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Background. Accumulative evidence showed that gut microbiota was important in regulating the development of nonalcoholic fatty
liver disease (NAFLD). Hugan Qingzhi tablet (HQT), a lipid-lowering and anti-inflammatory medicinal formula, has been used to
prevent and treat NAFLD. However, its mechanism of action is unknown. The aim of this study was to confirm whether HQT
reversed the gut microbiota dysbiosis in NAFLD rats. Methods. We established an NAFLD model of rats fed with a high-fat diet
(HFD), which was given different interventions, and measured the level of liver biochemical indices and inflammatory factors.
Liver tissues were stained with hematoxylin-eosin and oil red O. Changes in the gut microbiota composition were analyzed
using 16S rRNA sequencing. Results. The hepatic histology and biochemical data displayed that HQT exhibited protective
effects on HFD-induced rats. Moreover, HQT also reduced the abundance of the Firmicutes/Bacteroidetes ratio in HFD-fed
rats and modified the gut microbial species at the genus level, increasing the abundances of gut microbiota which were
reported to have an effect on relieving NAFLD, such as Ruminococcaceae, Bacteroidales_S24-7_group, Bifidobacteria,
Alistipes, and Anaeroplasma, and significantly inhibiting the relative abundance of Enterobacteriaceae, Streptococcus,
Holdemanella, Allobaculum, and Blautia, which were reported to be potentially related to NAFLD. Spearman’s correlation
analysis found that [Ruminococcus]_gauvreauii_group, Lachnoclostridium, Blautia, Allobaculum, and Holdemanella exhibited
significant (p < 0 001) positive correlations with triglyceride, cholesterol, low-density lipoprotein cholesterol, interleukin-6,
interleukin-1β, tumor necrosis factor-α, and body weight and negative correlations with high-density lipoprotein cholesterol
(p < 0 001). The norank_f__Bacteroidales_S24-7_group and Alistipes showed an opposite trend. Moreover, the HQT could
promote flavonoid biosynthesis compared with the HFD group. Conclusion. In summary, the HQT has potential applications in
the prevention and treatment of NAFLD, which may be closely related to its modulatory effect on the gut microbiota.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a common,
multifactorial, and poorly understood liver disease with an
increasing incidence globally [1]. Risk factors for NAFLD
include a high-fat diet (HFD), a sedentary lifestyle, insulin

resistance, and metabolic syndromes, such as obesity, dyslip-
idemia, and type 2 diabetes [2]. When treatment is delayed,
NAFLD will progress to nonalcoholic steatohepatitis and
even liver failure [3].

There are almost 1014 species of bacteria in the human
intestinal tract. Gut microbiota of various types and high
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density has vital influences on gut health and is involved in
the processes of food digestion, the defense for mucosal sur-
faces, and crosstalk with the host immune system.

The abundance and structure of the gut microbiota are
significantly altered in patients with chronic liver diseases,
such as nonalcoholic steatohepatitis [4, 5]. Additionally, the
“gut-liver axis” theory has recently been proposed as an inno-
vative concept contributing to NAFLD pathogenesis [6].
Patients with NAFLD usually have small intestinal bacterial
overgrowth [7, 8], which can increase intestinal permeability
and plasma levels of inflammatory markers, such as tumor
necrosis factor- (TNF-) α and interleukin- (IL-) 8. Therefore,
the gut microbiota may be a new potential therapeutic target
for microbiota-related diseases.

The most common ways to regulate the gut microbiota
include prebiotics, synbiotic supplements, and probiotics,
or even traditional Chinese medicines (TCMs) [9, 10]. The
gut microbiota is capable of performing a wide variety of
metabolic transformations, such as giving the host the ability
to digest phytochemical compounds [11]. The majority of
TCMs contain phytochemical ingredients, such as flavo-
noids, alkaloids, polysaccharides, and saponins, which are
not only easily metabolized by gut microbiota but also often
administered orally [12, 13], suggesting that these medi-
cines can directly act on gut microbiota and restore its
homeostasis. For example, berberine, a clinically effective
drug treatment for NAFLD that contains isoquinoline alka-
loid, has recently been shown to exert its actions by modulat-
ing the gut microbiota [14]. Tea polyphenols and saponins
could increase the diversity of gut microbiota and altered its
structure [15, 16].

