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Introduction

Cells evolved different actin nucleators that catalyze the nucle-
ation reaction, the rate-limiting step in actin polymerization. 
Diaphanous (Dia) was originally identified by its essential function 
in cytokinesis1 and constitutes a major branch of the formin fam-
ily, which together with Arp2/3 and WH2 proteins represents the 
majority of actin nucleators in cells.2 The formin protein family is 
defined by the presence of the formin homology domain 2 (FH2)3 
and is further classified according to the presence and arrangement 
of additional domains.4 Dia proteins contain a RBD/FH3 region 
in their N-terminal part, which consists of a Rho-binding domain 
(RBD), 4 Arm repeats (also called Dia-inhibitory domain, DID), 
a dimerization domain (DD), and a putative coil-coiled region 
(CC, Figure 1). Phylogenetic sequence analysis suggests that the 
emergence of Dia predates the evolution of animals and thereby 
multicellularity.

Revisiting the evolutionary history of Dia
Analyses of the evolution of Dia have mostly been embedded 

in larger studies considering the complete formin family and thus 
focused on their common denominator, the FH2 domain. The 
position of the Dia subfamily varies in previous publications. In 
the initial phylogenetic classification by Higgs and Peterson, 

7 metazoan groups were defined, which were separate from the 
formins in fungi, plants, and protists. Based on available non-
FH2 sequences, Dia, DAAM, and FMNL subfamilies were pro-
posed to be grouped together.3,5 The position of non-yeast fungi 
was not resolved, and the yeast formins were the outgroup of all 
taxonomic groups including plants. Rivero et al. resolved the for-
min subfamilies but did not find sufficient bootstrap support for 
defining the relationship among them.6 Out of the fungi genomes, 
only the yeast formins were included, which built a clade on their 
own. As a first evidence for a relationship among the subfami-
lies, Chalkia et al. grouped the FMNL and the DAAM subfam-
ily together, when considering animals and choanoflagelates.7 By 
focusing only on metazoan species, the clade consisting of FMNL 
and DAAM was further corroborated, with Dia and the inverted 
formins as sister clade. A first hint of a possible older evolutionary 
origin of Dia was shown by Grunt et al., who identified a protein 
from Monosiga brevicollis, which grouped together with metazoan 
Dia.8 As in other studies, non-yeast and yeast fungal sequences 
formed their own clade. Interestingly, a phylogenetic tree based on 
the domains beside the FH2 supported a clade with DAAM and 
FMNL proteins.6

To revisit the relationship of the formin subfamilies and to 
define the position of the Dia subfamily (Fig. 2A), we combined 
the sequences of the N-terminal RBD/FH3 region common to the 
Dia subfamily (RBD, 4xArm/DID, DD, CC, Figure 1) and the 
FH2 domain to increase the phylogenetic resolution. Our analysis 
was therefore restricted to the Dia, DAAM, FMNL, and inverted 
formin subfamilies, as they are the only members containing a 
RBD/FH3 region. We extracted genes with this domain architec-
ture from selected fungal and holozoan genomes. In the follow-
ing, we merged the domains as identified by SMART (the DID/
DD region is covered by the Hidden Markov Models (HMMs) 
for Drf_GBD and Drf_FH3; a single HMM exists for the FH2 
domain).9 Then, the sequences were aligned using MUSCLE10 
and the phylogenetic tree was reconstructed using PHYML after 
identification of the best model with PROTTEST.11 In contrast to 
previous studies, we found a well-supported clade containing the 
metazoan inverted formins and fungal sequences. Thus, we identi-
fied possible fungal orthologs of the inverted formins. With a sup-
ported origin predating the divergence of fungi and Holozoa, we 
used this clade as outgroup. As in previous studies, Dia, DAAM, 
and FMNL were reconstructed as well-supported, monophyletic 
groups. Additionally, we were able to obtain support for the rela-
tionship between these subfamilies. Here, Dia is the oldest of the 
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Members of the Diaphanous (Dia) protein family are key 
regulators of fundamental actin driven cellular processes, 
which are conserved from yeast to humans. Researchers have 
uncovered diverse physiological roles in cell morphology, cell 
motility, cell polarity, and cell division, which are involved in 
shaping cells into tissues and organs. The identification of 
numerous binding partners led to substantial progress in our 
understanding of the differential functions of Dia proteins. 
Genetic approaches and new microscopy techniques allow 
important new insights into their localization, activity, and 
molecular principles of regulation.
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3 subfamilies, and DAAM and FMNL evolved by a subsequent 
gene duplication. Within the Dia clade, the incorrect but well-
supported placement of the arthropod and nematode sequences 
might be attributed to long-branch attraction. Unexpectedly, 
also sequences from the chonaoflagellat Monosiga brevicollis 
and the filasterean Capsaspora owczarzakii were placed with 
high support within the Dia clade. Thus, the emergence of 
Dia predates the evolution of animals and thereby multicel-
lularity. Contrasting previous analyses, we retrieved a single 
fungal clade, covering yeast and non-yeast proteins including 
Schizosaccaromyces pombe FOR3 and CDC12 with sufficient 
support. Although the position of this clade as outgroup to the 
holozoan Dia, DAAM, and FMNL is not reliably supported, 
it might indicate that these fungal genes comprise the ortho-
logs of the holozoan families. In this scenario, the last common 
ancestor of ophistikonts contained a single gene, which evolved 
by holozoan specific duplications to Dia, FMNL, and DAAM.

