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Objective:We aimed to characterize local brain network connectivity in long-term breast

cancer survivors compared to newly diagnosed patients.

Methods: Functional magnetic resonance imaging (fMRI) and subjective cognitive

and psychological function data were obtained from a group of 76 newly diagnosed,

pre-treatment female patients with breast cancer (mean age 57± 7 years) and a separate

group of 80, post-treatment, female breast cancer survivors (mean age 58 ± 8; mean

time since treatment 44 ± 43 months). The network-based statistic (NBS) was used to

compare connectivity of local brain edges between groups. Hubs were defined as nodes

with connectivity indices one standard deviation or more above network mean and were

further classified as provincial (higher intra-subnetwork connectivity) or connector (higher

inter-subnetwork connectivity) using the participation coefficient. We determined the hub

status of nodes encompassing significantly different edges and correlated the centralities

of edges with behavioral measures.

Results: The post-treatment group demonstrated significantly lower subjective cognitive

function (W = 3,856, p = 0.004) but there were no group differences in psychological

distress (W = 2,866, p = 0.627). NBS indicated significantly altered connectivity

(p < 0.042, corrected) in the post-treatment group compared to the pre-treatment

group largely in temporal, frontal-temporal and temporal-parietal areas. The majority

of the regions projecting these connections (78%) met criteria for hub status and

significantly less of these hubs were connectors in the post-treatment group (z =

1.85, p = 0.031). Subjective cognitive function and psychological distress were

correlated with largely non-overlapping edges in the post-treatment group (p < 0.05).

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.746493
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.746493&domain=pdf&date_stamp=2021-10-29
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:srkesler@austin.utexas.edu
https://doi.org/10.3389/fneur.2021.746493
https://www.frontiersin.org/articles/10.3389/fneur.2021.746493/full


Kesler et al. Brain Connectivity Function Breast Cancer

Conclusion: Widespread functional network alterations are evident in long-term

survivors of breast cancer compared to newly diagnosed patients. We also demonstrated

that there are both overlapping and unique brain network signatures for subjective

cognitive function vs. psychological distress.

Keywords: breast cancer, fMRI, cognition, effective connectivity, functional connectivity, Bayesian network, graph

theory

INTRODUCTION

Cancer and its treatments are associated with risk for cognitive
dysfunction, most commonly in the domains of executive
functioning, memory, attention, and processing speed (1, 2).
Neuroimaging studies suggest that cancer-related cognitive
impairment (CRCI) results from injury to brain structure and
function.We previously showed that breast cancer survivors have
altered brain network connectivity compared to healthy controls
and chemotherapy naïve survivors (3–9). Other groups have
subsequently observed similar findings (10–20).

Most of these studies, including our own, have focused
largely on global brain network characteristics and/or local
connectivity among a limited number of discrete regions. The
advantages of these approaches include the provision of single,
parsimonious metrics that summarize the vast complexity of
the entire brain network (global properties) and the testing of
specific hypotheses (limited local connectivity). Examination of
all potential differences among local brain network connections
is agnostic and requires larger samples but can provide a broader
profile of potential biomarker features for modeling applications.

For example, we have previously utilized brain connectivity
(connectome) features in machine learningmodels for predicting
future cognitive outcome following breast cancer chemotherapy
treatment (21, 22) and identifying neurophysiological clusters
associated with cognitive impairment subtypes (8). However,
these required complex feature selection/dimension reduction
techniques due to limited a priori data regarding important local
features. Additionally, there are emerging methods for deriving
transcriptome profiles of connectome topology (23–25). These
methods integrate region-specific transcriptomes with regional
connectome properties (24). For example, Zhao et al. (26)
used transcriptome-connectome correlation analysis to identify
gene signatures of age-related brain functions. Transcriptome
methods could provide unique insights regarding the genetic and
epigenetic mechanisms underlying CRCI.

In terms of additional molecular mechanisms, our preclinical
studies indicated that chemotherapy treatment leads to
significant mitochondrial damage resulting in decreased
respiratory activity (27). Hubs are highly connected regions
responsible for the majority of information processing
and exchange (28, 29). As a result, they require much
greater metabolic resources than non-hub regions (30–32).
Hubs are believed to play a role in the transmission of
neuropathology (33) as well as the maintenance of brain
network resilience (34). Our prior studies have examined hub
status within the global network but not within local networks

(3, 4, 21). Few other studies have examined hub status and
these have also focused exclusively on the global network
(13, 35).

