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Novel role of macrophage TXNIP-mediated CYLD–NRF2–OASL1
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Background & Aims: The stimulator of interferon genes (STING)/TANK-binding kinase 1 (TBK1) pathway is vital in mediating
innate immune and inflammatory responses during oxidative/endoplasmic reticulum (ER) stress. However, it remains un-
known whether macrophage thioredoxin-interacting protein (TXNIP) may regulate TBK1 function and cell death pathways
during oxidative/ER stress.
Methods: A mouse model of hepatic ischaemia/reperfusion injury (IRI), the primary hepatocytes, and bone marrow-derived
macrophages were used in the myeloid-specific TXNIP knockout (TXNIPM-KO) and TXNIP-proficient (TXNIPFL/FL) mice.
Results: The TXNIPM-KO mice were resistant to ischaemia/reperfusion (IR) stress-induced liver damage with reduced serum
alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, macrophage/neutrophil infiltration, and pro-
inflammatory mediators compared with the TXNIPFL/FL controls. IR stress increased TXNIP, p-STING, and p-TBK1 expression
in ischaemic livers. However, TXNIPM-KO inhibited STING, TBK1, interferon regulatory factor 3 (IRF3), and NF-jB activation
with interferon-b (IFN-b) expression. Interestingly, TXNIPM-KO augmented nuclear factor (erythroid-derived 2)-like 2 (NRF2)
activity, increased antioxidant gene expression, and reduced macrophage reactive oxygen species (ROS) production and
hepatic apoptosis/necroptosis in IR-stressed livers. Mechanistically, macrophage TXNIP deficiency promoted cylindromatosis
(CYLD), which colocalised and interacted with NADPH oxidase 4 (NOX4) to enhance NRF2 activity by deubiquitinating NOX4.
Disruption of macrophage NRF2 or its target gene 20,50 oligoadenylate synthetase-like 1 (OASL1) enhanced Ras GTPase-
activating protein-binding protein 1 (G3BP1) and TBK1-mediated inflammatory response. Notably, macrophage OASL1
deficiency induced hepatocyte apoptotic peptidase activating factor 1 (APAF1), cytochrome c, and caspase-9 activation,
leading to increased caspase-3-initiated apoptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-
mediated necroptosis.
Conclusions: Macrophage TXNIP deficiency enhances CYLD activity and activates the NRF2-OASL1 signalling, controlling IR
stress-induced liver injury. The target gene OASL1 regulated by NRF2 is crucial for modulating STING-mediated TBK1 acti-
vation and Apaf1/cytochrome c/caspase-9-triggered apoptotic/necroptotic cell death pathway. Our findings underscore a
novel role of macrophage TXNIP-mediated CYLD–NRF2–OASL1 axis in stress-induced liver inflammation and cell death,
implying the potential therapeutic targets in liver inflammatory diseases.
Lay summary: Liver inflammation and injury induced by ischaemia and reperfusion (the absence of blood flow to the liver
tissue followed by the resupply of blood) is a significant cause of hepatic dysfunction and failure following liver trans-
plantation, resection, and haemorrhagic shock. Herein, we uncover an underlying mechanism that contributes to liver
inflammation and cell death in this setting and could be a therapeutic target in stress-induced liver inflammatory injury.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Innate immunity; STING; G3BP1; IRF3; Apoptosis; Necroptosis; Liver
inflammation.
Received 14 January 2022; received in revised form 4 June 2022; accepted 25 June 2022;
available online 8 July 2022
† These authors contributed equally to this work.

* Corresponding author. Address: The Dumont-UCLA Transplant Center, Division of
Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of
Medicine at UCLA, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095, USA.
Tel.: +1-310-825-7444; Fax: (310) 267-2367.
E-mail address: bke@mednet.ucla.edu (B. Ke).
Introduction
Liver inflammation and injury induced by ischaemia and reper-
fusion (IR) is a significant cause of hepatic dysfunction and fail-
ure following liver transplantation, resection, and haemorrhagic
shock.1 IR-induced liver damage involves oxidative stress and
endoplasmic reticulum (ER) stress-mediated inflammatory re-
sponses.2 Liver macrophages (Kupffer cells), the key components
of the hepatic innate immune system, represent the first line of
defence in detecting the invading pathogens in the liver.3 IR
stress activates macrophages and triggers innate immune re-
sponses by recognising exogenous danger signals such as
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pathogen-derived molecular patterns (PAMPs) or endogenous
molecules such as damage-associated molecular patterns
(DAMPs) released from damaged or dying cells during inflam-
matory response.4 Activated macrophages generate reactive ox-
ygen species (ROS) and initiate Toll-like receptor 4 (TLR4) or
NLRP3 inflammasome activation, leading to liver inflammation
and injury.1,5,6

