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Italy is currently one of the countries most affected by the global emergency of COVID-19, a lethal disease
of a novel coronavirus renamed as SARS-CoV-2. SARS-CoV-2 shares highly homological sequence with the
most studied SARS-CoV, and causes acute, highly deadly pneumonia (COVID-19) with clinical symptoms
similar to those reported for SARS-CoV and MERS-CoV. Increasing evidence shows that these coron-
aviruses are not always confined to the respiratory tract and that they may also neuroinvasive and neu-
rotropic, with potential neuropathological consequences in vulnerable populations. The aim of this study
is to predict a likely CNS involvement by SARS-CoV-2 by studying the pathogenic mechanisms in com-
mon with other better known and studied coronaviruses with which it shares the same characteristics.
Understanding the mechanisms of neuroinvasion and interaction of HCoV (including SARS-Cov-2) with

the CNS is essential to evaluate potentially pathological short- and long-term consequences. Autopsies of
the COVID-19 patients, detailed neurological investigation, and attempts to isolate SARS-CoV-2 from the
endothelium of cerebral microcirculation, cerebrospinal fluid, glial cells, and neuronal tissue can clarify
the role played by COVID-19 in CNS-involvement and in the ongoing mortalities as has been in the recent
outbreak.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Another highly pathogenic HCoV, currently called SARS-CoV-2,
emerged in December 2019 in Wuhan, China, and spread rapidly
around the world involving Europe and especially Italy in a dra-
matic way [79]. This novel HCoV has caused a national outbreak
of severe pandemic pneumonia (COVID-19). The first reports about
a dangerous infection emerged from December 2019 in Wuhan,
China. In February 2020, a designation ‘‘severe acute respiratory
syndrome coronavirus 2” (SARS-CoV-2) became the official means
to refer to this type of virus, and finally, the WHO officially
renamed the disease as COVID-19. The complete genome of
SARS-CoV-2 was successfully established as 29,903 bp single-
stranded RNA (ss-RNA) SARS-like coronavirus [1]. Italy is currently
one of the countries most affected by the global emergency of
COVID-19.

The common onset-symptoms of COVID-19 are dry cough and
fever at the onset of illness, but rapidly pathology evolves towards
a respiratory distress syndrome (ARDS), and most of the patients
admitted to the intensive care could not breathe spontaneously.
About 46% ~ 65% of the patients in the intensive care worsened
in a short period and died due to respiratory failure [63].

As observed for the most important pandemic circulating
strains of HCoVs they involve more frequently a vulnerable popu-
lation (such as the elderly, immune-compromised individuals or
patients with comorbidities). Additionally, it has been reported
that some patients affected by SARS-CoV-2 also showed neurologic
signs such as headache, nausea, and vomiting [2–4,69].

Recently, a study from Mao et al. [77] has reported neurological
manifestations in COVID-19 which suggests a rationale of the neu-
rotropic potential in the COVID-19 virus. Also, recently it was
reported [70] a suspected first European case of COVID-19 associ-
ated with acute necrotizing hemorrhagic encephalopathy in a
female airline worker.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocn.2020.07.007&domain=pdf
https://doi.org/10.1016/j.jocn.2020.07.007
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A lot of studies demonstrate that HCoVs can invade the CNS
[6,38,39] and that neurotropism is one common feature of these
groups of virus [44]. Recent findings of an altered sense of smell
or hyposmia in an uncomplicated early stage of COVID- 19 have
been reported, and these data should be investigated thoroughly
for CNS involvement.

The aim of this study is to predict a likely CNS involvement by
SARS-CoV-2 by studying the pathogenic mechanisms in common
with other better known and studied coronaviruses with which it
shares the same characteristics.
2. Material and methods

2.1. Rationale

In light of the high similarity between SARS-CoV and SARS-
CoV2, the potential neuro-invasion of SARS-CoV-2 is likely linked
to the acute respiratory failure of COVID-19 patients. Some studies
demonstrate a critical role for infection of the CNS in severe disease
in SARS-CoV-infected animals and humans [4,76].
2.2. Objective

Being that most HCoVs share a similar viral structure and infec-
tion pathway and therefore the infection mechanisms previously
found for other HCoVs, it is reasonable that previously studied
hypothetical mechanisms of neuro-invasion may also be applicable
for SARS-CoV-2.