One of the difficulties in clinical management of CRCI
is disentangling cognitive effects from psychological distress
and fatigue. Since subjective cognitive outcomes are typically
correlated with distress while objective outcomes are not (36),
clinicians and researchers often conclude that objective measures
reflect neuropathology while subjective reports represent distress.
However, there is limited empirical evidence to support this
theory. On the contrary, several studies, including our own
have shown that self-report measures of cognitive function do
correlate with neuroimaging metrics (22, 37–39), suggesting
that subjective cognitive impairments may represent a unique
phenotype of CRCI. Distress is more often “controlled”
statistically in neuroimaging studies of CRCI, leaving gaps in
knowledge concerning the neural underpinnings of distress
within the context of CRCI.

In this study we aimed to compare local functional brain
connectivity in patients seen pre-treatment with those seen
post-treatment. This included determining the hub status of
local connectivity differences and examining local connectivity
profiles associated with subjective cognitive function and
psychological distress.

METHODS

Participants
In this retrospective study, we examined neuroimaging and
self-rating questionnaire data that was commonly acquired
across all participants. These included 76 newly diagnosed
female patients with breast cancer and 80 female breast cancer
survivors. Participants were age 43-81 years, newly diagnosed
patients were evaluated prior to primary cancer treatment
(surgery with general anesthesia, chemotherapy, radiation) and
survivors were evaluated at least 6 months post primary
cancer treatment (Table 1) in order to allow for medical
stabilization and to focus on patients who may have longer-term,
more persistent cognitive deficits. Newly diagnosed patients
(PRE-TX group) were assessed between 2012 and 2020 and
survivors (POST-TX group) were assessed between 2008 and
2016, all at a single university. This study was approved
by the Stanford University Institutional Review Board, was
conducted in accordance with the ethical standards of the
Declaration of Helsinki and all participants provided written
informed consent.
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TABLE 1 | Participant characteristics and behavioral data.

PRE-TX POST-TX Statistic P-value

Age (years) 56.7 (7.1) 58.6 (8.0) t = 1.50 0.135

Age range 44-75 43-81

Education (years) 15.8 (2.7) 16.2 (2.5) t = 0.934 0.352

Time since primary treatment (months) - 44.3 (43.5)

range: 6-157

- -

Radiation - 78% - -

Hormone blockade - 67% - -

Chemotherapy - 100% - -

Behavioral rating inventory of executive function adult (BRIEF-A) 51.4 (9.3) 59.8 (16.5) W = 3856 0.004

BRIEF-A clinically significant 0% 38% z = 5.94 <0.001

Clinical assessment of depression (CAD) 51.4 (9.8) 50.3 (13.9) W = 2866 0.627

CAD clinically significant 5% 9% z = 1.02 0.154

Values are shown as mean (standard deviation) unless otherwise noted.

Self-Report Data
Self-ratings of psychological function were obtained using the
Total Score of the Clinical Assessment of Depression (CAD),
which measures, depression, anxiety and fatigue (40). Subjective
executive function wasmeasured with the Global Executive Score
of the Behavioral Rating Inventory of Executive Function-Adult
Version (BRIEF-A) (41). Raw scores were converted to T scores
(mean= 50± 10) based on the published normative data for each
test. The clinical cutoff score for BRIEF-A is 65 (41) and is 69 for
CAD (40). Participants also completed objective cognitive testing
but these measures were different for PRE vs. POST participants
and therefore could not be combined.

Neuroimaging Acquisitions
Functional magnetic resonance imaging (fMRI) data were
obtained while participants rested with eyes closed using a
T2∗ weighted (42) gradient echo spiral pulse sequence: TR =

2,000ms, TE = 30ms, flip angle = 80◦ and 1 interleave, FOV =

22 cm, matrix = 64 x 64, in-plane resolution = 3.4375, number
of volumes = 216, oblique prescription with a 3T GE Signa
HDx whole body scanner (GEMedical Systems, Milwaukee, WI).
A high-order shimming method was employed to reduce field
heterogeneity. A high-resolution, 3D IR prepared FSPGR scan
was also acquired and used for spatial normalization of fMRI:
TR: 8.5, TE: minimum, flip: 15◦, TI: 400ms, BW: ±31.25 kHz,
FOV: 22 cm, Phase FOV: 0.75, slice thickness: 1.5mm, 124 slices,
256 x 256 @ 1 NEX, scan time: 4:33. Data were visually inspected
for quality.