The stimulator of interferon genes (STING)/TANK-binding ki-
nase 1 (TBK1) pathway has been recognised as a crucial signal-
ling cascade of the innate immune system.7 STING activates the
transcription factors NF-jB and interferon (IFN) regulatory factor
(IRF) 3 via the TBK1.8 Indeed, STING is a transmembrane protein
that predominantly resides in the ER, making STING ideal for
response to alarm signals induced by ER stress.9 Activation of
STING promoted NLRP3 activation and inflammatory re-
sponses,10 whereas disruption of the STING/TBK1 pathway
ameliorated liver inflammatory injury.11 Recent studies have
demonstrated that STING protein was not detectable in human
and murine hepatocytes but was highly expressed in hepatic
macrophages.12,13 STING promoted macrophage-mediated in-
flammatory responses and dampened liver function, whereas
disruption of myeloid STING alleviated hepatic inflammation in
non-alcoholic fatty liver disease.12,13 These results indicate that
the STING/TBK1 pathway is key in mediating innate immune
activation during liver inflammatory injury.

Thioredoxin-interacting protein (TXNIP), the thioredoxin
(TRX)-binding protein, has been shown to regulate redox
homoeostasis during stress.14 Under normoxic conditions, TXNIP
binds to TRX1 in an inactive state. In response to oxidative stress,
ROS generation facilitates TXNIP dissociation from TRX1 and
activates the TXNIP signal cascade.14 Indeed, activation of TXNIP
increased the production of ROS and redox responses involved in
multiple inflammatory diseases.15 Disruption of TXNIP reduced
oxidative stress and NLRP3-mediated inflammatory responses.16

Moreover, increasing evidence shows that TXNIP is linked to ER
stress and tissue inflammation.17 TXNIP deletion inhibited ER
stress-induced inflammation and cell injury.18 Although these
studies document the critical role of TXNIP in oxidative and ER
stress-induced inflammatory responses, it is unknown whether
and how macrophage TXNIP regulates STING/TBK1-mediated
innate immune response and cell death in IR-triggered liver
inflammation.

Here, we identified a novel regulatory mechanism of macro-
phage TXNIP on TBK1 function and apoptotic/necroptotic cell
death pathway in IR stress-mediated liver inflammation. We
demonstrated that macrophage TXNIP deficiency controlled
STING-mediated TBK1 function and alleviated IR-induced hepa-
tocellular injury by regulating the cylindromatosis (CYLD)–
NADPH oxidase 4 (NOX4) axis. Enhancing the CYLD–NOX4
interaction activated nuclear factor (erythroid-derived 2)-like 2
(NRF2) and its target gene 20,50 oligoadenylate synthetase-like 1
(OASL1), leading to inhibited Ras-GTPase-activating protein-
binding protein 1 (G3BP1) and TBK1-driven inflammatory re-
sponses and hepatocyte death in IR stress-induced liver injury.
Materials and methods
Animals
The floxed TXNIP (TXNIPFL/FL) mice (B6;129-Txniptm1Rlee/J) and
the mice expressing Cre recombinase under the control of the
Lysozyme 2 (Lyz2) promoter (LysM-Cre) were obtained from
The Jackson Laboratory (Bar Harbor, ME, USA). A targeting
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construct incorporating a loxP-exon1-FRT-PGKneobpA-FRT-loxP
sequence was introduced to J1 129S4/SvJae-derived embryonic
stem (ES) cells. Resultant mice were crossed with 129Sv back-
ground animals expressing Gt(ROSA)26Sortm1(FLP1)Dym to excise
the FRT-flanked neomycin cassette, leaving exon 1 flanked by
loxP sites. This strain was maintained on a mixed 129 and
C57BL/6 genetic background. To generate myeloid-specific
TXNIP knockout (KO) (TXNIPM-KO) mice, a homozygous loxP-
flanked TXNIP mouse was mated with a homozygous Lyz2-Cre
mouse to create the F1 mice that were heterozygous for a
loxP-flanked TXNIP allele and heterozygous for the Lyz2-Cre.
The F1 mice were then backcrossed to the homozygous loxP-
flanked TXNIP mice, resulting in the generation of TXNIPM-KO

(25% of the offspring), which were homozygous for the loxP-
flanked TXNIP allele and heterozygous for the Lyz2-Cre allele
(Fig. S1). Mouse genotyping was performed using a standard
protocol with primers described in the JAX Genotyping pro-
tocols database. Male mice at 6–8 weeks of age were used in all
experiments. This study was performed in strict accordance
with the recommendations in the Guide for the Care and Use of
Laboratory Animals published by the National Institutes of
Health. Animal protocols were approved by the Institutional
Animal Care and Use Committee of The University of California
at Los Angeles.