Based on an epidemiological survey on COVID-19, the median
time from the first symptom to dyspnea was 5.0 days, and to the
intensive care was 8.0 days 5. Therefore, given the probable
neuro-invasion, the latency period is enough for the virus to enter
into the neurons and the risk of SARS-CoV-2 infection may be cur-
rently underestimated. As an emerging virus no effective treat-
ment has been developed for the COVID-19. Therefore, awareness
of the possible entry of SARS-CoV-2 into the CNS will have impor-
tant guiding significance for the prevention and treatment.
2.3. Eligibility criteria: sources and study selection

Therefore, while screening the literature, we adopted the fol-
lowing inclusion and exclusion criteria: 1) papers identifying trop-
ism to the central nervous system of the coronavirus family; 2)
detailed reports concerning mechanisms of action, clinical and lab-
oratory evaluation 3) year of publishing was also included to
understand a possible year of experience/improvement of the tech-
nologic setup effect on the results;

Conversely, we excluded the following. First, we excluded arti-
cles that do not mention CSN involvement. Second, we excluded
incomplete reports according to the aforementioned end points.
Because accurate reports are extremely few, and among them,
some focused predominantly on the involvement of respiratory
tract and clinical surveillance, we decided to include in this review
those reports in which at least 1 of the 2 key point about this topic
of the present study were reported in detail.
Fig. 1. A prisma Flow-diagram for selection of studies.
2.4. Information sources

The English literature was systematically investigated using
MEDLINE, the NIH Library, PubMed, and Google Scholar. The last
search date was April 18, 2020. The following search terms were
used: SARS-Cov central nervous system, SARS-CoV brain, coron-
avirus central nervous system, COVID-19 central nervous system
and brain.
Backward citation tracking was applied to identify articles not
retrieved by electronic searches. The search returned a total of 80
papers, 17 including review, 2 clinical trial and 61 laboratory study
analysis.

To this initial cohort, the aforementioned exclusion criteria
were applied, accordingly eliminating a total of 11 papers
(Fig. 1). To this cohort of patients, the personal experience of our
department and articles and case reports that hypothesize the
specific involvement of SARS-CoV-2 of the CNS of the present paper
were added, resulting in a total final cohort composed of 80 papers.
3. Discussion

3.1. The human coronaviruses naturally reach the central nervous
system

Following the severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome coronavirus
(MERS-CoV), another highly pathogenic coronavirus named SARS-
CoV-2 rapidly spreads around the world.

Human coronaviruses (HCoVs), which are large enveloped non-
segmented positive-sense RNA viruses, generally cause enteric and
respiratory diseases in animals and humans [57].

HCoVs are typically classified in two groups: Alphacoronavirus
(of which the most representative is HCoV-229E) and Betacoron-
avirus (HCoV-OC43, SARS-and MERS-CoV) 24

HCoVs can reach the lower respiratory tract and, as opportunis-
tic pathogens [14,65,66], be associated with more severe illnesses,
such as bronchitis, bronchiolitis, pneumonia and ARDS as it hap-
pened for SARS-CoV and MERS-CoV, has called global attention to
the lethal potential of HCoVs [58]. So, genomic analysis and public
evidence show that SARS-CoV-2 is in the same Betacoronavirus
group as MERS-CoV and SARS-CoV, which shares a highly homo-
logical sequence with SARS-CoV [59], and shares similar pathogen-
esis [60]. Moreover, the entry of SARS-CoV-2 into human host cells
has been identified to use the same entry receptor as SARS-CoV,
suggesting the likelihood of the same population of cells being tar-
geted and infected [25,61,62,71].

The entry of SARS-CoVs into human host cells is mediated
mainly by a cellular receptor angiotensin-converting enzyme 2
(ACE2) which is expressed in human airway epithelia, lung par-
enchyma, vascular endothelia, kidney cells, and small intestine
cells.