The Hugan Qingzhi tablet (HQT) has a long history of
use in alleviating NAFLD in clinical practice. In our previ-
ous in vitro and in vivo studies, it was confirmed that the
HQT exerted lipid-lowering and anti-inflammatory effects
on NAFLD [17, 18]. However, the relevant mechanism
involved in its effect on ameliorating NAFLD requires further
investigation. In our isobaric tags for relative and absolute
quantitation-based proteomics experiments on livers from
NAFLD rats, a Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis showed that the gut
microbiota is closely related to the pathogenesis of NAFLD
[19]. The major Chinese medicines in the HQT are Rhizoma
Alismatis, Fructus Crataegi, Pollen Typhae, Folium Nelum-
binis, and Radix Notoginseng (Additional files 1: Table 1).
Among them, Fructus Crataegi and Pollen Typhae contain
large amounts of flavonoids, such as quercetin and rutin
[20, 21]. Flavonoids are metabolized by the enzymes pro-
duced by the gut microbiota, thus affecting the bioavailability
of flavonoids in the human body [22], suggesting that the
HQT may interact with the gut microbiota and contribute
to NAFLD. However, direct evidence for the effects of the
HQT on modulating the gut microbiota is still lacking.
Therefore, the 16S rRNA gene sequencing technique is used
in this research to compare the structural changes of gut
microbiota caused by HQT in HFD-driven NAFLD rats. This
research would offer a solid basis for the regulation of gut
microbiota structure by HQT therapies, which will help
researchers to further comprehend the interaction between

the host and microorganisms during the therapeutical pro-
cess of NAFLD and the mechanism of action of HQT in
this process.

2. Materials and Methods

2.1. Plant Material and Preparation of the HQT. HQTs were
provided by Zhujiang Hospital, Southern Medical University
(SMU) (Guangzhou, China). 70% ethanol (1 : 6,m/v) was uti-
lized to impregnate 30% Rhizoma Alismatis, 30% Fructus
Crataegi, 20% Folium Nelumbinis, and 15% Pollen Typhae
for about 1.5 hours, and then the measure of reflux was used
to extract those materials for 2 hours; this process was
repeated three times. It was estimated that the productivity
of dried extracts is about 14.45% (m/m). After that, 5% of
Panax notoginseng was squashed and screened and then
mixed with the dried extracts to generate HQT. In previous
studies, we have stated the approach for carefully identifying
and quantifying the main components of HQT [18, 23].

2.2. Analysis of HQT by UHPLC-QqQ-MS. HQT (0.50 g) was
precisely weighed and put into extraction by an ultrasonic
water bath (30°C) with 50mL of methanol-water solution
(1 : 1, v/v) for 30 minutes. Next, filtration of the extract was
performed using a 0.22μm syringe filter. The extracted
filtrate was utilized as an experimental solution and analyzed
by ultra-high-performance liquid chromatography-triple-
quadrupole mass spectrometry (UHPLC-QqQ-MS).

Chromatographic analyses were carried out under the
Agilent 1290-6460 series UHPLC system (Agilent Technolo-
gies, Santa Clara, USA). The chromatographic fractionation
was carried out using 0.1% formic acid and water as mobile
phase A and acetonitrile as mobile phase B in a gradient
manner at a temperature of 30°C using a Waters ACQUITY
UPLC C18 column (2.1× 100mm, 1.7μm) (Waters, Milford,
MA, USA). The gradient elution program was as follows:
0–6min, 18–20% B; 6–7min, 20–25% B; 7–7.01min, 25–
50% B; 7.01–10min, 50–90% B; and 10–12min, 90–90%
B. The sample injection size was 2μL, and the flow rate
was 0.35mL/min. The mass spectrometry analysis was per-
formed on an Agilent 6460 QqQ-MS (Agilent Technologies,
Santa Clara, USA) equipped with an electrospray ionization
(ESI) source. Then, the ESI source was operated in positive
and negative ionization modes. The MS and MS/MS spectra
of the 12 compounds were attained by immediately infusing
every normalized solution.

2.3. Animals and Treatment. Animal testing mentioned in
this research was conducted at the animal facilities of the
Animal Ethics Committee of SMU which is consistent with
references in the Guide for the Care and Use of Laboratory
Animals of China. Male Sprague–Dawley (SD) rats (180–
220 g) were supplied by the SMU Animal Experiment Center
(Guangzhou, China, quality certificate number: SCXK (Yue)
2011-0015). All endeavors were made to minimize the suf-
ferings of the animals involved in the experiment. After
one-week acclimation, 24 male SD rats (8 weeks old, specific
pathogen-free) were stochastically divided into 3 groups of
8 each. One group of rats was conventionally raised with a
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normal-fat diet (NFD), one group was fed a HFD, and
another group was fed a HFD plus the HQT in a 1.08 g/kg
BW HQT suspension [18]. The food intake of each group is
at the same level. The group of rats that were fed a HFD
was offered with chow containing 1.2% cholesterol, 15% lard,
20% sucrose, 0.2% sodium cholate, 0.6% dicalcium phos-
phate, 0.4% limestone, 10% casein, and 0.4% premix mixed
with the NFD. Each group was given the appropriate therapy
daily, and body weight (BW) was recorded once a week. Sam-
ples were collected weekly from the feces of 15 rats from the
NFD, HFD, and HQT groups before they were sacrificed.
Unluckily, the feces gathered from the other three animals
were inadequate, so the gut microbiota of these three animals
was no longer analyzed.