Mouse liver IRI model
We used an established mouse model of warm hepatic ischaemia
(90 min) followed by reperfusion (6 h).5 Mice were injected with
heparin (100 U/kg), and an atraumatic clip was used to interrupt
the arterial/portal venous blood supply to the cephalad liver
lobes. After 90 min of ischaemia, the clip was removed, and mice
were sacrificed at 6 h of reperfusion. Some animals were injected
via tail vein with OASL1 small interfering RNAs (siRNAs) or non-
specific (NS) control siRNA (2.5 mg/kg) (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) mixed with mannose-conjugated
polymers (Polyplus transfectionTM, Illkirch, France) at a ratio
according to the manufacturer’s instructions 4 h before
ischaemia as described.1,5,6 Some animals were injected via tail
vein with TBK1-expressing bone marrow-derived macrophages
(BMMs) or control cells (1 × 106 cells in 0.1 ml of PBS/mouse)
24 h before ischaemia.

Statistical analysis
Data are expressed as mean ± SD and analysed using the per-
mutation t-test and Pearson correlation. Per comparison, 2-sided
p values <0.05 were considered statistically significant. Multiple-
group comparisons were made using 1-way ANOVA followed by
Bonferroni’s post hoc test. When groups showed unequal vari-
ances, we applied Welch’s ANOVA to make various group com-
parisons. All analyses were used by SAS/STAT software version
9.4.

For further details regarding the materials and methods used,
please refer to the CTAT Table and Supplementary information.
Results
Disruption of myeloid-specific TXNIP ameliorates IR-induced
liver injury and diminishes macrophage/neutrophil accumu-
lation and proinflammatory mediators in IR-stressed liver
The myeloid-specific TXNIP-deficient (TXNIPM-KO) and TXNIP-
proficient (TXNIPFL/FL) mice were subjected to 90 min of warm
ischaemia followed by 6 h of reperfusion. The primary
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hepatocytes and liver macrophages (Kupffer cells) were isolated
from these ischaemic livers. Unlike TXNIPFL/FL livers, TXNIPM-KO

lacked TXNIP expression in liver macrophages but not in hepa-
tocytes (Fig. 1A). The liver damage was evaluated using Suzuki’s
histological grading of liver ischaemia/reperfusion injury (IRI)19

(Fig. 1B). The TXNIPM-KO livers showed mild to moderate
oedema, sinusoidal congestion, and mild necrosis compared to
the TXNIPFL/FL livers, which showed severe oedema, sinusoidal
congestion, and extensive hepatocellular necrosis (Fig. 1B). Liver
injury is measured by the serum ALT (sALT) and sAST levels (IU/
L). Myeloid TXNIP deficiency significantly reduced sALT and sAST
levels at 6 h post liver reperfusion in the TXNIPM-KO mice
compared with the TXNIPFL/FL controls (Fig. 1C). Moreover, the
TXNIPM-KO ischaemic livers showed decreased accumulation of
CD11b+ macrophages (Fig. 1D) and Ly6G+ neutrophils (Fig. 1E), as
well as reduced mRNA levels coding for IL-6, tumour necrosis
factor-alpha (TNF-a), C-X-C motif chemokine ligand 10 (CXCL-
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Fig. 1. Disruption of myeloid-specific TXNIP ameliorates IR-induced liver
flammatory mediators in IR-stressed liver. The TXNIPFL/FL and TXNIPM-KO mice
reperfusion. (A) The TXNIP expression was detected in hepatocytes and liver m
experiments. (B) Representative histological staining (H&E) of ischaemic liver t
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10), and monocyte chemoattractant protein 1 (MCP-1) in
ischaemic livers (Fig. 1F), compared with the TXNIPFL/FL controls.
These results suggest that TXNIP plays an important role in IR
stress-induced liver inflammation and injury.