Fig. 2. A schematic representation of the possible spreading of SARS-CoV-2 to CSN
drawn by the author. SARS-COV-2 uses severals mRNA encoding proteins, such S1
protein that enables the attachment of the virion to the cell membrane by
interacting with the host ACE2 receptor. Viral S and E proteins, structural and
accessory proteins are important factors of neurovirulence, neuropropagation and
neurodegeneration of infected cells. HCoV may lead to the disruption of the nasal
epithelium and across the cribriform plate of the ethmoid bone close to the
olfactory bulb uses as the main entry route into the CNS the olfactory nerve fibers.
The virus disseminates to several different regions of the brain and the brainstem
via a synapse-connected route to the medullary cardiorespiratory center, may also
partially explain why some of the patients developed respiratory failure (upper part
of scheme). The second hypothesized pattern of spreading within the CNS is
through neuronal dissemination, where a given virus infects neurons in the
periphery using the mechanisms of active transport within those cells to gain access
to the CNS (lower part of scheme).
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Primary viral replication takes place in the mucosal epithelium
of upper respiratory tract (nasal cavity and pharynx), with further
multiplication in the lower respiratory tract and gastrointestinal
mucosa [72], giving rise to a mild viremia.

Dissimilar to SARS-CoV, SARS-CoV-2-infected patients rarely
showed prominent upper respiratory tract signs and symptoms,
but manifest an exuberant inflammatory response during SARS-
CoV-2 infection, further resulting in uncontrolled pulmonary
inflammation, likely a leading cause of case fatality, indicating that
the target cells of SARS-CoV-2 may be located in the lower airway
[58]. Rapid viral replication and cellular damage, virus-induced
ACE2 downregulation and shedding, and antibody-dependent
enhancement (ADE) are responsible for the development of an
aggressive inflammation caused by SARS-CoV-2 [71]. The initial
onset of rapid viral replication may trigger the production of exu-
berant pro-inflammatory cytokines and chemokines. A possible
underlying mechanism of antibody-dependent enhancement
(ADE) has been proposed recently [71] as the phenomenon that
can promote viral cellular uptake of an infectious virus–antibody
complexes following their interaction with Fc receptors (FcR),
FccR, or other receptors, resulting in enhanced infection of target
cells. The interaction of FccR with the virus-anti-S protein-
neutralizing antibodies (anti-S-IgG) complex may facilitate both
inflammatory responses and persistent viral replication in the
lungs [25,71].

Viral involvements of the CNS are rare and often the clinical
surveillance focus on a few different viruses such as HSV, arbo-
viruses, and enteroviruses [10], but HCoVs also have a recognized
ability to invade the CNS, where they can infect the neurons [3],
but their incidence in clinical practice is difficult to evaluate [11].
HCoVs can naturally reach the CNS in humans and could poten-
tially be associated with neurological symptoms [6,25,28,33].
These ubiquitous human pathogens are molecularly related in
structure and mode of replication that is the same for every type
[16–20].

3.2. The route to the CNS

Over the years, HCoVs have also been identified as possible eti-
ological agents for pathologies outside the respiratory tract [25–
27] and a propensity, under certain conditions, to invade the CNS
[57,64] and induce neurological diseases [28–30]. However, the
exact route by HCoVs enters the CNS is still not completely under-
stood. HCoV may enter the CNS through different hypothesized
ways.

The main theory affirm that SARS-CoV probably uses as the
main entry route into the CNS the olfactory nerve fibers
[4,15,31,32,48], and induces neuronal cell death [4]. In the human
airways, after an intranasal infection, although the olfactory bulb is
highly efficient to controlling viral neuro-invasion, HCoVs have
been shown to enter CNS through the olfactory route (OR) [41–
43] (in same pathway both animal and humans [22,23]).

The virus in the general circulation enables it to pass into the
cerebral circulation where the sluggish movement of the blood
within the microcirculation combined with the high rate of load
in initial sites of infection could be one of the factors make possible
the interaction of the COVID-19 virus spike protein (S-protein)
with ACE2 expressed in the capillary endothelium. Subsequent
budding of the viral particles from the capillary endothelium,
spreading along the Virchow-Robin spaces surrounding arterioles
and venules [2,44], and disseminates to several different regions
of the brain and the brainstem [39,43].

The second hypothesized pattern of spreading within the CNS is
through neuronal dissemination, where a given virus infects neu-
rons in the periphery using the mechanisms of active transport
within those cells to gain access to the CNS [39,40,44,50,52]. Seems
that HCoV could move along the axon using the anterograde axonal
transport between neurons without an effective inflammation of
tissue [49]. Other details are described in the schematic draw
(Fig. 2).