2.4. Liver Histology and Serum Analysis. At the end of the
12-week trial, all three groups of rats were executed and
their livers were taken out and kept at −80°C for subsequent
histological and lipid analysis, including hematoxylin-eosin
(HE) and oil red O staining and triglyceride (TG), cholesterol
(CHOL), low-density lipoprotein cholesterol (LDL-C), and
high-density lipoprotein cholesterol (HDL-C) tests. Mor-
phological and pathological analyses of HE staining in rat
liver were conducted, and statistical evaluation was made
regarding the NAFLD activity score (NAS) [24]. The
Olympus Image-Pro Plus 6.0 software was used to conduct
the quantitative analysis and calculate the oil red O stain-
ing areas. Additionally, concentrations of proinflammatory
cytokines, including interleukin-6 (IL-6), tumor necrosis
factor-α (TNF-α), and IL-1β, in hepatic homogenates were
quantified utilizing enzyme-linked immunosorbent assay
kits, under the instructions of the producer (Mutisciences,
Hangzhou, China).

2.5. DNA Extraction, PCR Amplification, and Illumina MiSeq
Sequencing. E.Z.N.A.® Stool DNA Kit (Omega Bio-Tek, Nor-
cross, GA, USA) was utilized to extract microbial DNA from
fecal samples. The V3-V4 region of the bacterial 16S rRNA
was intensified by PCR (95°C for 2min, followed by 25 cycles
at 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s and a final
extension at 72°C for 5min) using primers [25] 5′-ACTC
CTACGGGAGGCAGCAG-3′ for 338F and 5′-GGAC
TACHVGGGTWTCTAAT-3′ for 806R. The PCR reaction
was implemented in a 20μL blend comprising 4μL of 5× Fas-
tPfu buffer, 2μL of 2.5mM dNTPs, 0.8μL of each primer
(5μM), 0.4μL of FastPfu polymerase, and 10ng of template
DNA. The amplicon was extracted from 2% agarose gel and
purified by the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA), and QuantiFluor™-ST
(QuantiFluor) was used for quantification. The purified
amplifier was merged at the same molar concentration,
and paired-end sequencing (2× 300) was performed on the
Illumina MiSeq platform using the standard protocol. PE
amplicon libraries were established, and sequencing was
conducted utilizing the Illumina MiSeq platform at Major-
bio Bio-Pharm Technology Co. Ltd., Shanghai, China. Raw
fastq files were demultiplexed and quality-filtered utilizing
FLASH and Trimmomatic.

2.6. Bioinformatics and Statistical Analysis. The operational
taxonomic units (OTUs) that reached a 97% nucleotide sim-
ilarity level were subjected to alpha-diversity analyses using
mothur software [26]. Beta-diversity measurements were
calculated as previously described [27], and principal coordi-
nate analyses (PCoA) on the basis of OTU abundance and
distance were verified. R package was utilized for the visuali-
zation of bacterial community classification and distribution.
For linear discriminant analysis effect size (LEfSe) [28],
biological relevance and statistical significance were taken
into account, and identification was performed to differen-
tially represent the level of classification among the three
groups. Microbial functions were forecasted utilizing phy-
logenetic investigation of communities by reconstruction
of unobserved state (PICRUSt) [29]. The predicted genes
and their functions are in line with the KEGG database
and compared to the STAMP software (http://kiwi.cs.dal.ca/
Software/STAMP) [30].

2.7. Statistical Analysis. All the results are presented as
means± SD. Benjamini-Hochberg FDR (p < 0 05) correction
and two-sided Welch’s test were utilized in the examination
of differences in microbial functions between two groups.
The one-way analysis of variance (ANOVA) was used to
analyze the mean values in the three groups. GraphPad
Prism software (version 6.02) was used to perform the sta-
tistical analysis. After the comparison with the control
group, it is obvious that all the consequences are considered
to be statistically significant at p < 0 05.

3. Results

3.1. The UHPLC-QqQ-MS Analysis of the HQT. UHPLC-
QqQ-MS spectrometry was used to characterize the chemical
HQT composition. The total ion current chromatograms
of the HQT are shown in Figure 1. Twelve major com-
pounds were identified and quantified by a comparison
with reference standards. Their chemical names are epicat-
echin (S1), nuciferine (S2), typhaneoside (S3), rutin (S4),
heterosine lisu-3-o-new hesperidin (S5), hyperoside (S6),
isoquercetin (S7), notoginsenoside R1 (S8), quercetin (S9),
isorhamnetin (S10), alisol A 24-acetate (S11), and 23-O-
acetylalisol B (S12).