Disruption of myeloid-specific TXNIP inhibits STING-
mediated TBK1 and NF-jB activation in IR-stressed liver
Next, we analysed whether TXNIP may affect the STING/TBK1
pathway in IR-stressed livers. Indeed, IR stress augmented TXNIP
expression, STING, and TBK1 phosphorylation in ischaemic livers
(Fig. 2A). As previous studies have demonstrated that STING is
expressed in nonparenchymal liver cells (mainly macrophages or
Kupffer cells) but not in human and murine hepatocytes,12,13 we
then detected STING expression in liver macrophages (Kupffer
cells). As expected, immunofluorescence staining revealed that
IR stress increased p-STING expression in Kupffer cells from
ischaemic livers (Fig. 2B). Unlike the TXNIPFL/FL controls, TXNIPM-
F
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KO reduced p-TBK1, p-IRF3, p-IjBa, and p-P65 protein expression
in ischaemic livers (Fig. 2C). This result was further confirmed by
immunohistochemistry (IHC) staining in liver macrophages
(Fig. S2). Moreover, immunofluorescence staining revealed that
TXNIPM-KO reduced macrophage p-TBK1 expression in IR-
stressed livers compared with the TXNIPFL/FL controls (Fig. 2D).
Western blot assay showed that TXNIPM-KO diminished p-TBK1,
p-IRF3, and p-P65 protein expression (Fig. 2E) accompanied by
reduced IFN-b mRNA levels (Fig. 2F) in Kupffer cells from
ischaemic livers. These data suggest that macrophage TXNIP is
JHEP Reports 2022
critical in mediating STING-mediated TBK1 activation in IR
stress-induced liver injury.

Disruption of myeloid-specific TXNIP promotes CYLD and
activates the NRF2 pathway in IR-stressed liver
As TXNIP is involved in oxidative and ER stress-induced in-
flammatory responses, we then examined whether TXNIP
influenced the NRF2-antioxidative responses in IR-stressed
livers. Indeed, IR stress activated CYLD, NOX4, and NRF2 in
ischaemic livers (Fig. 3A) and liver macrophages (Fig. S3).
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Notably, TXNIPM-KO enhanced CYLD and NRF2 activation in IR-
stressed livers (Fig. 3B) and liver macrophages (Fig. S4) with
increased antioxidant gene expression coding for NAD(P)H
quinone dehydrogenase 1 (NQO1), glutamate-cysteine ligase
catalytic subunit (GCLC), and glutamate-cysteine ligase regula-
tory subunit (GCLM) (Fig. 3C) in ischaemic livers compared with
the TXNIPFL/FL controls. As CYLD plays a vital role in inflamma-
tion and immune responses,20 we further examined the
expression of CYLD by immunofluorescence staining. Indeed,
TXNIPM-KO increased macrophage CYLD expression in ischaemic
livers compared with the TXNIPFL/FL controls (Fig. 3D). Moreover,
TXNIPM-KO augmented CYLD and nuclear NRF2 protein expres-
sion (Fig. 3E). Unlike the TXNIPFL/FL controls, the ROS production
was significantly reduced in the TXNIPM-KO Kupffer cells from
ischaemic livers without or with lipopolysaccharide (LPS) stim-
ulation (Fig. 3F and Fig. S5). Therefore, these data indicate that
macrophage TXNIP deficiency promotes CYLD and activates
NRF2-mediated antioxidative responses in IR-stressed livers.
JHEP Reports 2022
CYLD interacts with NOX4 and regulates NRF2 activation by
deubiquitinating NOX4 in macrophages
Having demonstrated that macrophage TXNIP deficiency pro-
moted CYLD and activated the NRF2 pathway in ischaemic
livers, we next analysed putative crosstalk between CYLD and
the NRF2 pathway in macrophages. Indeed, a Western blot
assay revealed that TXNIPM-KO augmented the CYLD protein
expression in LPS-stimulated BMMs compared with the
TXNIPFL/FL controls (Fig. 4A). This result was confirmed by
immunofluorescence staining, which showed increased CYLD
expression in BMMs after LPS stimulation (Fig. 4B). Strikingly,
the co-immunoprecipitation assay revealed CYLD bound to
endogenous NOX4 in BMMs after LPS stimulation (Fig. 4C).
However, CYLD could not interact with NOX4 in BMMs without
LPS stimulation (Fig. S6). Immunofluorescence staining
revealed that CYLD co-localised with NOX4 in LPS-stimulated
BMMs (Fig. 4D). We then determined whether CYLD influ-
enced NOX4 ubiquitination. Interestingly, CRISPR/Cas9-
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mediated CYLD activation reduced the ubiquitination of NOX4
in LPS-stimulated BMMs (Fig. 4E). Furthermore, disruption of
CYLD diminished NOX4 and NRF2 in TXNIPM-KO BMMs after LPS
stimulation compared with the control groups (Fig. 4F).
Therefore, these results suggest that the CYLD–NOX4 axis is
essential for activating the NRF2 pathway in macrophage
TXNIP-mediated immune regulation.
JHEP Reports 2022
NRF2 targets OASL1 and modulates TBK1-mediated
inflammatory response in macrophages
To explore the potential mechanism of the NRF2 in the modu-
lation of TBK1-mediated inflammation in macrophages, we
performed NRF2 chromatin immunoprecipitation (ChIP) coupled
to massively parallel sequencing (ChIP-Seq). Indeed, the NRF2
ChIP-Seq peaks were identified within the OASL1 gene. One
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presented the location in the promoter region, and the others
were found to locate within the intron/exon of the OASL1 gene
(Fig. 5A). To validate the ChIP-seq peak situated in the OASL1
promoter region, ChIP-PCR was performed using NRF2 anti-
bodies in LPS-stimulated BMMs. After ChIP with the NRF2 anti-
body, the primer was designed to detect the NRF2 DNA-binding
site in the OASL1 promoter by PCR analysis, confirming that
NRF2 is located at the promoter region of OASL1 (Fig. 5B). This
suggests that OASL1 is a target gene regulated by NRF2. More-
over, the immunofluorescence staining assay showed that
TXNIPM-KO augmented NRF2 expression (Fig. 5C) with increased
OASL1 mRNA and protein expression (Fig. 5D) in LPS-stimulated
BMMs compared with the TXNIPFL/FL controls. However, KO of
NRF2 diminished OASL1 but augmented p-TBK1 and p-IRF3
expression (Fig. 5E), accompanied by increased ROS production
(Fig. 5F) in TXNIPM-KO BMMs after LPS stimulation. Collectively,
these data indicate that NRF2 and its target gene OASL1 are
crucial for macrophage TXNIP-mediated immune regulation.
JHEP Reports 2022
OASL1 inhibits TBK1-mediated inflammation through
regulation of G3BP1 activation in macrophages
To dissect the mechanistic role of OASL1 in the regulation of
TBK1 activation in the TXNIP/NRF2-mediated immune regula-
tion, BMMs were isolated from the TXNIPFL/FL and TXNIPM-KO

