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,e tourism industry has become one of the most important economic sectors for governments worldwide. Accurately forecasting
tourism demand is crucial because it provides useful information to related industries and governments, enabling stakeholders to
adjust plans and policies. To develop a forecasting tool for the tourism industry, this study proposes a method that combines
feature selection (FS) and support vector regression (SVR) with particle swarm optimization (PSO), named FS–PSOSVR. To
ensure high forecast accuracy, FS and a PSO algorithm are employed to, respectively, select reliable input variables and to identify
the optimal initial parameters of SVR.,e proposed method was tested using a data set of monthly tourist arrivals to Taiwan from
January 2006 to December 2016. ,e results reveal that the errors obtained using FS–PSOSVR are comparatively smaller than
those obtained using other methods, indicating that FS–PSOSVR is an effective method for forecasting tourism demand.

1. Introduction

,e tourism industry is one of the fastest promising eco-
nomic sectors worldwide. Statistics from the World Tourism
Organization [1] indicate that the number of inbound
tourists increased by approximately 250 million between
2000 and 2010; moreover, this number is predicted to in-
crease to 1.8 billion by 2030. Statistics from theWorld Travel
and Tourism Council (WTTC) [2] show that the tourism
industry accounts for 3.4% of world gross domestic product
(GDP), and the tourism industry accounts for 2.8% of total
employment globally. ,ese statistics indicate how in-
fluential the tourism industry is in the global economic
environment. ,e WTTC results related to Taiwan reveal
that tourism generated 4.3% of its total GDP in 2017, and,
furthermore, workers in this industry accounted for 5.2% of
total employment [3]. ,ese statistics indicate that the
tourism industry has also become a critical component of the
Taiwanese economy. Accurate forecasting of tourist volume

plays a major role in tourism planning because it enables
destinations to predict requirements for infrastructural
development in order to meet demand. In addition, accu-
rately forecasting tourist arrivals and studying tourist arrival
patterns are essential measures for tourism-related in-
dustries seeking to formulate efficient and effective strategies
for maintaining and boosting the tourism sector.

Brida, Cortes-Jimenez, and Pulina [4] mentioned that, in
several cases, a long-run bidirectional Granger causality
exists between tourism and GDP; therefore, when testing
tourism-led growth hypotheses, researchers should aggre-
gate origin countries that exhibit similar features to avoid
biased results. Misleading results may emerge in both the
short and long term, because various source market seg-
ments may possess diverse characteristics. ,us, it may not
be valid to state that expansion of the tourism sector con-
tributes to long-term growth in a country that has negligible
tourism sector in comparison with other economic sectors.
,e effect of uncertainty on growth is evident [5], and the
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temporal relationship between GDP and international
tourism is relatively isolated [6]. ,erefore, countries (or
groups of countries) where tourism is a bigger proportion of
GDP were not considered as a threshold variable in the
present study, which examines a hybrid artificial intelligence
(AI) model to forecast tourist arrivals to Taiwan from its top
four markets.

Many researchers have proposed approaches to fore-
casting demand in the tourism industry. ,e most common
time series methods include the autoregressive integrated
moving average (ARIMA) model [7] and exponential
smoothing (ETS) [8]. ,ese methods usually employ his-
torical datasets to forecast future tourist flow through
a univariate or multivariate mathematical function that is
highly dependent on linear assumptions. Although widely
recognized, such methods are limited by their poor non-
linear fitting capabilities [9]. ,is indicates the usefulness of
nonlinear methods of demand forecasting, namely, the use
of artificial neural networks (ANNs) [10] and support vector
regression (SVR) [11]. Nevertheless, the benefits of AI
methods depend on using appropriate parameter settings.
Various techniques have been proposed to determine an
adequate set of parameter values; however, a lack of thor-
ough guidelines remains a problem [12]. Moreover, re-
searchers have widely applied several consecutive lagged
variables as input features in forecasting problems. Never-
theless, some input features may be redundant or even ir-
relevant to a specific demand forecasting problem, which
reduces the accuracy of forecasting models [13]. ,erefore,
in this study, the feature selection (FS) method is applied to
identify essential data and improve the forecasting effec-
tiveness of the input variables.