3.2. The HQT Attenuates HFD-Induced NAFLD. After a
12-week intervention period, rats in the HFD group weighed
significantly more than rats in the NFD group (Figure 2(a)).
As shown in Figure 2(b), the liver TG and CHOL levels in
the HQT group were much lower than those in the HFD
group. The liver HDL-C level exhibited the opposite trend to
the TG and CHOL levels, which were significantly increased.
HFD-fed rats displayed a higher liver LDL-C level than
the NFD group, which was significantly reduced after the
treatment with the HQT. Compared with the NFD group
(Figure 2(c)), IL-6, IL-1β, and TNF-α levels were drastically
elevated in the HFD group (p < 0 01), and the levels observed
in the HQT group were significantly decreased compared
with those in the HFD group (p < 0 01).
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As shown in Figure 2(d), extensive micro/macrovesicu-
lar steatosis was detected in the hepatocytes of HFD rats,
and we also observed macrovesicular steatosis, steatohepa-
titis changes, inflammation, and massive infiltration of
inflammatory cells around the central vein of hepatocytes
in the HFD rats. In contrast, the HQT ameliorated these
morphological changes. The analysis of the NAFLD activity
score showed that in HFD rats the score was significantly
increased (Figure 2(f)). However, HQT treatment could sig-
nificantly inhibit such increase. Moreover, hepatocyte lipid
accumulation was significantly decreased in the HQT group
compared with the HFD group (Figure 2(e)). Quantification
of oil red O staining showed that lipid deposition occurred in
nearly 41.87% in HFD rats’ liver tissue, and HQT treatment
significantly reduced HFD-induced liver lipid deposition
(Figure 2(g)). It is clear that HQT significantly prevented
rats’ liver lipid deposition caused by HFD feeding for up
to 12 weeks. Based on these results, the HQT exerted a pro-
tective effect on HFD-fed rats by lowering the levels and
inhibiting inflammation.

3.3. Response of the Gut Microbiota Structure to the HQT
in HFD-Fed Rats. 16S rRNA gene sequencing was used
to investigate whether HQT had an effect on the structure
of gut microbiota in HFD-fed rats. Good’s coverage beyond
99.5% demonstrated an adequate sequencing depth for all
samples (Additional files 2: Table 2). With quality control,
1,663,537 reads (average of 36,967 sequences per sample)
were delineated into 794 OTUs. Rarefaction and Shannon
index analyses showed that most of the diversity and rare
new phylotypes could be covered by the sequencing depth
(Additional files 3: Figure 1).

As shown in the community heatmap diagram, the abun-
dance of 39 genera was significantly different among the
three groups (Figure 3(a)). The HFD group exhibited higher
abundances ofMoryella, [Eubacterium]_hallii_group, Collin-
sella, and Ruminococcaceae_UCG-008 than the NFD and
HQT groups. In addition, the HFD group displayed lower
abundances of the genera Ruminiclostridium_6, Tyzzerella,
norank_o_Mollicutes_RF9, and Candidatus Saccharimonas
than the NFD and HQT groups. On the basis of the
unweighted UniFrac distance calculation, the PCoA of β-
diversity in the gut microbiota (Figure 3(b)) did not reveal
a significant difference in the gut microflora among the three

groups before the experiment started (at week 0). After
administering the HFD and HQT interventions, the gut
microbiota of the HFD and the HQT groups gradually sepa-
rated from that of the NFD rats in the middle of the experi-
ment (at week 6). At the end of the experiment (at week
12), the gut microbiota of rats in the HFD group was
completely separated from that of the NFD group while the
gut microbiota of the HFD and HQT groups was separated,
and the distance of the gut microbiota between the HQT
group and the NFD group was shorter. Therefore, we specu-
lated that after the HFD and HQT interventions, the gut struc-
ture in the three groups of rats became significantly different.

The composition of the gut microbiota at both the phy-
lum and genus levels was analyzed to determine which types
of bacteria were affected by HFD and HQT intake. At the
phylum level, Bacteroides, Firmicutes, and Proteobacteria
were the main components of the gut microbiota in the rat
feces (Figure 4(a)). Compared with the NFD group, an
increase in Firmicutes and a decrease in Bacteroidetes were
observed in the HFD rats. Compared with the HFD group,
the abundance of Firmicutes was decreased in the HQT
group but the abundance of Bacteroidetes was increased
(Figure 4(b)). However, based on the importance of the Fir-
micutes-to-Bacteroidetes (F/B) ratio, a significantly higher
ratio was observed in the HFD group (p < 0 01) than in the
NFD group and a lower ratio was observed in the HQT group
(p < 0 05) than in the HFD group. As shown in the results of
the genus-level analyses (Figure 4(c)), compared with the
NFD group, reduced abundance of Prevotella_9, norank_f_-
Bacteroidales_S24-7_group, Bacteroides, and Ruminococ-
cus_1 and increased abundance of Allobaculum, Blautia,
[Ruminococcus]_gauvreauii_group, and Holdemanella were
observed in the HFD group. Compared with the HFD
group, norank_f_Bacteroidales_S24-7_group, Turicibacter,
Lachnospiraceae_NK4A136_group, and Ruminococcus_1
were increased, but Blautia, Prevotella_9, and Holdemanella
were reduced in the HQT group.