Neuroimaging Preprocessing
Resting state fMRI were preprocessed with Statistical Parametric
Mapping 12 and CONN Toolboxes (43, 44) implemented
in Matlab v2019b (Mathworks, Inc, Natick, MA). Briefly,
this involved realignment, coregistration with the segmented
anatomic volume, spatial normalization, and artifact detection
followed by band-pass filtering (0.008-0.09Hz). The CompCor
correction method was used to reduce physiological and other
non-neuronal noise artifacts (45). Motion parameters from

realignment were included as regressors and images identified
as motion or signal outliers using Artifact Detection Tools (46)
were excluded (global signal = 3.0 standard deviations, motion
= 1.0mm, rotation = 0.05mm). We determined a priori that
participants with more than 10% outlier volumes would be
excluded from the analysis though none met this threshold.
Temporal correlations between all possible pairs of 90 cortical
and subcortical bilateral regions (47) were computed based on
the mean corrected fMRI signal. This resulted in a 90 x 90
functional connectomematrix for each participant where regions
were defined as nodes and the temporal correlations between
nodes were defined as edges (48).

Statistical Analyses
We compared BRIEF-A and CAD scores between groups using
two-tailed Wilcoxon rank-sum tests given inhomogeneity of
variance. We also examined the difference in frequency of
clinically significant scores (based on published cutoff scores)
using a two-tailed z test for proportions.

We compared local connectivity within connectomes using
the Network-based Statistic (NBS) Toolbox v1.2 (49), which
identifies connected substructures, or components, within
the larger network, similar to the cluster-based thresholding
approach used in traditional voxel-wise neuroimaging analyses
(49). Permutation testing with 5,000 permutations was then used
to determine edge differences in components between the groups,
controlling for multiple comparisons using family-wise error
(FWE) and covarying for age. NBS results were visualized using
BrainNet Viewer (50).

Brain regions identified as having significant NBS differences
between groups were then evaluated for network hub status based
on degree, betweenness centrality and/or clustering coefficient
> 1 standard deviation above network mean (51). Hubs were
further classified as provincial or connector type based on
module participation coefficient. First, modularity analysis was
conducted at minimum connection density across groups, which
refers to the highest threshold where all nodes remain connected
(no isolated nodes) (52). Modularity was calculated using the
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FIGURE 1 | Network-based statistic (NBS) visualization. Two components were identified by NBS that differed significantly between groups. Component 1 included

connections among lateral temporal and parietal regions. These connections were hypo-connected in the POST-TX compared to the PRE-TX group (colorbar

indicates t statistic, p = 0.042, FWE corrected). Component 2 included connections in the frontal, temporal, parietal, and occipital regions. These connections were

hyper-connected in the POST-TX group (colorbar indicates t statistic, p = 0.006, FWE corrected).

method described by Newman (53) and module decomposition
was visually inspected for quality assurance. Hubs with module
participation coefficient P < 0.3 were classified as provincial
hubs, and hubs with P > 0.3 were classified as connector hubs
(51). Hub results were visualized using BrainNet Viewer (50).

To explore relationships between connectome edges and self-
rating scores, we first calculated the edge betweenness centrality
for each edge identified as significantly different between groups
by NBS. Betweenness centrality indicates the importance of each
edge for the network’s integration (54). We calculated centrality
at the minimum connection density across groups. We then
correlated the centralities with BRIEF-A and CAD scores using
Spearman two-tailed correlations (p < 0.05) in the POST-TX
group only given that BRIEF-A scores were significantly higher
in this group (indicating greater executive dysfunction). Given
that these were exploratory correlations, we did not correct for
multiple comparisons. We also correlated BRIEF-A and CAD
scores within the POST-TX group.

RESULTS

The POST-TX group demonstrated significantly greater
executive dysfunction as measured by the BRIEF-A (W =

3,856, p = 0.004) but the groups did not differ in terms of CAD
scores (W = 2,866, p = 0.627, Table 1). Further, there were 30
participants in the POST-TX group (38%) who had clinically
significant BRIEF-A scores compared to 0 (0%) in the PRE-TX
group, which was a significant difference (z = 5.94, p < 0.001).
There were 7 (9%) participants in the POST-TX group with
clinically significant CAD scores compared to 4 (5%) in the
PRE-TX group. This was not a significant difference (z = 1.02, p
= 0.154).