At the base of the vertebrates, further duplications gave rise to 
Dia1, 2, and 3. Usually, a gene retained after a gene duplication 
undergoes either neofunctionalization (i.e., one of the genes evolves 
a new function) or subfunctionalization (i.e., each gene retains a 
subset of the original function).12 In the case of Dia, one of the 
described functional differences is their affinity to small GTPases of 
the Rho family. mDia1 has a small number of interactors, whereas 
mDia2 and 3 are more promiscuous. Structural analyses revealed 
that this functional difference can be attributed to a small motif 
consisting of ‘NNN’ in mDia1, which is substituted to ‘TSH’ in 
mDia2 and 3.13 These positions are conserved throughout the ver-
tebrate Dia1 and Dia2/3, respectively. This pattern is a showcase of 
class II functional divergence, where a position is conserved in both 
subfamilies, but harbors subfamily specific amino acids.14 As the 
existence of such sites might enable to home in on specificity deter-
mining sites, we aligned the mDia paralogues of different verte-
brates und performed an SDPfox analysis15 (Table S1). Indeed, the 

Figure  1. Domain structure and interactors of 
Dia. Dia consists of the formin homology domains 
1 and 2 (FH1, FH2), Rho-binding domain (RBD), 4 
Armadillo repeats (4x Arm, also called Dia inhibi-
tory domain, DiD), dimerization domain (DD), a 
predicted coiled-coil region (CC) and a dia auto-
regulatory domain (DAD). 4x Arm, DD, and CC 
are also referred to as FH3. Structure is shown for 
mDia1 (uniprot O08808,41). Dia interacting pro-
teins are associated with the domains and regions 
they bind to.

Figure 2. The evolutionary origin of diaphanous. (A) Phylogenetic tree based on the RBD/FH3 region and the FH2 domain. Green circles denote an 
approximate Likelihood Ratio (aLRT) support of > 0.8, a black circle indicates aLRT > 0.9. For accession numbers of Dia sequences see Supplemental 
Materials. (B) Differentially conserved sites between vertebrate Dia paralogs. Positions with a zscore > 5 were mapped onto the structure of mDia1 
(pdb: 3eG5; mDia1 in green, interacting Rho GTPase in blue). Sites conserved between Dia2 and Dia3 in yellow, differing sites in orange.
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already known motif was significantly identified (i.e., z-score < 5). 
Additionally, further positions, mostly in the N-terminus of Dia, 
were predicted. To estimate the relevance of these sites, we mapped 
them onto the structure of mDia1 (pdb:3EG5) (Fig. 2B).13 Indeed, 
further sites in addition to the NNN–TSH motif were predicted in 
proximity to the bound GTPase. This includes positions 210 and 
262, which belong to the DAD interaction interface.16 Further sites 
were identified when comparing mDia2 and mDia3. This includes 
position 422, which harbors a tyrosine in mDia1 and 2 and a phe-
nylalanine in mDia3. This position is part of the dimer forming 
area16 and might therefore be involved in the homodimerization of 
Dia proteins. The additional sites might be a good starting point 
for further analyses of functional differences between the Dia sub-
families. Interestingly, when comparing Dia2 and Dia3, 1 of the 2 
kept the amino acid present in mDia1, whereas a substitution hap-
pened in the other (Table S1). This might indicate that both have 
retained parts of the functionality of Dia1.

Dia a multimodular actin regulator—a matter of the bind-
ing partner

Members of the Dia protein family are multimodular proteins 
that interact with numerous actin regulators, adapters, and sig-
naling components (Table 1, Figure 1). Beside the formin homol-
ogy domains FH1 and FH2, the presence of additional domains, 
i.e., RBD/FH3 and the C-terminal Dia-autoregulatory domain 
(DAD), is the characterizing feature of the Dia subfamily. The 
FH1 domain is proline rich and binds to a range of proteins. 