3.4. Key Phylotypes of Gut Microbiota Modulated by the HQT.
Based on the linear discriminant analysis (LDA) values of 4
(Figure 5) and 2 (Additional files 4: Figure 2), the NFD,
HFD, and NFD groups were statistically analyzed by using
the LEfSe method to further examine the differences in the
abundance of bacterial species in each group.
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Figure 1: The UHPLC-QqQ-MS analysis of the HQT. (a) The UHPLC-QqQ-MS analysis of standard reference materials. Epicatechin (S1),
nuciferine (S2), typhaneoside (S3), rutin (S4), heterosine lisu-3-o-new hesperidin (S5), hyperoside (S6), isoquercetin (S7), notoginsenoside
R1 (S8), quercetin (S9), isorhamnetin (S10), alisol A 24-acetate (S11), and 23-O-acetylalisol B (S12). (b) The UHPLC-QqQ-MS analysis
of the HQT.

4 Oxidative Medicine and Cellular Longevity



As shown in the taxonomic cladograms, the LEfSe
analysis demonstrated the modulatory effects of the HQT
on different taxonomic levels of the gut microbiota in rats
fed with the HFD (Figure 5 and Additional files 4: Figure 2).
Compared with the NFD group, the abundances of Bac-
teroides, norank_f__Bacteroidales_S24_7_group, Butyrici-
monas, Parabacteroides, Alloprevotella, Prevotella_9, and
unclassified_o__Bacteroidales belonging to the Bacteroidetes
phylum were decreased in the HFD group. Additionally,
the HFD restrained the growth of Anaerotruncus, Rumi-
niclostridium, Ruminiclostridium_5, Ruminiclostridium_6,
Ruminococcaceae_UCG_007, Ruminococcaceae_UCG_009,
Ruminococcus_1, unclassified_f__Ruminococcaceae, and

uncultured_f__Ruminococcaceae, which belong to the family
Ruminococcaceae. In addition, the abundance of Cronobac-
ter, which belongs to the family Enterobacteriaceae, was
obviously increased in the HFD group compared with
the NFD group.

Compared with the HFD group, the abundance of
norank_f__Bacteroidales_S24_7_group, Alistipes, and Cro-
nobacter was increased in the HQT group. Additionally,
compared with the HFD group, the HQT increased the
growth of Anaerotruncus, Ruminiclostridium, Ruminiclos-
tridium_5, Ruminiclostridium_6, Ruminococcaceae_UCG_
007, Ruminococcaceae_UCG_009, Ruminococcus_1, unclas-
sified_f__Ruminococcaceae, and uncultured_f__Ruminoco-
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Figure 2: Effects of the HQT on the BW (a); hepatic TG, CHOL, HDL-C, and LDL-C levels (b); hepatic IL-6, IL-1β, and TNF-α levels (c); the
HE-stained liver tissue (d); oil red O-stained liver tissue (e) from rats in the NFD, HFD, and HQT groups the results of the NAFLD activity
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± SD for each group. ∗p < 0 01, ∗∗p < 0 01 compared with the HFD group. #p < 0 01, ##p < 0 01 compared with the NFD group.
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ccaceae, which belong to the family Ruminococcaceae.
Additionally, the abundances of the genera Staphylococcus,
Streptococcus, and unclassified_o__Lactobacillales, which
belong to Bacilli, were decreased, while the abundances of
Anaeroplasma, Bilophila, Desulfovibrio, and Bifidobacterium
were increased in the HQT group compared with the
HFD group.

Based on these results, the HQT could modulate the
gut microbiota of HFD-fed rats, resulting in a microbiota
composition similar to that of NFD rats.

3.5. Associations between the Gut Microbiota Composition
and NAFLD Phenotypes. The correlations between the rela-
tive abundance of the gut microbial community and impor-
tant metabolic parameters associated with NAFLD were
presented in Spearman’s correlation heatmap. Pearson’s

correlation analysis was used to determine the correlation
of each microbial level. At the phylum level (Figure 6(a)),
significant correlations were observed between the param-
eters tested and the relative abundances of Firmicutes, Bac-
teroidetes, Actinobacteria, Tenericutes, and Cyanobacteria.
However, both Bacteroidetes and Cyanobacteria exhibited a
definite negative correlation with TG, CHOL, LDL-C, IL-6,
IL-1β, TNF-α, and BW and a positive correlation with
HDL-C while Firmicutes showed a positive correlation with
TG, CHOL, LDL-C, IL-6, IL-1β, TNF-α, and BW and a neg-
ative correlation with HDL-C.