As shown in Figure 1, NBS revealed that two main network
components were significantly different between the groups.
Component 1 was hypo-connected in the POST-TX group and
consisted of edges connecting left supramarginal gyrus with
right insula and right Rolandic operculum, right supramarginal
gyrus with bilateral insula, right superior temporal pole with left
Rolandic operculum and bilateral supramarginal gyrus, and right
superior temporal gyrus with right Heschl’s gyrus, left Rolandic
operculum and left superior temporal gyrus (10 edges). The t
statistics for these edges ranged from 3.11 to 4.22 (p < 0.042,
FWE corrected, Table 2).

Component 2 was hyper-connected in the POST-TX group
and included edges connecting left Heschl’s gyrus with left
middle and superior frontal gyri, right Heschl’s with left
middle frontal gyrus, left superior occipital gyrus with right
angular gyrus, left Rolandic operculum with left middle frontal
gyrus, right supramarginal gyrus with right angular gyrus,
left inferior temporal gyrus with left insula and left Rolandic
operculum, right inferior temporal gyrus with bilateral insula,
bilateral Rolandic operculum, right supplementary motor area
and bilateral supramarginal gyri, right middle temporal gyrus
with right insula, right Rolandic operculum and right superior
temporal gyrus with right middle temporal gyrus (18 edges). The
t statistics ranged from 3.11 to 4.19 (p = 0.006, FWE corrected,
Table 2).

Most (78%) of the nodes that these altered edges connected
were classified as hubs and 52% of these hubs were connector
type, connecting to other functional subnetworks, in the PRE-TX
group compared to 30% in the POST-TX group (Figure 2) (79).
This difference was significant (z= 1.85, p= 0.031).

BRIEF-A and CAD scores were significantly correlated in
the POST-TX group (r = 0.52, p < 0.001). Centralities for the
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TABLE 2 | Network-based statistic results.

Component 1 P = 0.042 FWE corrected Component 2 P = 0.006 FWE corrected

Region 1 Region 2 T score Region 1 Region 2 T score

Left rolandic operculum Right superior temporal pole 3.11 Left middle frontal Left superior occipital 3.11

Left rolandic operculum Right superior temporal 3.13 Left superior frontal Right superior temporal 3.11

Left supramarginal Right superior temporal pole 3.15 Left middle frontal Left rolandic operculum 3.25

Right rolandic operculum Left supramarginal 3.26 Right angular Right inferior temporal 3.28

Right Heschl Right superior temporal 3.4 Left middle frontal Right middle temporal 3.28

Left insula Right supramarginal 3.43 Right angular Right inferior temporal 3.30

Right supramarginal Right superior temporal pole 3.45 Left insula Right middle temporal 3.31

Left superior temporal Right superior temporal 3.47 Left rolandic operculum Right supramarginal 3.32

Right insula Right supramarginal 4.12 Left insula Right Heschl 3.38

Right insula Left supramarginal 4.22 Right insula Right inferior temporal 3.38

Left rolandic operculum Left inferior temporal 3.41

Right rolandic operculum Right inferior temporal 3.43

Right supplementary motor area Left inferior temporal 3.55

Left supramarginal Right inferior temporal 3.55

Right supramarginal Right inferior temporal 3.74

Right insula Right inferior temporal 4.05

Right rolandic operculum Left Heschl 4.09

Right middle temporal Left Heschl 4.19

FIGURE 2 | Hub profile visualization. Of the regions connected by NBS significant edges (shown in blue), 78% were classified as hubs. In the PRE-TX group, 52% of

hub regions were connector (larger spheres) vs. provincial (smaller spheres) whereas in the POST-TX group, 70% were provincial. This difference was significant (z =

1.85, p = 0.031).

significant NBS edges were not correlated with BRIEF-A or CAD
scores in the POST-TX group. However, given that brain function
tends to be non-linear and hierarchical, we further explored
correlations among all edges for the significant NBSmatrices (i.e.,
alternate connections between nodes encompassing significant
NBS edges). For component 1, CAD correlated with five edges
(p < 0.050, uncorrected) and BRIEF-A with three edges (p <

0.041, uncorrected) and two of these edges overlapped (i.e., were
correlated with both scores). Component 2 showed the opposite

profile with five edges correlating with BRIEF-A (p < 0.043,
uncorrected) and two with CAD (p < 0.022, uncorrected) with
no overlap (Figure 3).