Most importantly, the FH1 domain binds Profilin,17-19 which is 
required for the elongation activity of Dia, albeit not for nucle-
ation.20,21 Among the interactors of the FH1 domain are proteins 
with SH3 domains, such as the F-BAR protein Cip4/Toca-1, the 
I-BAR protein IRSp53, and the Dia interacting protein DIP/
Wish.22-24 The F-BAR protein Cip4 contains an SH3 domain at 
its C-terminal end, which is necessary for colocalization of Cip4 
and Dia in Drosophila S2 cells.22 This interaction is also involved 
in controlling Dia-catalyzed actin polymerization. Cip4/Toca-1 
protein inhibits the Profilin-independent nucleation as well as 
the Profilin-dependent elongation. Single molecule analysis by 
TIRF microscopy revealed that about 90% of elongating fila-
ments were suppressed by Cip4. However, about one-tenth of 
the filaments showed increased elongation speed, suggesting that 
these filaments escaped inhibition.22 The inhibition of nucleation 
and elongation by Cip4 seems to be mediated by the interaction 
of SH3 and FH1 domains, since the isolated SH3 domain was 
also inhibitory.22 The SH3 domain containing DIP inhibits actin 
polymerization in vitro,25 and interestingly also mDia2 depen-
dent actin bundling.25-27 The inhibitory mechanism and the role 
of the SH3-FH2 interaction has remained unclear. The function 
of a third SH3 containing protein, IRSp53, on actin polymer-
ization in vitro has not been reported yet. Given that the SH3 
domain of Cip4 on its own showed inhibitory activity,22 it is 
likely that IRSp53 inhibits filament nucleation and elongation 
in a similar manner.

Table 1. Dia binding partners and their proposed functions

binding partner binding domain physiological function biochemical function references

Rho1/RhoA RBD activation of nucleation and elongation release of autoinhibition 13,16,19,41,63,110

ipgB2 RBD 158

PiP2, phospholipids N-basic apical/membrane localizaton 47-49,158,161

Profilin FH1 required for elongation activity 17-19

Cip4/Toca/FBP17 FH1 antagonizes Dia mediated membrane stabilization and cytokinesis inhibition of nucleation and elongation 22

iRSp53 FH1 filapodia induction 24,81,162

DiP/wish FH1 blebbing in amoeboid migratory cells mDia2 dependent filament assembly and bundling 23,25,163-165

RAGe FH1 cell migration 28,166

ena/vasp FH2 lamellipodia, SRF activity 34,36,37

Clip-170 FH2 phagocytosis 35

Neurochondrin FH3 unknown 45

Abi DD junctions in MDCK cells 44

Liprin DiD-DD antagonises membrane localizaton 42

Anillin DiD cytokinesis, localization of mDia2 43

iQGAP DiD phagocytosis, caveolae membrane insertion 46,167

APC DAD synergistic actin polymerization 51-53,64

iNF2 DAD lamellipodia in podocyte actin polymerization and SRF activation 56,168

Fli-i DAD promotes release of Dia autoinhition 54

Hck neutrophil chemotaxis 148

HDAC6 MT deacetylation 169

PKD2 N-terminal spindle localization of PKD2 73

exportin 6 nuclear export 170

importin-a N-terminal nuclear import 171

Crm1 C-terminal nuclear export 171
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The FH1 domain has also been reported to bind to the intracel-
lular part of the RAGE receptor protein (receptor for advanced gly-
cation end products) and by this may mediate RAGE-dependent 
Rac1 and Cdc42 activation and cell migration.28 The molecular 
mechanism of Dia mediated RAGE signal transduction and its 
potential role on actin polymerization is unknown, however.

The FH2 domain, which forms a dimeric torus, is sufficient 
for actin nucleation. It can bind G-actin and the barbed end of 
filaments.29-31 As actin dimer and trimer formation is the kinetic 
barrier of actin polymerization, nucleation may be triggered by 
binding of actin mono-, di-, or trimers to the FH2 torus through 
weak actin binding sites.29 In addition to nucleation, Dia also 
elongates existing actin filaments, which depends on the G-actin 
binding protein Profilin.20,32 The FH2 torus remains bound to 
the barbed end of F-actin and may rotate during elongation.33 For 
elongation, one of the subunits of the dimeric torus loses its link 
to the barbed end, accepts a new actin monomer from a Profilin-
actin complex, and adds it to the barbed end of the filament. In 
the next step, the other subunit of the FH2 torus dissociates from 
the barbed end and incorporates a new monomer. This stepwise 
mechanism is referred to as processive capping. A second, indirect 
mechanism contributes to elongation in vivo. The FH2 torus pre-
vents binding of capping proteins to the barbed end, which coun-
teracts elongation.

Ena/Vasp and Clip-170 have been described to physically inter-
act with the FH2 domain of Dia.34-37 Although it has not been 
addressed, if and how binding of Ena/Vasp or Clip-170 interferes 
with nucleation and elongation and barbed end binding, it is 
attractive to speculate that binding to the FH2 domain may block 
sites important for the catalytic mechanism and suppress one or 
more of these activities. Future in vitro experiments, especially 
single molecule TIRF assays, will reveal such potential activities.