To develop a reliable forecasting tool for the tourism
industry, this study proposes a hybrid algorithm called
FS–PSOSVR, which is a combination of FS techniques, the
SVR model, and the particle swarm optimization (PSO)
algorithm. FS is used to determine the most relevant input
variables in the time series data. ,e PSO algorithm is
employed to determine a set of optimal parameters for SVR,
which are then used to construct the SVR model. To account
for regional differences, tourism demand forecasting models
are constructed for different regions. Monthly data of tourist
arrivals in Taiwan from January 2006 to December 2016 are
used as an example. ,e experimental results demonstrated
that the proposed algorithm outperformed other forecasting
methods such as ETS, ARIMA, seasonal ARIMA (SARIMA),
grid search SVR (GRIDSVR), and PSOSVR.

2. Literature Review

Coshall and Charlesworth suggested that the methods used
by studies on forecasting tourism demand can be categorized
into causal econometric models and time series models [14].
Causal econometric models attempt to establish relation-
ships between variables such as tourism demand (as mea-
sured by the number of tourist arrivals at a destination) or
tourist expenditure and a set of hypothesized explanatory

factors. ,e most commonly used causal econometric
models in the literature are cointegration and error cor-
rection models [15], vector autoregressive models [16], and
linear almost-ideal system models [17]. ,ese methods have
also been combined [18].

In past decades, researchers have widely applied time
series models, including ARIMA and ETS, to analyze issues
concerning tourism demand forecasting. Lim and McAleer
used ARIMA and SARIMA models to forecast the demand
for tourism in Australia by analyzing data on tourists from
Hong Kong, Malaysia, and Singapore [19]. ,eir results
demonstrated that ARIMA is the most suitable model for
predicting tourism demand for visiting Australia by visitors
from Hong Kong and Malaysia. However, for Singaporean
visitors, the SARIMA model generated superior results.

Chu used nine time series models—including two naive
models [20], ARIMA-type models (ARIMA, SARIMA, and
ARFIMA) and regression-based models—to forecast the
volume of monthly tourist arrivals in Singapore. Chu re-
ported that the ARFIMA model exhibited the highest
forecasting accuracy both in the short and long term;
however, for the medium term, the SARIMA model had
superior performance [20].

More recently, Wan et al. used the SARIMA model and
compared it with a seasonal moving average model and the
Holt–Winter model [21]. ,eir findings indicated that the
SARIMA model performed most favorably under all three
h-step-ahead forecasting horizons. In addition, Baldigara
and Mamula employed the SARIMA model to predict the
number of German visitors to Croatia [22]. In their analysis,
the predictive power of the SARIMA model was superior to
that of the other methodologies mentioned in their study.

Assaf et al. used a comprehensive and accurate sys-
tematic approach to analyze tourism demand that was
based on a Bayesian global vector autoregressive model
[23]. Huang et al. used the PSO algorithm combined with
a back-propagation neural network to establish a demand
estimation model [24]. Akin et al. considered the SARIMA,
]-SVR, and multilayer perceptron-type neural networks
and optimized network parameters using numerous ap-
proaches for evaluating performances on monthly tourist
arrival data to Turkey from various countries [25]. Cang
proposed a nonlinear combination method using multi-
layer perceptron neural networks to map the nonlinear
relationship between inputs and outputs [26]. Huarng et al.
proposed an innovative forecasting model to detect regime
switching properly and used a fuzzy time series model for
forecasting [27].

SVR overcomes classification problems, nonlinear
function problems, and forecasting problems by using loss
functions. Because tourism data usually display nonlinear
characteristics, SVR is also widely applied in research on
tourism demand forecasting. Chen and Wang combined
SVRwith a genetic algorithm (GA) to forecast the number of
inbound visitors to China [28]. ,eir results illustrated that
the forecast generated through GA–SVR was more per-
suasive than the forecasts of back-propagation neural net-
work and ARIMA models. Hong et al. combined a chaotic
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GA with an SVR model to obtain forecasting information of
visitor arrivals to Barbados [29]. ,is combined method
achieved a more accurate estimation than the other models.