At the genus level (Figure 6(b)), [Ruminococcus]_gauv-
reauii_group, Lachnoclostridium, Blautia, Allobaculum, and
Holdemanella exhibited significant (p < 0 001) positive cor-
relations with TG, CHOL, LDL-C, IL-6, IL-1β, TNF-α,
and BW and negative correlations with HDL-C. The
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norank_f__Bacteroidales_S24-7_group and Alistipes showed
significant (p < 0 001) negative correlations with TG, CHOL,
LDL-C, IL-6, IL-1β, TNF-α, and BW and positive correla-
tions with HDL-C. Bacteroides displayed the same trend,
except for the IL-1β index.

3.6. Predictions of Gut Microbiota Functions in the NFD,
HFD, and HQT Groups. The mechanism by which gut
microbes exert their biological effects is closely related to
the function of the genes encoded in the gut microbiome.
Therefore, we predicted corresponding changes in gene
abundance and metabolic pathways using PICRUSt and

calculated the changes in functional pathways between
groups using STAMP software.

In the comparison of the HFD and NFD groups, the
microbiota in the former comprised more functions involved
in metabolic pathways involving ATP-binding cassette (ABC)
transporters, primary bile acid synthesis, and secondary bile
acid synthesis than the microbiota in the latter. In contrast,
the NFD group included functions involved in the tricar-
boxylic acid (TCA) cycle, flagellar assembly, other glycan
degradation, two-component system, and lipopolysaccharide
biosynthesis (Figure 7(a)). Regarding the comparison of the
HFD and HQT groups, the microbiota in the HFD group
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displayed more functions in porphyrin and chlorophyll
metabolism, alanine aspartate and glutamate metabolism,
and carbon fixation in photosynthetic organisms than the
microbiota in the HQT group. However, similar to the
NFD group, the HQT group had a greater number of
functions in the TCA cycle, flagellar assembly, other glycan
degradation, two-component system, lipopolysaccharide
biosynthesis, and flavonoid biosynthesis (Figure 7(b)).

4. Discussion

In this study, rats fed with a HFD gained significantly
more weight than rats fed with a NFD. Additionally, patho-
logical indicators of NAFLD and liver biochemical markers
and inflammatory factor indexes confirmed the validity of
the model. The HQT sufficiently reduced the accumulation
of lipids, such as TG, CHOL, HDL-C, and LDL-C, and
inflammation indicators, such as TNF-α, IL-6, and IL-1β
levels, indicating its lipid-lowering and anti-inflammatory
effects on alleviating NAFLD progression.

According to the UHPLC-QqQ-MS analysis, the HQT
contained flavonoids, such as typhaneoside, rutin, quercetin,
heterosine lisu-3-o-new hesperidin, hyperoside, and isoquer-
cetin, which were mainly obtained from Pollen Typhae and
Fructus Crataegi [20, 21]. Orally administered flavonoids,
such as rutin, are not detectable in blood, but the aglycone
form quercetin has been observed in blood [31]. In fact,
the quercetin glucoside or quercetin has been reported to
be directly absorbed by the small intestine [31]. Likewise,

other flavonoids, such as hesperidin, also share similar meta-
bolic fates in the human body [32]. The detection of these
components also implied that the HQT may treat NAFLD
by regulating the gut microbiota.

Concomitant with the improved clinical index of
NAFLD, we observed an altered microbial composition
induced by the HQT and HFD. Based on the PCoA, the
consumption of HFD for up to 12 weeks shifted the gut
microbiota structure in NAFLD rats. The HQT showed to
reverse the HFD-induced structural variations.

Certain studies [33, 34] have observed a close correlation
between obesity and an increase in the intestinal Firmicutes-
to-Bacteroidetes (F/B) ratio in both mouse experiments and
clinical trials. In this study, the F/B ratio was significantly
elevated in the HFD group compared with the NFD group,
while the F/B ratio was significantly decreased in the HQT
group compared with the HFD group.