The RBD/FH3 domain is not a single entity in structural terms 
but includes a dimerization domain (DD), a coiled-coil domain 
(CC), and a domain with 4x Arm repeats.38-40 On the N-terminal 
side is the RBD that interacts with activated RhoGTPases (Fig. 1). 
As the autoregulatory domain at the C-terminal part (DAD) 
interacts with the 4x Arm domain and part of the RBD and thus 
prevents binding of activated RhoGTPases, this region is often 
refered to as Dia-inhibitory domain (DID).13,16,38,41 A number of 
structurally diverse proteins (Neurochondrin, Abi, Liprin, Anilin, 
IQGAP) bind to the FH3 domain.42-46 For none of these binding 
proteins a direct effect on actin polymerization has been reported 
yet. However, some of the FH3 interactors, Liprin, Anilin, and 
IQGAP, for example, seem to be involved in subcellular localiza-
tion of Dia.42,43,46

In addition to these FH3 interactors, basic regions at the 
N-terminus or C-terminus of Dia are involved in controlling 
membrane association and binding of phosphoinositols (PIP). The 
N-terminal part contains a stretch of basic residues that is impor-
tant for membrane association of Dia.47-49 In polarized Drosophila 
tracheal cells and Madin-Darby canine kidney (MDCK) cells, 
restriction of Dia to the apical domain is controlled by a combi-
nation of these mechanisms. On the one side, the RBD domain 
binds to apically activated and membrane attached Rho; on the 
other side, the basic N-terminal region of Dia binds to PI(4,5)

P2, which is enriched in the apical membrane.47 The combina-
tion of these mechanisms not only mediates apical restriction but 
also controls activation of actin polymerization. Besides the release 
of DID-DAD autoinhibition by Rho-GTP binding, the interac-
tion with PI(4,5)P2 may also contribute to activation. Such a dual 
mechanism is consistent with the previous report that addition of 
liposomes affects actin polymerization in a PIP2 concentration 
dependent manner.49

The DAD domain at the C-terminus tightly binds to the 
N-terminal DID domain to form a dormant Dia dimer.50 Only 
after opening of the intramolecular loop by binding of Rho 
GTPases to RBD, the FH2 torus becomes accessible to actin 
monomers and filaments, which allows nucleation and elonga-
tion. Similar to the disruption of the DID-DAD interaction by 
RhoGTPases, other proteins binding to the DAD domain may 
also release autoinhibition. APC (adenomatous polyposis coli) 
synergistically activates actin polymerization by binding to the 
DAD domain.51-53 Interestingly, APC and Dia together nucleate 
filaments but become separated upon elongation of the filament 
as demonstrated by single molecule TIRF microscopy. While Dia 
sits at the growing barbed end, APC remains associated with the 
pointed end.52 Flightless-1 (Fli-1), a member of the gelsolin family, 
is another example of an activating DAD interactor, which acts 
synergistically to Rho. As Rho-GTP only partially relieves autoin-
hibition, addition of Fli-1 to such an in vitro assay further activates 
Dia.54 Similar to proteins binding to the RBD or DAD, a synergis-
tic activation may be achieved by phosphorylation of the serine or 
threonine residues within the DAD domain. Phosphorylation of 
mDia2 at 2 conserved residues (T1061 and S1070) by Rho depen-
dent kinase (Rok) increases activation.55 DID and DAD domains 
of different members of the formin family may interact. Recent 
studies further showed that the DID domain of INF2 (inverted 
formin 2) binds to the DAD domain of mDia, allowing cross-reg-
ulation among formins. Such an interaction may be functionally 
relevant, as binding of INF2’s DID domain reduces the rate of 
actin polymerization by mDia1 in vitro.56

Physiological functions of Dia in single cells and in multicel-
lular context

Essential role of Dia in cell cycle and cytokinesis
Dia was initially identified in screens for genes required for sper-

matogenesis in male flies.1,57,58 Counterparts of Dia in yeast, Bni1, 
Cdc12, and C. elegans, Cyk-1, were found because of their essen-
tial function in cytokinesis,18,59-63 demonstrating the conservation 
of Dia’s function in cytokinesis.22,43,64-69 Dia is involved in setting 
up, positioning, and constriction of the contractile ring (Fig. 3). 
Loss of Dia function leads to failure of cytokinesis and results in 
multinuclear cells. In addition to cytokinesis, Dia is involved in 
diverse aspects of mitosis. Dia is required for proper segregation 
of centrosomes shortly before mitosis in Drosophila blastoderm 
embryos.70 Incomplete centrosome separation probably reflects an 
indirect function of Dia, as no obvious centrosomal localization of 
Dia has been reported yet. Dia has been implicated in the attach-
ment of metaphase chromosomes to kinetochores, their alignment, 
as well as the orientation of the mitotic spindle and localization 
of spindle proteins.71-75 Dia may also be involved in linking cell 
growth with cell cycle progression at the G1/S transition.76,77 In the 
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early Drosophila embryo, Dia is required for centrosome induced 
formation of pole cells, the germ cell precursors at the posterior 
pole of the embryo.69