DISCUSSION

Compared to the PRE-TX group, POST-TX breast cancer
survivors demonstrated significantly altered local functional
brain network connectivity. Specifically, our findings indicated
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FIGURE 3 | Correlation results. BRIEF-A and CAD scores were not correlated with centralities of significant NBS edges but were associated with centralities of several

alternate edges connecting significant NBS nodes (p < 0.05). In the heatmaps, significant correlations with CAD are denoted with an asterisk in the upper triangle

while correlations with BRIEF-A are denoted in the lower triangle. Colorbar indicates correlation coefficient. The black, right facing triangle next to a node label

indicates a non-hub. All other nodes were hubs. L/RHESC, right Heschl’s gyrus; L/RINS, left/right insula; L/RROL, left/right Rolandic operculum; L/RSMG, left/right

supramarginal gyrus; RSTP, right superior temporal pole; L/RSTG, left/right superior temporal gyrus; RANG, right angular gyrus; LMFG, left middle frontal gyrus;

LSFG, left superior frontal gyrus; LSOG, left superior occipital gyrus; RSMA, right supplementary motor area; L/RITG, left/right inferior temporal gyrus; RMTG, right

middle temporal gyrus; RSTG, right superior temporal gyrus.

group differences in the functional connections within temporal
regions and among temporal-parietal and frontal-temporal
regions. Since this study focused on connectivity, these findings
suggest that information exchange between these regions may be
altered following breast cancer treatment. Connections between
temporal pole and supramarginal gyrus, as well as those between
temporal pole and insula have been shown to be associated with
word comprehension (55). Word comprehension per se has not
been studied among breast cancer survivors, although potentially
related problems such as difficulties with reading have been
reported (56).

Inferior temporal gyrus is connected to supramarginal
and angular gyri by inferior longitudinal fasciculus (ILF)
and arcuate fasciculus (AF). AF connects frontal, parietal
and temporal areas and is believed to be involved in
language, praxis and visual spatial processing (57). ILF also
connects to hippocampus, amygdala and cingulate to subserve
vision, memory, emotion and language including the ventral-
semantic stream (57). Insula connections with other temporal
areas, including Heschl’s gyrus, tend to be involved in
cognition, emotion and interoception (58). Left middle and left
superior frontal connections with left Rolandic operculum, left
superior occipital, right superior temporal and right middle
temporal regions likely involve attention and executive function
integration with verbal memory, selective visual attention and
somatosensory processing (59). Taken together, these findings
may reflect the deficits in verbal memory, verbal fluency,
attention, executive function and emotion regulation that

are frequently observed among breast cancer patients and
survivors (60–62).

Our findings may help direct future studies involving
predictive modeling. A critical aspect of CRCI management is
determining which patients are at highest risk. Neuroimaging
data tend to be uniquely accurate in predicting future clinical
and behavioral outcomes (63) but involve high dimensionality.
Depending on the image resolution and parcellation scheme,
neuroimaging data can provide potential features numbering
in the tens of thousands or more. This is impractical for
many clinical studies involving modest sample sizes. Therefore,
findings such as ours can provide a smaller set of potential
features for training predictive models. Similarly, a limited
set of regions of interest would make interrogating cortical
gene expression profiles more feasible, especially in a smaller
sample (64).

Such studies involve examining the spatial correlations
between brain-wide messenger RNA expression and regional
neuroimaging metrics (25). Although many studies have
demonstrated that primary breast cancer and/or its treatments
significantly alter brain function and structure, it remains unclear
how or why. Several studies, including our own, suggest genetic
and/or epigenetic risk factors may play an important role (9,
39, 65–69). However, these findings have been limited to the
candidate variants selected and have shown some inconsistent
results, which may relate to what brain regions were examined.
Regions of altered connectivity associated with CRCI could be
correlated with an existing transcriptional atlas, such as the
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Allen Human Brain Atlas (70), to determine the gene expression
profiles of those regions. This would provide more specific
insights regarding the molecular mechanisms underlying altered
connectivity profiles compared to the candidate genetic variant
studies conducted thus far.