Compared with the HFD group, norank_f__Bacteroi-
dales_S24_7_group, Anaeroplasma, Bifidobacterium, Bilo-
phila, Desulfovibrio, and most of the genera belonging
to family Ruminococcaceae, such as Anaerotruncus, Rumi-
niclostridium, Ruminiclostridium_5, Ruminiclostridium_6,
Ruminococcaceae_UCG_007, Ruminococcaceae_UCG_009,
Ruminococcus_1, unclassified_f__Ruminococcaceae, and
uncultured_f__Ruminococcaceae, were markedly enriched
after HQT treatment. The norank_f__Bacteroidales_S24_
7_group and Ruminococcaceae are butyrate-producing bacte-
ria. Butyrate is a short-chain fatty acid produced from resis-
tant starch, dietary fiber, and low-digestible polysaccharides
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Figure 6: The correlations between the relative abundance of the gut microbial community at the phylum level and vital metabolic
parameters linked to NAFLD in the NFD, HFD, and HQT groups at week 12 (a). The correlations between the relative abundance of the
gut microbial community at the genus level and vital metabolic parameters linked to NAFLD in the NFD, HFD, and HQT groups at week
12 (b). n = 5 rats per group. ∗0 01 < p ≤ 0 05, ∗∗0 001 < p ≤ 0 01, ∗∗∗p ≤ 0 001.
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by the microbiota in the colon and distal small intestine via
fermentation [35–37]. As shown in the study by Endo et al.
[38], butyrate-producing probiotics reduce NAFLD pro-
gression in rats. Zhou et al. [35] also verified that sodium
butyrate attenuates HFD-induced steatohepatitis in mice by
improving the gut microbiota and gastrointestinal barrier.
These findings suggest an important role for the butyrate-
producing bacteria in the efficacies of the HQT.

In 1998, the concept of an “intestine-liver axis” was
proposed, suggesting that intestinal barrier function is dam-
aged after the intestinal tract is injured. Large quantities of

bacteria and endotoxins from the intestine subsequently
enter the liver through the portal venous system to activate
Kupffer cells and liver cells that release a series of inflam-
matory cytokines, such as TNF-α, IL-1β, and IL-6, further
damaging the liver [6]. In our experiments, the abundance
of some intestinal endotoxin- (LPS) rich bacteria was sig-
nificantly increased in the HFD group, and the HQT
reversed this trend. LPS is the main ingredient of the outer
membrane of Gram-negative bacteria, and it is the endo-
toxin that goes into the circulation causing inflammation
[39]. According to the research of Cani et al. [40], mice
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fed with a HFD for as short term as 2 to 4 weeks exhibited
a significant increase in plasma LPS. LPS derived from the
members of the families Enterobacteriaceae and Desulfovi-
brionaceae, in the phylum Proteobacteria, exhibits a 1000-
fold increase in endotoxin activity compared to LPS derived
from the family Bacteroidaceae, in the phylum Bacteroidetes
[41]. In our experiments, the abundance of Cronobacter,
which belongs to the family Enterobacteriaceae, was signifi-
cantly increased in the HFD group compared with the
HQT group. The abundances of Desulfovibrio and Bilophila
which belong to the family Desulfovibrionaceae were
increased in the HQT group, which was unexpected, and this
result indicated that the HQT might selectively alter the
abundance of some bacteria associated with inflammation.

In our studies, the HQT group exhibited an increase in
the abundance of Bifidobacterium, and the abundance of this
genus was significantly decreased in the HFD group. This
finding is consistent with the results of a previous study
[40], showing that a HFD decreases the abundance of Bifido-
bacteria in mice and increases the levels of LPS, TNF-α, IL-1,
and IL-6, leading to intestinal mucosa infiltration. It is also
reported by Nobili et al. [42] that Bifidobacteria seem to have
a protective effect on the development of NAFLD and obesity
in the gut microbiome of NAFLD children. In those studies,
Bifidobacteria reduced LPS levels in mice and improved
mucosal barrier function [43, 44]. Our results showed that
the HQT group excreted significantly higher proportions of
Bifidobacterium than the HFD group (p < 0 05) and this
may relate to its protective role in NAFLD.

In addition, the genera Alistipes and Anaeroplasma in the
HQT group were also more abundant than those in the HFD
group. It is worth noting that Alistipes belongs to the family
Rikenellaceae, which was also decreased in patients with
NAFLD in a recent study [45]. Clarke [46] reported a signif-
icant decrease in the abundance of Anaeroplasma in obese
mice compared with lean mice.

The abundances of Streptococcus which belong to Bacilli
were significantly increased in the HFD group compared
with the HQT group. Compared with healthy subjects,
NAFLD patients show an increase in the percentage of bac-
teria from the pathogenic Streptococcus, which may induce
persistent inflammation of the intestinal mucosa and is asso-
ciated with inflammatory bowel disease [47, 48]. In our
experiments, it is also found that some genera such as Holde-
manella and Allobaculum were higher in the HFD group
than in the HQT group. Furthermore, the genera Holdema-
nella and Allobaculum exhibited significant (p < 0 001)
positive correlations with TG, CHOL, LDL-C, IL-6, IL-1β,
TNF-α, and BW and negative correlations with HDL-C.
Brahe et al. [49] reported that Holdemanella is associated
with an unhealthy fasting serum lipid level. In our experi-
ments, the abundance of Holdemanella was extremely low
in the NFD and HQT groups but was substantially increased
in the HFD group, thus suggesting that the high abun-
dance of Holdemanella may be an important cause of
NAFLD. Low-dose penicillin causes weight gain in infant
mice because it can alter the proportions of dominant bacte-
ria, such as reducing the abundance of Allobaculum, in new-
born or infant mice. Thus, researchers postulate that the