The role of Dia in regulating membrane protrusions and cell 
migration

Actin polymerization provides the mechanical force to drive 
membrane protrusions such as lamellipodia and filopodia. 
Formins, like Dia, nucleate linear actin filaments in filopodial 
protrusions (Fig. 3), whereas the Arp2/3 complex is thought to 
be the key nucleator generating a branched actin network dur-
ing lamellipodia formation. Recent studies indicate that both 
protrusive structures require an intricate crosstalk between cen-
tral actin nucleators. In the absence of the Arp2/3 complex or its 
major activator, the WAVE regulatory complex (WRC), mDia2-
dependent filopodia are induced.78 By contrast, loss of mDia2 not 
only inhibits filopodia formation but also severely affects lamel-
lipodia structure.79 All active mDia proteins (mDia1–3) are able 
to induce filopodia, although the underlying pathways seem to be 
different.80-82 An essential role of Dia in regulating lamellipodial-
filopodial balance has been observed during Drosophila dorsal 
closure.83 Like mDia proteins, active Drosophila Dia localizes to 

filopodial tips and increases filopodial lifetime. In addition to such 
a direct function, Dia can also promote lamellipodia protrusions 
by recruiting Ena/VASP to the leading edge.83 Ena/VASP directly 
binds a central WRC subunit, Abi, the interactor of Abelson kinase 
(Abl),84 suggesting that filopodial assembly might originate from 
the lamellipodial network through the convergent-elongation 
mechanism as proposed previously.85 Supporting this notion, loss 
of function studies in different systems revealed conserved roles 
of Dia proteins in cell spreading and in cell migration including 
fibroblasts, epithelial, neuronal, and blood cells.79,83,86-88

The role of Dia in regulating endocytosis and endosome dynamics
Actin polymerization reshapes the plasma membrane but has 

also been proposed to drive membrane invaginations and pro-
pel endocytic vesicles during a variety of morphogenetic events. 
In the Drosophila embryo, Dia and non-muscle Myosin II (Myo 
II) control the initiation of E-cadherin endocytosis by regulating 
the recruitment of clathrin and the Adaptor Protein 2 (AP2).89 
Thus, the function of Dia-dependent linear F-actin appears to 
be different from Arp2/3 induced branched actin filaments that 
promotes endocytosis. Unlike Dia, Arp2/3 mediated branched 
actin filament nucleation by WASP/WAVE proteins facilitates 

Figure 3. Dia dependent cellular structures and functions. Members of Diaphanous (Dia) protein family play important roles in (A) migrating, (B) 
in dividing, and (C) in the epithelial cells. Dia proteins mainly act on the assembly of actin filaments (marked in green) but also contribute to the 
regulation of microtubules dynamics (marked in red). Diverse cellular structures and functions are differentially regulated by a combinatorial use of 
numerous Dia binding partners (depicted in the boxes).
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Dynamin-dependent vesicular scission.90,91 Recent live-imaging 
analyses of dia mutant embryos revealed an increased endocytic 
activity and thus suggests an inhibitory function of Dia on tubular 
membrane invaginations. This inhibitory role of Dia is based on 
an antagonistic interaction with the F-BAR protein Cip4, a known 
activator of the WASP/WAVE-Arp2/3 pathway.22,90-92 Since Cip4 
inhibits actin nucleation by Dia in vitro, a model has been proposed 
in which Cip4 controls 2 different pools of actin filaments: activa-
tion of branched filaments by its WASP/WAVE interaction and 
suppression of linear filaments by inhibition of Dia.22 The strong 
co-localization of Dia and Cip4 at newly formed endocytic vesicles 
further suggests an additional role of Dia in vesicle trafficking.22 
In mammals, a conserved function of Dia proteins in regulating 
endosome movement has been found. mDia1 and mDia2 are 
recruited to endosomes by activated RhoB.93-95 Endosomal F-actin 
induced by Dia associates with cortical actin stress fibers, which 
might control further transport of endosomes to microtubules.95 
A similar function of mDia2 and Abl has recently been postulated 
for the formation of stress-fiber-linked caveolae.96

In addition to trafficking, Dia regulates the morphology of the 
Golgi apparatus.97 Activated Dia leads to dispersion of Golgi mem-
brane stacks, which is based on repressed fusion of small Golgi 
stacks into larger compartments as well as increased formation of 
Rab6 positive transport vesicles. As Dia colocalized with the Rab6 
vesicles, at least partially, their number may be directly controlled 
by Dia.97 Mitochondria are also affected by Dia. Activation of Dia 
leads to increased anchoring to actin filaments and loss of mobil-
ity of mitochondria, whereas RNAi mediated depletion of Dia 
elevated mobility.98