Most of the nodes that encompassed the altered edges in
the POST-TX group were hub regions. This is consistent with
prior literature suggesting that hub areas of the brain tend to
be more vulnerable to injury and disease (32). Hubs have high
activity and metabolism and are therefore believed to play a
critical role in neurodegeneration. For example, amyloid-beta
deposition in Alzheimer’s disease has been shown to be associated
with cortical hub connectivity (71). We have previously shown
that connectivity of default mode network hubs can accurately
distinguish chemotherapy treated breast cancer survivors from
chemotherapy naïve survivors and healthy controls, suggesting
that hubs may be preferentially vulnerable to chemotherapy (38).
Our present results further indicate hub vulnerability across
different subnetworks. Specifically, the hubs identified here are
members of various functional subnetworks including default
mode but also dorsal-attention and salience networks (72).

Further, the POST-TX group had significantly fewer
connector hubs compared to the PRE-TX group. Connector
hubs connect functional subnetworks to each other and are
thus important for integrating information processing across the
brain. Provincial hubs have higher intra-subnetwork connectivity
and are thereforemore important for local information exchange,
or segregation (51). Lesioning of connector hubs tends to have
a more widespread effect on brain network organization and
efficiency (51, 73). Therefore, a greater proportion of provincial
hubs following breast cancer therapy may reflect reorganization
of neural resources to protect local processing in response
to a reduction in global integration. Since cognitive domains
such as executive function rely on interactions among various,
anatomically distant regions, this may help explain the greater
executive dysfunction endorsed by the POST-TX group. In fact,
BRIEF-A scores were significantly correlated with the centralities
of several edges and all of these edges connected one or more
hubs (Figure 3).

BRIEF-A and CAD scores were significantly correlated with
each other in the POST-TX group, consistent with prior
reports (36, 74). However, BRIEF-A scores indicated significantly
higher subjective executive dysfunction in the POST-TX group
despite no significant difference in psychological distress. These
results suggest that self-reported cognitive dysfunction cannot
be sufficiently explained by distress. BRIEF-A and CAD scores
did not correlate with the significant NBS edges. However, the
non-linear nature of brain function (75, 76) in combination
with potential brain network reorganization following injury can
result in indirect effects of altered connectivity on clinical and
behavioral outcomes. Accordingly, we found that centralities for
alternate edges in the same component matrices were correlated
with both BRIEF-A and CAD scores in the POST-TX group.
Interestingly, there was limited overlap in these correlations.
These results suggest that psychological distress and subjective
cognitive dysfunction may have unique neurophenotypes.

However, correlations were exploratory and not corrected
for multiple comparisons. Therefore, these findings should be

interpreted with caution and further research regarding the
neural correlates of subjective cognitive function vs. distress
is warranted.

The present study is not without limitations including the
cross-sectional design. Consistent with other such studies in
this field, the POST-TX group was heterogenous for treatment
regimen and there were not sufficient subsample sizes to examine
effects of individual treatments. While longitudinal studies are
optimal for examining individual cognitive trajectories and
evaluating the effects of specific treatments, “broad” studies
with larger samples are useful for identifying neuropsychiatric
phenotypes (8, 77). Our study was also limited by its retrospective
nature in terms of data availability. Objective cognitive function
may have distinct neural correlates from those of subjective
cognitive function.We did not have sufficient overlap in objective
testing batteries for our retrospective cohorts to evaluate these
effects. However, research regarding the neural correlates of
subjective cognitive impairment has been very limited to date
and therefore our findings make a significant contribution
to this literature. The BRIEF-A measures executive function,
which is very commonly affected by breast cancer and its
therapies but the ability to assess other subjective cognitive
domains would have strengthened our results. There was
large variability in time since primary treatment completion
of participants in the POST-TX group and a majority were
undergoing hormone blockade therapy during this interval. It
is possible that network structure changes over time across
the post-treatment phase. Also, the rate of recovery after
treatment could potentially alter hub status as hub profiles are
dynamic. Therefore, assessment at multiple time points following
breast cancer treatment could provide additional insights (21,
78).

Despite these limitations, our results provide further support
that breast cancer and/or its treatments are associated with
brain network alterations. This work provides further insights
regarding the neural correlates of common cognitive-behavioral
deficits observed in breast cancer survivors. These results
could potentially inform predictive modeling applications
and/or transcriptome studies, among others. Our findings also
uniquely add to the growing body of work that patient reported
outcomes are linked to measurable biomarkers. Our results
suggest that self-reported CRCI and psychological symptoms
may have distinct neurophenotypes, further indicating that
CRCI and distress can co-occur and be jointly caused by
post-treatment brain injury. This evidence includes guidance
for future investigations of and potential interventions for
subjective CRCI.
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