SARS-CoV, also demonstrates a potential myeloid cell invasion
[34–36] and an ability to manipulate the innate immunity and to
disseminate to other tissues, including the CNS [37]. Moreover,
persistently-infected leukocytes may serve as a reservoir and vec-
tor for neuroinvasive HCoV [38]. Although HCoV infections are,
most of the time, restricted to the airways, they may under poorly
understood conditions extend over the epithelium barrier and
could use the hematogenous route propagate towards the CNS
[33]; However, the hematogenous or lymphatic route seems
impossible, especially in the early stage of infection, since almost
no virus particle was detected in the non-neuronal cells in the
infected brain areas [68].

Specifically for COVID-19, the possible neuro-invasion of SARS-
CoV-2 may also partially explain why some of the patients devel-
oped respiratory failure. It is possible that most of the persons in
Wuhan, who were the first exposed to this previously unknown
virus, did not have any protective measure so that the mortality
rate in Wuhan was higher than in other cities in China. On the
other hand, is hard to explain the high number of deaths and crit-
ical patients in Italy. If the neuro-invasion of SARS-CoV-2 does play
a role in the development of respiratory failure in COVID-19
patients, the precautionary use of masks could be considered as
the most effective measure to protect against the possible entry
of the virus into the CNS. The presence of HCoVs viral particles
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has been reported in the brains of patients and experimental ani-
mals, where the brainstemwas heavily infected. In light of the sim-
ilar nature between SARS-CoV and SARS-CoV2, the potential
invasion of SARS-CoV2 is likely partially responsible for the ARDS
in COVID-19 patients. Awareness of this will have important guid-
ing significance for the prevention and treatment of the SARS-CoV-
2-induced respiratory failure. Besides all these issues, accumulat-
ing evidence from the medical world strongly suggests that, being
opportunistic pathogens, these viruses can escape the immune
response and spread to the CNS [12,13].

3.3. Possible mechanisms

The brain has been reported to express ACE2 receptors that
have been detected over glial cells and neurons, which makes them
a potential target of SARS-CoVs where its interaction with ACE2
receptors expressed in neurons can initiate a cycle of viral budding
[21]. SARS-COV-2, like SARS-CoV, uses other mRNA encoding sev-
eral proteins, such S1protein [52] that enables the attachment of
the virion to the cell membrane by interacting with the host
ACE2 receptor.

Viral budding in the brain can be accompanied by neuronal
damage without substantial inflammation, or by a large endothe-
lial rupture in cerebral capillaries accompanied by bleeding within
the cerebral tissue [22]. The role of the blood–brain barrier (BBB) in
containing the virus and preventing it from gaining access to the
neural tissues [9] and type of spreading needs to be further
explored. The presence of ACE2 or DPP4 solely is not sufficient to
make host cells susceptible to infection. For example, some
ACE2-expressing endothelial cells failed to be infected by SARS-
CoV [67]. Likewise, the infection of SARS-CoV or MERS-CoV was
also reported in the CNS, where the expression level of ACE2 or
DDP4 is very low under normal conditions.

ACE2 binding affinity of the SARS-CoV-2 S-protein ectodomain
was 10–20-fold higher than that of the SARS-CoV S-protein, which
may be the reason for the higher binding affinity of the COVID-19
S-protein to the human ACE2 receptor in lower respiratory tract.

The structural proteins S and E proteins are actually consider the
most important factor of neurovirulence and propagation in virus-
cell interactions [6,7,50,52]. S proteins (in particular S2 and S5
domain), play a significant role in viral dissemination and influence
the rate and success of virus propagation towards the brain [44].

It’s reported that a single point mutation in S-protein of HCoV-
OC43 modulates virus-induced neuropathology in a mouse model
from encephalitis to an MS-like paralytic disease related to gluta-
mate excitotoxicity, with the involvement of AMPA receptors
[73]. It was demonstrated that glutamate receptors are also
involved in the infection of mice with HCoV-OC43. Possible gluta-
mate excitotoxicity, thus increasing damage to neurons and/or dis-
turbing glutamate homeostasis [6,7] and thereby contributing to
neuronal degeneration and hind-limb paralysis and possible
demyelination [44].