Most recently, Tsaur and Chan suggested that gray SVR
can be employed to forecast the number of visitors from
China to Taiwan [30]. ,e results obtained using this
proposed method were superior to those obtained using
other methods such as regression analysis, simple ETS, and
a gray model.

3. Methodology

3.1. SVR. Support vector machines (SVMs) were initially in-
troduced to address classification problems [31]. SVR is a
version of an SVM and was proposed by Drucker et al. [32].
,e basic functions of the SVR model are designed to provide
a nonlinear mapping function that maps the training data to
a high-dimensional feature space. ,e training dataset is
denoted by (xi, yi); i �􏼈 1, 2, . . . , N; xi ∈ Rn; yi ∈ R}, where xi

is the ith input in the nth dimension, yi is the actual output,
and N is the data set size. ,e SVR function is then

y � f xi( 􏼁 � w
Tφ xi( 􏼁 + b, (1)

where f(x) denotes the forecast values, φ(x) is the feature
function of the inputs, and w and b are adjustable co-
efficients. ,rough employing a penalty function to estimate
the values of coefficients w and b, the penalty function R(C)

becomes

R(C) �
1
2
‖w‖

2
+ C ·

1
n

􏽘

n

i�1
yi −f(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ε, (2)

|y−f(x)|ε �
0, |y−f(x)| ≤ ε,
|y−f(x)|− ε, otherwise,

􏼨 (3)

where C is the penalty coefficient and ε is the maximum
value of tolerable error [33]. Two slack variables ξi and ξ

∗
i are

introduced to cope with the infeasible constraints of the
optimization problem, which becomes

min
ω,b,ξ(∗)

1
2
‖w‖

2
+ C 􏽘

n

i�1
ξi + ξ∗i( 􏼁,

subject to

−yi + wTφ xi( 􏼁 + b≤ ε + ξi, (i � 1, . . . , m),

yi −wTφ xi( 􏼁− b≤ ε + ξ∗i , (i � 1, . . . , m),

ξ(∗)
i ≥ 0, (i � 1, . . . , m),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where ξ(∗) ensures that the constraint is satisfied, C controls
the balance between model complexity and training error
rate, and ε is a constant for controlling the tube size; if ε is too
small, overfitting may occur, and the opposite situation may
cause underfitting. Using the Lagrange equation, the dual
optimization problem is obtained:

min
αi ,α∗i

1
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􏽘

n

i,j�1
yi αi − α

∗
i( 􏼁 αj − α

∗
j􏼐 􏼑k xi, xj􏼐 􏼑

+ 􏽘
n

i�1
ε−yi( 􏼁αi + ε + yi( 􏼁α∗i( 􏼁,

subject to
􏽘

N

i�1
αi − α
∗
i( 􏼁 � 0,

0≤ α(∗)
i ≤C, (i � 1, . . . , m).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

To solve (5), the SVR function can be obtained as follows:

f(x) � 􏽘
n

i�1
αi − α
∗
i( 􏼁k xi, x( 􏼁 + b, (6)

where αi and α∗i are the Lagrange multipliers and k(xi, x) is
a kernel function.,e kernel function constructs a nonlinear
decision hypersurface in the SVR input space. ,e most
widely used kernel, the Gaussian radial basis function (RBF)
kernel, not only performs nonlinear mapping between the
input space and a high-dimensional space but is also easy to
implement, and thus, it is suitable for solving nonlinear
problems.,erefore, the Gaussian RBF kernel was employed
in this study:

k xi, x( 􏼁 � exp −σ x−xi

����
����
2

􏼒 􏼓, (7)

where σ represents the scaling factor of the Gaussian RBF
kernel.