increased abundance of Allobaculum can help infant mice
resist the development of obesity [50]. However, in our
experiment, the abundance of Allobaculum was substantially
increased in the HFD group compared to the HQT group,
which may be related to the use of adult rats in the present
study. In addition, the genus Blautia exhibited significant
(p < 0 001) positive correlations with TG, CHOL, LDL-C,
IL-6, IL-1β, TNF-α, and BW and a negative correlation with
HDL-C. Several studies have observed a correlation between
Blautia and obesity. For example, Goffredo et al. reported a
positive correlation between the abundance of Blautia and
obesity in American youth and verified that the level of ace-
tate, which is the product of Blautia, is associated with body
fat partitioning and hepatic lipogenesis [51].

The expression of genes encoding ABC transporters is
reportedly increased in the fecal microbiome of mice fed with
a HFD compared to mice fed with standard chow or a low-fat
diet [52, 53]. In our experiment, the levels of the ABC trans-
porter genes were significantly increased in the HFD group
compared with the NFD group. Interestingly, the HFD group
also displayed a significant increase in the levels of the genes
involved in primary bile acid synthesis and secondary bile
acid synthesis compared with NFD rats. HFD-induced bile
acid secretion was originally thought to be a driving force
affecting the composition of obesity-related gut microbiota
[54], and rats fed with cholic acid (CA) experienced an
increase in phylum Firmicutes, accompanied by a reduction
of Bacteroides; the resulting altered microbial characteristics
are analogous to the obesity-related gut microbiome. In our
experiments, the F/B ratio was raised in the HFD group and
down in the HQT group, and this alternating trend may be
due to the excessive production of bile acids for the feeding
of HFD. Besides, the genus Blautia was abundant in the
HFD group and few in the HQT and NFD groups. Blautia
could produce large amounts of antimicrobial secondary bile
acids (BAs) from primary BAs with its 7a-dehydroxylating
activity [55]. Therefore, the rich abundance of Blautia in
the HFD group may play an important role as a compensa-
tory response to the presence of increasing amounts of BAs
in the gut [56–59]. According to the PICRUSt analysis, met-
abolic pathways, such as the TCA cycle, flagellar assembly,
other glycan degradation, two-component system, and lipo-
polysaccharide biosynthesis, were enriched in the HQT
group compared with the HFD group. These results were
similar to the comparison between the NFD group and
the HFD group. Moreover, the HQT promoted the activity
of the flavonoid biosynthesis pathway. As mentioned
above, the HQT contains a variety of flavonoids, such as
typhaneoside, rutin, quercetin, heterosine lisu-3-o-new hes-
peridin, hyperoside, and isoquercetin, which must be trans-
formed in the intestine to exert better biological activity.
Thus, this result may be the key point for HQT to change
the gut microbiota in NAFLD rats and can be a target for fur-
ther studies.

5. Conclusions

In conclusion, gut dysbiosis occurs in HFD-induced NAFLD
rats, and the HQT decreases lipid levels and inflammation
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in these NAFLD rats, together with beneficial modulation
of the gut microbiota. In particular, HQT could modulate a
wide range of gut microbiota, including norank_f__Bacteroi-
dales_S24_7_group, Ruminococcaceae, Enterobacteriaceae,
Bifidobacterium, Alistipes, Anaeroplasma, Streptococcus,
Holdemanella, Allobaculum, and Blautia. Spearman’s cor-
relation analysis also identified that [Ruminococcus]_gauv-
reauii_group, Lachnoclostridium, Blautia, Allobaculum, and
Holdemanella exhibited significant (p < 0 001) positive cor-
relations with TG, CHOL, LDL-C, IL-6, IL-1β, TNF-α, and
BW and negative correlations with HDL-C (p < 0 001). The
norank_f__Bacteroidales_S24-7_group and Alistipes showed
an opposite trend. Besides, according to the UHPLC-QqQ-
MS analysis, the HQT contained flavonoids, such as typha-
neoside, rutin, quercetin, heterosine lisu-3-o-new hesperi-
din, hyperoside, and isoquercetin. Interestingly, the HQT
increased the KEGG pathway of flavonoid biosynthesis in
fecal samples, which may be the manner in which the
HQT changes the gut microbiota in NAFLD rats.

Together, these findings indicated that the effects of the
HQT on NAFLD might depend on its modulatory effect on
the gut microbiota.
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