mice and then transfected with CRISPR/Cas9-mediated OASL1
activation or OASL1 KO vector. Indeed, LPS stimulation activated
G3BP1, whereas CRISPR/Cas9-mediated OASL1 activation
diminished G3BP1 expression in TXNIPFL/FL macrophages
(Fig. 6A). This result was confirmed by immunofluorescence
staining, which showed that induction of macrophage OASL1
reduced G3BP1 expression (Fig. 6B). Interestingly, TXNIPM-KO

increased OASL1 but reduced G3BP1 expression, whereas
CRISPR/Cas9-mediated OASL1 KO augmented G3BP1 expression
in LPS-stimulated TXNIPM-KO macrophages (Fig. 6C). Immuno-
fluorescence staining further unveiled that disruption of OASL1
increased macrophage G3BP1 expression compared with the
control vector-treated groups (Fig. 6D). Moreover, CRISPR/Cas9-
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mediated G3BP1 KO diminished p-TBK1, p-IRF3, and p-P65
expression (Fig. 6E), accompanied by reduced mRNA levels
coding for IL-6, TNF-a, CXCL-10, and IFN-b (Fig. 6F) in TXNIPM-KO

macrophages after LPS stimulation. These results indicate that
OASL1 controls G3BP1, which is critically involved in activating
TBK1-mediated inflammatory response.
JHEP Reports 2022
OASL1 is essential for inhibiting G3BP1/TBK1 activation and
cell death in myeloid TXNIP-deficient livers in response to IR
stress
Having demonstrated the importance of NRF2 target gene OASL1
in macrophage TXNIP-mediated immune regulation in macro-
phages, we then examined whether OASL1 influenced G3BP1/
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TBK1 activation in IR-stressed livers. We disrupted OASL1 in
TXNIPM-KO livers with an in vivo mannose-mediated OASL1
siRNA delivery system that specifically delivers to macrophages
by expressing a mannose-specific membrane receptor as previ-
ously described.1,5,6 Indeed, mannose-mediated AlexaFluor488-
labelled siRNA (green) delivery was efficiently transduced into
macrophages (red) in IR-stressed livers (Fig. 7A). Knockdown of
OASL1 in the TXNIPM-KO mice with the mannose-mediated siRNA
treatment aggravated IR-induced liver damage as evidenced by
increased Suzuki’s histological score (Fig. 7B) and sALT and sAST
levels (Fig. S7), compared with the NS siRNA-treated controls.
JHEP Reports 2022
Moreover, OASL1 siRNA treatment in the TXNIPM-KO ischaemic
livers increased CD11b+ macrophage (Fig. 7C) and Ly6G+

neutrophil (Fig. 7D) accumulation. Unlike NS siRNA-treated
controls, OASL1 siRNA treatment augmented G3BP1, p-TBK1,
and p-IRF3 expression (Fig. 7E) in the TXNIPM-KO livers. Intrigu-
ingly, OASL1 siRNA treatment augmented hepatocyte apoptosis
and necroptosis, as evidenced by increased TUNEL+ cells and
receptor-interacting serine/threonine-protein kinase 3 (RIPK3)
expression in IR-stressed livers compared with the NS siRNA-
treated livers (Fig. 7F and Fig. S8). These results demonstrate
that OASL1 is a key regulator of TBK1 activation and cell death in
9vol. 4 j 100532
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IR-stressed livers. Furthermore, adoptive transfer of TBK1-
overexpressing BMMs reversed TXNIPM-KO-mediated cytopro-
tection and augmented IRF3/NF-jB activation and pro-
inflammatory mediators in ischaemic livers (Fig. S9), suggest-
ing that the TBK1 is essential in mediating TXNIP-induced im-
mune and inflammatory response during liver IRI.