The role of Dia proteins on microtubule dynamics
Over the last decade, growing evidence has emerged that Dia 

not only acts on actin polymerization but also contributes to the 
regulation of microtubule dynamics.99 The first hints came from 
overexpression experiments with constitutively active mutant pro-
teins lacking their autoregulatory domains. Expression of active 
mDia1 induces bipolar elongation of HeLa cells, in which micro-
tubules are aligned in parallel with F-actin stress fibers.100 At the 
same time, Gregg Gunderson’s group observed that expression 
of active mDia2 is sufficient to generate and orient stable, dety-
rosinated microtubules.101 Subsequent work of the same group 
identified mDia2 in a complex with EB1 and APC, 2 important 
microtubule plus-end tracking proteins, suggesting a role for 
mDia2 in microtubule capping.102 The molecular complexity of 
mDia induced microtubule stabilization was further increased 
by the observation that mDia1 regulates the glycogen synthetase 
kinase-3β (GSK3β) through novel PKCs to promote microtubule 
stabilization.103

The molecular mechanism of microtubule stabilization by 
mDia proteins remained completely unclear for a long time. The 
first experimental evidence against an unspecific effect of mDia 
induced actin assembly on microtubule dynamics came from the 
finding that the microtubule stabilization activity can be separated 
from its actin nucleation activity.104 Actin nucleation-defective 
FH2 fragments of mDia1, mDia2, and mDia3 retain their abil-
ity to bind to microtubules, EB1, and APC, and more impor-
tantly, they are still capable to induce microtubule stabilization 

upon overexpression in serum-starved NIH3T3 cells.72,104 Thus, 
the FH2 domain seems to function in both actin nucleation and 
microtubule stabilization. Interestingly, re-expression of actin-
nucleation-deficient mDia3 in mDia3 knockdown cells fully 
rescue the chromosome misalignment phenotype, suggesting 
that mDia3 directly acts on microtubules at the kinetochore.72,75 
Since the activity of mDia2 for actin is in the nanomolar range, 
whereas that for microtubules is in the micromolar range, a com-
petition model has been proposed, in which a redistribution of the 
mDia proteins to microtubules can only occur, if the affinity for 
microtubules is significantly increased.104 Supporting this idea, 
recent work from the Gundersen group identified an actin capping 
protein that promotes microtubule stabilization by antagonizing 
mDia1.105 Comparative in vitro studies with different recombi-
nant formins further revealed a reciprocal inhibition between actin 
and microtubule dynamics.106 Microtubules strongly inhibit actin 
polymerization by mDia2, whereas actin monomers inhibit in 
turn microtubule binding/bundling by inverted formins such as 
INF2.106 Based on the observation that stable microtubules pref-
erentially form at the leading edge of migrating cells,107 the cur-
rent model proposes a sequential action of mDia proteins on actin 
filaments and microtubules. mDia proteins are released from actin 
filaments by competition through capping proteins to promote 
microtubule stabilization required for cell polarization. Despite 
increasing in vitro evidence, a physiological role of the microtu-
bule stabilizing activity of Dia proteins has not yet been found in 
vivo. In Drosophila, Dia directly binds both fly APC’s (APC1 and 
APC2), but unlike in vertebrates, the APC-Dia complexes seem 
to affect actin directly rather than through an EB1-dependent 
effect on microtubules.51,64 However, known formin-dependent 
fundamental processes such as axonal outgrowth and growth cone 
motility, meiosis in mammalian oocytes or cytoplasmic streaming 
of Drosophila oocytes require a tightly regulated, spatiotemporal 
coordination between actin and microtubule dynamics. Thus, 
future studies will be required to further decipher the microtubule 
stabilizing activity of Dia proteins in the context of a living animal.

Roles of Dia in shaping tissues during development
Dia is required for embryonic development in multiple species. 