It is also possible that excessive levels of proinflammatory
cytokines/chemokines in the brain result in a ‘‘cytokine storm” that
can lead to harmful effects in the brain and other tissues. To sup-
port this hypothesis, three cytokines often associated with
immunopathology, IL-1, tumor necrosis factor-alpha, and IL-6,
are all upregulated in the brains of infected K18-hACE2 mice
[76]. IL-6 was produced by a normal consequence of infected neu-
rons and in the adult brain following ischemia in an unknown
mechanism. Probably, IL-6 may be induced by another inflamma-
tory mediator, such as IL-1 or tumor necrosis factor alpha [78], also
expressed in the SARS-CoV-infected CNS.

Given this high-level expression of proinflammatory mediators,
the lack of inflammation that we often observe in the CNS is sur-
prising [38].
One possibility is that the virus interferes with the initiation of
the immune response is not known at present but may be one
mechanism that would result in a diminished inflammatory
response [33,44].

The other one is that the degeneration of neurons may success-
fully lead to to the induction of different regulated cell death (RCD)
pathways [34,53], similar of what observed after infection by other
respiratory viruses [50,51].
4. Limitations and future studies

In the SARS-CoV infections that were reported in the past,
autopsy findings of the patients have shown strong shreds of evi-
dence of the presence of SARS-CoV by electron microscopy,
immunohistochemistry, and real-time reverse transcription-PCR.
Patients with acute SARS-CoV illness have also demonstrated the
presence of the virus in cerebrospinal fluid [5], but currently, due
to high health security measures, there is no availability of autopsy
studies.

In conclusion, there is not a clear cause-and-effect relationship
with the onset of neurological symptoms in COVID-19 patients,
though recent reports associated cases of CNS-involving
[6,8,9,28]. HCoV may potentially persist in the human CNS as it
does in murine models and potentially be associated with different
types of long-term sequelae and chronic human neurological dis-
eases [45-47], Such questions deserve timely investigations.

Viral encephalitis is often caused by herpes simplex and other
types of viruses [74,75]. The brain lesions are often hemorrhagic
[54], and a rare complication is a large intracerebral hematoma
which usually implies a poor prognosis. For this reason MRI can
be a perfect tool to identify a viral propagation in brain [74,75]

The prognosis of viral encephalitis is usually poor, but early
treatment with antiviral agents has been proven to be efficacious,
the challenge is that with such a rapid worsening of onset symp-
toms that required assisted ventilation, COVID-19 patients are
often not neurologically evaluable and therefore it is difficult to
discriminate which of them would indicate to perform neuro-
imaging. Furthermore, the potential neurological significance of
the typical hypo-ageusia and hypo-anosmia of COVID-19[14] was
until now, systematically investigated through MRI imaging.

Actually we don’t know how viral factors (mutations in specific
virulence genes), host factors (immunodepression, age) or a mix-
ture of both (underlining the importance of virus-host interac-
tions) [39,55,56] can explain the access of HCoV to the CNS.
Autopsies of the COVID-19 patients, detailed neurological investi-
gation, and attempts to isolate SARS-CoV-2 from the endothelium
of cerebral microcirculation, cerebrospinal fluid, glial cells, and
neuronal tissue would clarify the role played by this novel
COVID-19 causing coronavirus in the ongoing mortalities as has
been in the recent outbreak.
5. Conclusion

The neurotropic potential of SARS-CoV-2 in patients reported in
the recent outbreak of COVID-19 has to be considered as a poten-
tially serious threat for all health care systems, worldwide. Accu-
mulating evidence indicates that HCoVs are neuroinvasive in
humans and we hypothesize represent an important proportion
of CNS viral infection associated with encephalitis, meningitis,
myelitis, and long-term neurological disorders, either as a result
of inadequate host immune responses and/or viral propagation in
the CNS and for this reason COVID-19 will need to be studied for
a long time even after the Italian and European health emergency
is overcome to avoid possible other fearsome consequences for
public health. Understanding the mechanisms of neuroinvasion
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and interaction of SARS-HCoV-2 with the CNS is essential to eval-
uate potentially pathological short- and long-term consequences.
Antiviral therapy should be carried out as early as possible and it
is also urgent to find effective antiviral drugs that can cross the
BBB.
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