Macrophage TXNIP deficiency-mediated OASL1 inhibits
stress-induced hepatocyte death via modulating Apaf1/
cytochrome c/caspase-9 activation
We then determined how macrophage OASL1 might regulate the
hepatocyte death pathway under inflammatory and stress
JHEP Reports 2022
conditions. As oxidative and ER stress induces TNF-a, which
plays a vital role in caspase-dependent cell death,21 we then
explored the mechanistic role of OASL1 in regulating the cell
apoptotic/necroptotic pathway. We found increased TNF-a
release from LPS-stimulated TXNIPM-KO BMMs after transfection
with a CRISPR-OASL1 KO vector compared with the control
groups (Fig. 8A). Using a coculture system containing LPS-
stimulated CRISPR-OASL1 KO BMMs from the TXNIPM-KO mice
and primary hepatocytes supplemented with H2O2 (Fig. 8B), we
found that macrophage OASL1 KO augmented hepatocyte
apoptotic peptidase activating factor 1 (Apaf1), cytochrome c,
cleaved caspase-9, cleaved caspase-3, and RIPK3 expression
10vol. 4 j 100532



(Fig. 8C). Unlike the control groups, macrophage OASL1 KO
markedly increased LDH release from stressed hepatocytes by
H2O2 in the coculture supernatant (Fig. 8D). Furthermore,
immunofluorescence staining showed increased TUNEL+ hepa-
tocytes in the CRISPR-OASL1 KO BMMs but not in the control
cells after coculture (Fig. 8E). Given that caspase-3 acts as an
executioner caspase of apoptosis and RIPK3 is a critical mediator
of necroptosis,22,23 our findings indicate that macrophage OASL1
inhibits caspase-3-induced apoptosis and RIPK3-mediated nec-
roptosis by regulating Apaf1/cytochrome c/caspase-9 activation
in response to cell stress.
Discussion
In this study, we revealed that disruption of macrophage TXNIP
activated the NRF2-OASL1 pathway and regulated TBK1 function
and apoptotic/necroptotic cell death pathway in IR stress-
induced liver inflammatory injury. Notably, we showed that
macrophage TXNIP deficiency promoted CYLD, which interacted
with NOX4 and enhanced NRF2 and its target gene OASL1 ac-
tivity, leading to inhibited STING-mediated TBK1 activation and
hepatocyte apoptosis/necroptosis in liver IRI. Our results
demonstrate that the macrophage CYLD–NRF2–OASL1 axis by
TXNIP is a critical regulator of the STING/TBK1-mediated innate
immune responses and apoptotic/necroptotic cell death pathway
in IR stress-induced liver inflammatory injury.

TXNIP is a multifunctional protein that modulates oxidative
and ER stress and innate immune responses. During stress,
TXNIP induces ROS production and causes ER stress, initiating
various cellular signalling processes, including cellular redox
homoeostasis, inflammation, and immune response.24 STING is
predominantly associated with ER, where TBK1 recruitment to
STING induces IRF3 and NF-jB activation, mediating innate im-
mune response.25 As a downstream of STING kinase, TBK1 has
been shown to modulate macrophage-mediated inflammatory
responses.26 Activation of TBK1 augmented lipotoxic-induced
liver inflammation, whereas inhibition of TBK1 alleviated liver
damage in mouse models of inflammatory injury.27 Indeed, TBK1
is required for the TLR-mediated activation of IRF3 and IFN re-
sponses in macrophages.28 Disruption of myeloid TBK1 dimin-
ished macrophage activation and pro-inflammatory mediators
and reduced tissue inflammation.29 Thus, TBK1 acts as a critical
player in controlling inflammatory and immune responses.
Indeed, many kinases can be induced by a redox-mediated
pathway in response to oxidative stress. IR stress activated Src
kinase, NADPH oxidase 2 (NOX2), and apoptosis signal-
regulating kinase 1 (ASK1) with increased pro-inflammatory
mediators in ischaemic livers and Kupffer cells (Fig. S10).
Consistent with previous reports that both NOX2 and ASK1
contribute to tissue inflammation and apoptosis in response to
oxidative stress,30,31 these data suggest that Src-mediated NOX2/
ASK1 signalling may play a role in liver IRI. Therefore, the
mechanism of IR stress-induced liver injury could be involved in
multiple signalling pathways. Our current study revealed that IR
stress promoted TXNIP activation and the STING/TBK1 pathway
in ischaemic livers. Disruption of myeloid TXNIP inhibited TBK1-
dependent IRF3 and NF-jB activation and ameliorated IR stress-
induced liver injury. Our findings demonstrate the distinct ability
of macrophage TXNIP in controlling TBK1-mediated innate im-
mune response and inflammatory cascades in IR-stressed livers.

