isolation form
of every grid cell is greatly influenced by the spatial effect.

4.4.4. Proportion of Accident Potential Ct,s That Leads to an Accident ht,s

The ot,s represents the proportion of accident potential, Ct,s, that leads to an accident,
ht,s. Wo, as the corresponding weight, represents the impact of land use properties on ot,s.
Higher ot,s suggests a serious proportion of accidents potential resulting in traffic accidents,
which also reflect factors in the local area for avoiding traffic accidents. Table 9 shows the
first part of the input weight matrix Wo after training.

Table 9. Wo after training.

Key Features Accident Count Accident Date Accident Time Accident Isolation
Accident

Cross-Section
Location

Plot ratio 0.08 0.23 0.21 −0.05 −0.29
Number of types of POIs −0.13 −0.01 0.16 −0.15 0.13

Centrality −0.17 0.01 −0.42 0.44 −0.35
Distance to CBD 0.20 0.09 −0.70 −1.07 0.64

Number of surrounding
road sections 0.39 0.03 −0.38 0.15 −0.47

Congestion ratio 0.27 −0.29 −0.42 −0.26 −0.16
Sum 0.64 0.06 −1.55 −0.94 −0.50

In Wo, negative values also suggest the land use properties has lower contribution to
the ot,s, which shows the proportion of traffic accident potential that eventually occurred.
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For example, the most negative effect is the impact of distance to CBD on accident isolation
(−1.07), which indicates that the farther away from CBD, the less likely for the isolation of
hidden traffic accident to result in accidents. Positive values, such as the distance to CBD
on the accident cross-section location (0.64), indicates that the farther away from CBD, the
more significant the cross-sectional location becomes as a factor in the potential of traffic
accident that result in accidents.

Moreover, the comparison between numbers in the “Sum” row shows that the accident
time will be far from potential if the land use properties gets higher. The accident count
will also be more predictable and explainable by the traffic accident potential with a higher
land use property.

5. Conclusions

This study focuses on the interpretation and application of the multi-dimensional
long-short term memory neural network model (MDLSTM) on modelling the relationship
between traffic accident and selected land use properties.

The idea is to divide the influencing factors of traffic accident into two categories:
a spatial category and a local category. The local category considers land use properties,
which include the plot ratio, number of types of POIs, centrality, distance to CBD, number
of surrounding road sections and congestion ratio. Other parameters are considered in the
spatial category.

Some interesting insights are found. (1) The spatial distribution of accident potential
purposed a division line, on both side of which the accident potential shares significant
differences. (2) Spatial effect differ strongly through directions between north-to-south and
west-to-east, especially the characteristics about the physical infrastructure, such as the
isolation form. (3) The potential of accident date is found to be largely influenced by the
local indicators, and the potential of cross-sectional location is found to be less affected by
the local land use properties. The potential of isolation form is highly spatial correlated,
while the accident count shows differences. As for the proportion of potential accident that
causes real-life traffic accident, the accident count shows better interpretability, while the
higher land use characteristics leads to lower accuracy in accident time prediction.

Based on the findings above, several applicable advices can be proposed to the urban
managers and researchers. It is a practical problem for urban managers to predict the
location of the traffic accidents, especially for managers in Shenyang. Results show that
“Hunnan middle road” is an essential accident potential hotspot. It also illustrates the
potential form which further shows the accidents might be a critical problem in some
regions near city center. At the level of the whole urban area, focus need to be put on
the accident non-motorized lane especially in the suburban area with simple isolation
facilities. In addition, the traffic accidents around congested area are also important since it
positively correlated to the plot ratio. Winter accidents may occur far away from the city
center. Therefore, target measures are needed in seasonal accident control.

The innovations of this paper are: 1. Multiple local and surrounding influence factors
are considered, and appropriate model is used to capture their influence. The model
separates spatial influence factors from local influence factors, which greatly improves
the interpretability of traffic accident analysis models. 2. Multi-Dimensional Long Short
Term neural network (MDLSTM) model is used to explore the relationship between input
and output, with higher accuracy and computational efficiency. 3. Interpretation of the
relationship of land use properties and traffic accidents are proposed, and a three levels of
explanation method was used. The hidden factor-accident potential is found, containing
the local and spatial effect. At last, the general rules of land use properties with the traffic
accident characteristics are interpreted in detail to provide guidance for policy making.
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