3.2.Particle SwarmOptimization. PSO is a population-based
iterative optimization algorithm inspired by the social be-
havior of bird flocking that was developed by Eberhart and
Kennedy [34]. PSO has successfully been applied in nu-
merous researches [35–37]. ,e optimization process starts
with a randomly initialized population of solutions, which
are called particles. ,e swarm consists of n particles, and
each particle has a position vector xi � (xi,1, . . . , xi,d) and
velocity vector vi � (vi,1, . . . , vi,d), where i � 1, 2, . . . , n and d

are the number of dimensions in the vector. Each particle is
a potential solution to the problem in the D-dimensional
search space. ,e particles share information with each
other; thus, each particle can be influenced to adjust their
search direction toward a promising search region. Each
particle has its own optimal experience, represented as the
best known position of particle i (pbesti) in the feature space,
and the optimal experience derived from the population is
represented as the best known position within the pop-
ulation (gbest). During each generation, each particle is
accelerated toward pbesti and gbest. ,e value of experience
is evaluated using the fitness function f(x) according to the
problem definition. Both position and velocity must be
limited to between the rational lower boundary blow and
upper boundary bup in the feature space. ,e updated ve-
locity and position can be obtained using the following
equations:
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v
new
i,d � wv

old
i,d + c1r1 pbesti,d − xi,d􏼐 􏼑

+ c2r2 gbestd − xi,d􏼐 􏼑,
(8)

x
new
i � x

old
i + v

new
i , (9)

where w is the inertia weight, c1 and c2 are acceleration
constants, and r1 and r2 are uniformly random values be-
tween 0 and 1.

,e inertia weight w controls the current velocity. A
larger inertia weight facilitates global exploration, whereas
a small value promotes local exploration. To balance global
and local exploration capabilities; this study employs the
commonly used linearly decreasing inertia weight (LDW),
because an inertia weight that decreases with time from 0.9
to 0.4 is more favorable than a fixed inertia weight.,e LDW
formulation is as follows:

w � wmin − wmax −wmin( 􏼁 ×
iter

max iter
, (10)

where wmax is set at 0.9, wmin is set at 0.4, and max iter and
iter are the maximum iteration and current iteration,
respectively.

All operations in PSO are repeated until the termination
condition is reached. ,e termination condition corre-
sponds to the maximum number of iterations. ,e PSO
algorithm is described in Algorithm 1.

3.3. Selecting the SVR Parameters Using PSO. In SVR
modeling, the parameter settings affect the performance of
a forecast time series, as mentioned in the preceding dis-
cussion of PSO. ,e crucial parameters are the regulariza-
tion parameter (C), bandwidth of the kernel function (σ),
and tube size of the ε-insensitive loss function (ε). Improper
choice of parameter values can result in either overfitting or
underfitting [38]. Consequently, selecting the optimal pa-
rameters is crucial when employing SVR to forecast a time
series. In this study, the PSO algorithm is utilized to select
approximations of the three parameters of the SVR model.
Figure 1 presents a flowchart of PSOSVR.

,e procedures of the PSOSVR model are as follows:

Step 1: initialization. First, the initialization values of the
parameters are set; then, the particles are generated in the
feature space. Each particle i is represented by xi � {C, σ, ε}.

Step 2: fitness evaluation. After the encoding procedure is
completed, the three values of parameters C, σ, and ε are
inserted into the SVRmodel to forecast the problem; a k-fold
cross-validation (CV) is employed in the training phase to
avoid overfitting, and the validation error is calculated.
Figure 2 illustrates the concept of k-fold CV. ,e PSOSVR
model uses a rolling-based procedure to forecast data.
Figure 3 illustrates the rolling-based mechanism. ,e pre-
vious 12 lagged observation data points are selected as input
variables and the current data as output variables. First, the
top 12 tourist datasets are fed into the proposed model.
Following this, a one-step-ahead forecasting value is

obtained. ,e next rolling 12 data points are fed into the
proposed model again, and the second forecasting value is
obtained.,e process is repeated until all the forecasts in the
training set are obtained, following which the validation
error is calculated. In this study, the mean absolute per-
centage error (MAPE) is adopted as the fitness function. ,e
MAPE is calculated using the following:

MAPECV �
1
N

􏽘

N

i�1

yi −fi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%, (11)

where yi is the actual value, fi is the forecast value, and N is
the sample size.