The mechanisms underlying macrophage TXNIP-mediated
immune regulation appear to link multiple signal transduction
JHEP Reports 2022
pathways. We found that IR stress promoted CYLD, a multi-
functional deubiquitinating enzyme (DUB) that modulates the
inflammatory cascade in immune cells via inhibiting the ubiq-
uitination of key signalling molecules.20 Indeed, the CYLD pro-
tein, primarily located in the cytoplasm, is ubiquitously
expressed and highly conserved in Kupffer cells of human and
murine liver tissue. CYLD recognises and cleaves K63-linked
ubiquitin chains to promote protein–protein interactions in the
assembly of signalling molecule complex.32 CYLD can inhibit NF-
jB upstream signalling molecules and regulate inflammatory
response by deconjugating the K63-linked ubiquitin chains.33

Disruption of CYLD induces hepatocyte death and activates
Kupffer cells, which promotes inflammation and pro-
inflammatory mediators,34 suggesting that CYLD is an essential
regulator of immune and inflammatory responses. In line with
these findings, we found that myeloid-specific TXNIP deficiency
promoted CYLD and NRF2, as evidenced by increased CYLD and
nuclear NRF2 protein expression in IR-stressed livers. This in-
dicates the importance of CYLD and NRF2 in macrophage TXNIP-
mediated immune regulation during liver IRI.

Nrf2 is a transcription factor that regulates the cellular
defence against oxidative stress or ER stress via activating anti-
oxidant genes. Under cell stress conditions, Nrf2 is translocated
to the nucleus and activates the transcription of its downstream
target genes.35 Increasing evidence shows that NRF2 plays a
central role in modulating the innate immune response to
oxidative and ER stress.36 Our previous studies demonstrated
that disruption of NRF2 exacerbated IR stress-induced liver
damage, whereas activation of the NRF2 pathway enhanced its
antioxidant responses and attenuated IR-triggered liver inflam-
mation.37 Consistent with previous findings, we found that
TXNIPM-KO enhanced nuclear NRF2 activity and increased anti-
oxidant NQO1, GCLC, and GCLM expression in ischaemic livers,
indicating that NRF2 could be critical in macrophage TXNIP-
mediated immune regulation.

The question arises as to what mechanisms may confer TXNIP
to selectively influence the CYLD–NRF2 axis in the modulation of
STING-mediated TBK1 activation in IR-stressed liver. Using the
in vitro culture system, we found that TXNIPM-KO markedly
increased macrophage CYLD expression after LPS stimulation.
Interestingly, IR stress activated NOX4, an essential modulator of
redox signalling in response to ER stress.38 Under cell stress
conditions, NOX4 activated the NRF2-dependent pathway.39 In
contrast, disruption of NOX4 resulted in reduced NRF2-mediated
antioxidant responses,40 suggesting that NOX4 may be essential
for the modulation of the CYLD–NRF2 axis in macrophage TXNIP-
mediated immune regulation. Moreover, the in vitro study
revealed that CYLD and NOX4 colocalised in LPS-stimulated
macrophages. Interestingly, CRISPR-mediated CYLD activation
depressed NOX4 ubiquitination. NOX4 was deubiquitinated via
direct interaction with CYLD. Disruption of CYLD reduced NOX4
and nuclear NRF2 expression in TXNIPM-KO macrophages
after LPS stimulation. These results indicate that NOX4
mediates the CYLD–NRF2 pathway, crucial for the macrophage
TXNIP-mediated immune modulation in IR stress-mediated
inflammation.

However, how NRF2 may modulate TBK1-mediated inflam-
matory response in IR-stressed liver remains unclear. In line with
our in vivo findings, which showed that TXNIPM-KO increased
NRF2 expression in IR-stressed livers, our in vitro data revealed
that nuclear NRF2 was upregulated in TXNIPM-KO macrophages
after LPS stimulation. Strikingly, using the ChIP and ChIP-
11vol. 4 j 100532
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sequencing approaches, we found that NRF2 was localised on the
promoter of OASL1, suggesting that OASL1 is a target gene of
NRF2. Indeed, TXNIPM-KO augmented macrophage OASL1
expression in response to LPS stimulation. Disruption of macro-
phage NRF2 diminished OASL1 yet enhanced TBK1 activation
and ROS production. Our findings revealed the distinct role of
NRF2 in modulating OASL1 activity and TBK1 function in IR
stress-induced liver injury.