In zebrafish, Dia controls cell movements and convergent exten-
sion during gastrulation possibly as an effector of the wnt signaling 
pathway.108,109 In embryos depleted of Dia2, cells of the deep mar-
ginal layer, prechordal plate, and lateral epidermis lose protrusions 
and blebs. In Drosophila embryogenesis, formation of the first epi-
thelial cell layer is controlled by Dia.69,110 During cellularization of 
dia mutant embryos, the array of invaginating furrows is disrupted 
and incomplete, and adjacent nuclei are frequently incorporated 
in the same cell. As the speed of invagination of formed furrows 
is not affected, Dia seems to stabilize newly formed furrows. In 
addition, the typical epithelial compartmentalization is impaired 
in dia mutants, as lateral and basal domains are not separated.22 
In this process, Dia is controlled by RhoGEF2-Rho1 signaling 
and acts together with the non-receptor tyrosine kinase Abl and 
Ena (Enabled) in controlling actin filament formation in the api-
cal microvillous structure of the plasma membrane.110,111 Later in 
embryonic development, Dia is involved in tissue morphogen-
esis. Invagination of the mesoderm, which relies on a stereotypic 
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series of cell shape changes starting with apical constriction, is 
impaired in dia mutants, as the level of apical non-muscle myosin 
is reduced and the maturation of adherens junctions is disturbed.83 
Specifically, Dia assembles F-actin filaments that suppress 
E-Cadherin localization in the medial region and connect con-
tractile medial actomyosin filaments with adherens junctions.112 
In dynamic junctions during cell intercalation, Dia promotes the 
turnover of E-Cadherin and thus contributes to establishing the 
anisotropy of actomyosin activity needed for directional intercala-
tion. It was proposed that Dia controls formation of stable cortical 
actin patches, which lead to lateral clustering of E-Cadherin.89,113 
Segmentation of Drosophila embryos becomes visible by segmental 
grooves, which are formed by infoldings of the epidermis. In this 
process, Dia may be involved in stabilization of adherens junctions 
but less so by triggering apical actomyosin contraction.114 Beside 
embryonic tissues, imaginal discs of Drosophila are an excellent 
system to analyze tissue remodelling and junction dynamics. It has 
been reported that Dia sustains apical tension during differentia-
tion in the pupal eye disc.115

The function of Dia in formation, positioning, and matura-
tion of cellular junctions has also been studied in cultured cells. 
Dia localizes to adherens junctions and is needed for maintenance 
and strengthening of adherens junctions downstream of Rho1 
and counteracting Rho kinase.116-118 The requirement of Dia for 
adherens junctions may change during tumorigenesis. While Dia 
is involved in the assembly of tangential junctions in non-trans-
formed cells, radial junctions are not Dia-dependent in transformed 
cells.116 Dia function may be coordinated by Arp2/3 through its 
direct interaction with Abi, a well-characterized WAVE/Arp2/3 
activator.44 Studies of mice lacking mDia1 and mDia3 confirmed 
these results from cultured cells, showing that neuroepithelial cells 
have an attenuated apical actin belt and lost adherens junctions.119

Recent studies further highlighted the importance of apical tar-
geting of Dia activity as a conserved feature of all epithelial cells 
forming different tubular organs in 3D cyst of cultured MDCK 
cells and in Drosophila trachea, salivary glands, hindgut, and 
Malpighian tubules.47,120 Remarkably, in the absence of apical actin 
polymerization, the apical-basal polarity of these tubular epithelial 
cells is not affected but secretion via the apical surface to the tube 
lumen is blocked.120 Apical secretion requires Myosin V (Myo V) 
motor protein, which transports secretory vesicles along polarized 
actin filaments nucleated by Dia.120

In addition to polarization, Dia is involved in the formation and 
the maturation of cell-cell and cell-matrix junctions. Drosophila 
neuromuscular junctions grow in a Dia-dependent manner after 
initial contact formation. Dia acts on the presynaptic side and is 
regulated by the receptor tyrosine phosphatase Dlar and the gua-
nine nucleotide exchange factor Trio.121 Dia is also involved in the 
interaction and stimulation of dendritic cells by T cells as shown 
with bone-marrow derived dendritic cells from mDia1 deficient 
mice.122 Furthermore, Dia functions in focal adhesions and cell-
matrix interactions. This function of Dia may be developmentally 
regulated and depends on the specific composition of FAs. During 
oogenesis in Drosophila, the follicle epithelium switches from a 
columnar to squamous morphology. This morphology change is 
associated with a switch in integrin subtypes. Analysis of mutant 

clones showed that integrin downregulated Dia and Profilin lev-
els.123 Dia may be involved in maturation of focal adhesions as a 
mechano-sensor. The increased F-actin assembly and FA growth 
in focal adhesions induced by external force depends on mDia1.124 
In addition, Dia may control assembly of the stress fibers that are 
linked to FA involving signaling by Rho or Rif GTPases.125-128

Dia-linking cytoskeleton with mechanics and transcription
Cells are able to respond to mechanical stimuli, such as stretch-

ing during cell migration by changes in transcription. The serum 
response factor (SRF) and its cofactor Mal constitute a pathway 
that mediates such a response and that is dependent on the pool 
of G-actin. SRF/Mal can be triggered by cytoplasmic and nuclear 
Dia in cultured cells.30,37,129-132 In response to forces, mDia1 pro-
motes α-SMA (α smooth muscle actin) promoter activity as a 
result of the release of MRTF-A, a transcriptional co-activator of 
SMA from actin monomers. Conversely, force-induced α-SMA 
expression is blocked in mDia1 knockdown cells.133 Thus, differ-
entiation of myofibroblasts depends on mDia1.133 The SRF/Mal 
pathway has been also investigated in its physiological context in 
collective migration of border cells in Drosophila oogenesis. Here, 
SRF/Mal provides a feedback mechanism for re-enforcing cyto-
skeletal strength. SRF/Mal signaling is essential for border cell 
migration, as mal mutant cells fail to migrate. Furthermore, accu-
mulation of Mal in border cell nuclei is triggered by cell streching 
and activated Dia.134