Indeed, our findings revealed that OASL1 is critical for NRF2-
mediated regulation of TBK1 activation in IR-stressed livers.
OASL1 is the major protein that regulates IFN signalling and its
downstream genes during inflammatory and immune re-
sponses.41 Activation of OASL1 inhibits the translation of IFN-
regulatory factor 7 (IRF7), the master transcription factor for
type I IFN production.42 Upon activation, IRF7 forms a tran-
scriptional complex enhanceosome with IRF3 to activate the IFN-
b response.43 Moreover, TBK1 is pivotal for the IRF3 and NF-jB
activation in the innate immune response.44 Thus, we speculate
that OASL1 is necessary for the modulation of TBK1-driven in-
flammatory response in IR-induced liver injury. Further evidence
was provided by the in vivo study, in which disruption of OASL1
reversed myeloid TXNIP deficiency-mediated cytoprotection, as
evidenced by augmented IR-induced liver injury and enhanced
TBK1 and IRF3 activity. Interestingly, OASL1 knockdown upre-
gulated G3BP1 activation in IR-stressed livers, suggesting that
G3BP1 may be involved in TBK1-mediated inflammatory
response during liver IRI. Indeed, G3BP1 promoted cyclic GMP-
AMP synthase (cGAS) activation, whereas disruption of G3BP1
dampened cGAS-mediated IFN response.45 In line with these
findings, we found that disruption of G3BP1 inhibited TBK1, IRF3,
and NF-jB activation, accompanied by reduced IFN-b production
in the TXNIPFL/FL macrophages under inflammatory stimulation.
Therefore, these results reveal a novel role of OASL1 in control-
ling dynamic crosstalk with G3BP1/TBK1 in macrophage TXNIP-
mediated immune regulation.

Of particular interest, macrophage TXNIP-mediated OASL1
could be involved in regulating IR-induced cell death pathways.
JHEP Reports 2022
Indeed, oxidative and ER stress induces TNF-a and ROS produc-
tion. ROS are considered potent intrinsic stimuli to trigger cell
death (apoptosis and necrosis) by multiple pathways.46 ROS can
trigger cytochrome c release, a crucial mediator of the intrinsic
apoptotic pathway.47 Cytochrome c binds to Apaf1 to form a
procaspase-9-activating heptameric protein complex named
apoptosome, which sequentially activates the caspase-9 and the
effector caspases-3.48 Thus, cytochrome c and Apaf1 are essential
for initiating an apoptotic protease cascade in response to
oxidative and ER stress. The current study revealed that CRISPR/
Cas9-mediated OASL1 KO increased TNF-a release in TXNIPM-KO

macrophages after LPS stimulation. Disruption of macrophage
OASL1 augmented hepatocyte cytochrome c, Apaf1, cleaved
caspase-9, cleaved caspase-3 expression, LDH release, and cell
apoptosis from H2O2-treated hepatocytes after coculture. Indeed,
both apoptosis and necrosis can occur in the same cells in TNF-
induced cell death.46 IR-induced hepatocellular necrosis is an
inflammatory cell death (necroptosis).49 A recent study showed
that caspase-9 is a crucial regulator of stress-induced apoptotic
and necroptotic cell death by interacting with RIPK3, a central
player in necroptosis.50 Consistent with these findings, we
revealed that macrophage OASL1 deficiency promoted RIPK3 in
IR-stressed livers and in vitro cocultures. Therefore, our results
indicate that macrophage TXNIP deficiency-mediated OASL1 in-
hibits hepatocyte apoptosis and necroptosis by modulating cy-
tochrome c/Apaf1/caspase-9 activation.

In conclusion, we have identified a previously unrecognised
role of macrophage TXNIP-induced CYLD–NRF2–OASL1 signal-
ling on TBK1 function and apoptotic/necroptotic cell death in
liver IRI. We have also demonstrated that the CYLD–NRF2–OASL1
axis controls TBK1-dependent inflammation and cell death in
response to IR stress. The target gene OASL1 regulated by NRF2 is
crucial for modulating TBK1 function and hepatocyte death. By
identifying the molecular regulatory mechanism of macrophage
TXNIP-mediated CYLD–NRF2–OASL1 pathway in IR-stressed
livers, our findings provide potential therapeutic targets for
stress-induced liver inflammation and injury.
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