Dia can sense and respond to mechanical stimuli.135 This may 
rely on indirect signaling mechanisms or availability of globular 
actin.136 In addition, the mechanism of progressive capping by 
the FH2 dimer appears to be inherently sensitive to forces in a 
piconewton range.32,137,138 This prediction has recently been tested 
experimentally with microfluidic devices, in which calibrated 
piconewton forces can be applied to actin filaments. The measure-
ments showed that the elongation rate of polymerization by Dia 
increased by up to a factor of 2 when filaments were pulled.139 Such 
a force dependent activity may be a common feature of formins, 
as yeast Bni1 shows an elevated elongation rate after force applica-
tion on filaments.140 Controlled mechanical deformations of the 
cell cortex induced processive F-actin assembly by Dia in a manner 
independent of Rho or Ca2+ ions but dependent on LIM kinase. 
In this system, the initial event that senses the mechanical changes 
may be an increased amount of globular actin monomers, which 
may in turn increase polymerization rate by Dia.136

Conversely to sensing, Dia may also directly control the 
mechanical properties of cells. The stiffness of cells is controlled by 
the actin cortex beneath the plasma membrane. Expression of acti-
vated Dia leads to an increased stiffness of cells141 and expression of 
Dia-interacting protein (DIP) induced mDia2 dependent blebbing 
of the plasma membrane,25 indicating a role of Dia in assembly of 
the actin cortex.

Functions in mammalian physiology
Most studies on Dia functions were focused on molecular 

and cellular aspects. Based on findings from human genetics 
and analyses in different genetic model organisms, unexpected 
specific functions in complex physiological processes have been 
identified. Very early on in the study of Dia, a link of Dia to deaf-
ness in humans was established. DFNA1, characterized by a fully 
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penetrant sensorineural hearing loss and malfunction of hair cells 
in the inner ear, is linked to a mutation in Dia that leads to a 
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the auditory system also impairs hearing in Drosophila and mice 
and leads to auditory neuropathy (AUNA1) in humans.145,146 
Another insight from human genetics was provided by the map-
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Although the consequences of the mutation in humans have not 
been reported yet, similarities to the function of Dia in the male 
and female germline of Drosophila1,69 may be expected.

In cells of the hematopoetic system, a number of specific 
functions of Dia have been revealed. Dia mediates adhesive and 
migratory behavior of dendritic cells and their interaction with 
T cells in the lymphnodes.122 Similarly, T cells and neutrophils 
deficient for mDia1 showed a poor adherence to the extra-
cellular matrix and chemotactic migration behavior.25,148-150 
These observations point to a role of Dia activation in T cell 
response.151

Dia is also important in the erythrocyte lineage. A unique 
feature of erythropoesis is the loss of the nucleus during matura-
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pyknotic nucleus moves to one “daughter” cell separated from 
the main, anuclear cell body by a contractile actin ring. Closure 
of the actin ring leads to extrusion of the nucleus. Dia2 and Rac 
GTPases control the formation of the contractile actin ring, 
while Dia depletion blocked enucleation.152 In platelets, Dia 
participates in thrombin-induced reorganization of the actin 
cytoskeleton.153,154 In macrophages, Dia is involved in phago-
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Finally, a surprising link of Dia to cortisol hormones was 
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corticotropin (ACTH) steroids are synthesized with the reac-
tion pathway partly located in the endoplasmic reticulum and 
mitochondria. As interference with Dia1 lead to decreased mito-
chondria mobility and decreased cortisol but increased adrenal 
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Conclusions and Perspectives

In summary, Dia proteins control diverse fundamental bio-
logical processes that are mediated by combinatorial interactions 
with different binding partners. The nature of some interactions 
including well-known actin regulators such as Abi proteins or 
members of the Ena/VASP proteins is still unclear. Future genetic 
approaches including detailed structure-function analyses in 
the mutant background will significantly increase our under-
standing of these interactions in vivo. Additional quantitative 
multi-wavelength single-molecule imaging approaches and new 
super-resolution microscopy approaches will shed light on these 
interactions how and where these conserved regulatory networks 
act on cellular structures and cell dynamics. The use of advanced 
optogenetic tools for the manipulation of endogenous proteins in 
single cells will further complement our knowledge about these 
evolutionarily conserved modules in actin nucleation.
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