Step 3: update of pbest. If the fitness value of particle i in the
current iteration exceeds that of pbesti, then pbesti is
replaced by xi.

Step 4: update of gbest. If the fitness value of pbesti in the
current iteration exceeds that of gbest, then gbest is replaced
by pbesti.

Step 5: update of velocity. ,e velocity of each particle is
calculated according to (8).

Step 6: update of position. ,e position of each particle is
calculated according to (9).

Step 7: stop criteria. ,e processes are repeated in the
aforementioned order until the maximum iteration is
reached.

3.4. Random Forest. Random forest (RF) is an ensemble
learning method for both classification and regression
problems [39]. ,e principle of RF is to combine a set of
binary decision trees, each of which is constructed using
a bootstrap sample obtained from the learning sample and
a subset of features (input variables or predictors) randomly
chosen at each node. ,e prediction is made using a majority
vote of the trees (in classification) or by averaging their
outputs (in regression). In addition to classification and re-
gression, RF provides an internal measure of variable im-
portance through computing importance scores. Similarly, it
can be used to select crucial features. During the construction
of an RF, each node of a decision tree is split into two children,
whereas a splitting criterion is used to reduce the impurity of
a node, which is measured through Gini importance [39]. In
the process of node splitting, i is the impurity of the node, and
the node’s Gini importance is defined as follows:

i � 1− 􏽘
j

p
2
(j), (12)

where p(j) is the proportion of samples that are labeled j in
this node. After splitting, the impurity of the node is de-
scribed as follows:

Δi � iparent − pleft × ileft + pright × iright􏼐 􏼑, (13)

where pleft and pright are the sample proportions of the left
and right child nodes, respectively, and iparent, ileft, and iright
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are the Gini importances of the parent, left child node, and
right child node, respectively. For any one feature Xi, the
sum of its impurity decrement in all decision trees is the Gini
importance of Xi:

αΔI � 􏽘
k

Δik. (14)

,is equation indicates the importance of each feature,
and a greater value indicates that the feature is more
important.

Recursive feature elimination (RFE) is a recursive pro-
cess based on feature ranking techniques [40]. According to
a certain feature ranking standard, RFE starts from a com-
plete set and then eliminates the least relevant feature one at
a time to select the most important features. ,is study uses
an FS method that combines RFE and RF, named, RF–RFE.
,e process is presented in Algorithm 2.

3.5. FS–PSOSVR. ,e FS–PSOSVR model is proposed to
determine the most effective feature subset and improve the
forecasting performance of PSOSVR. Figure 4 illustrates the
algorithm, and the detailed steps are as follows:

Historical dataset

Testing
set

Training
set

Train optimal 
SVR model

Test SVR model

PSOSVR
forecast

Initialize (C, σ, ε) and
parameters

Train SVR model

Calculate 
the fitness value

Update personal best and 
global best

Update velocity and
position of each particle

Satisfy
stopping 
criteria

Optimal SVR
parameters (C, σ, ε)

Yes

PSO

No

Figure 1: Flowchart of PSOSVR.

(1) Define: let f() be the fitness function, N is the number of particles, D is the number of dimensions, xi and vi are the position and
velocity of each particle, respectively, pbesti is the best known position of particle i, and gbest is the best known position of the
entire swarm.

(2) Output: gbest // the optimal solution
(3) // initialize the swarm
(4) for i⟵ 1 to N do // each particle
(5) for d⟵ 1 to D do // each dimension
(6) xi,d⟵rand(lb, ub) // lb and ub are the lower and upper boundaries of the search space
(7) vi,d⟵rand(−|ub− lb|, |ub− lb|)

(8) end
(9) pbesti⟵ xi
(10) if f(pbesti)<f(gbest) then
(11) gbest⟵pbesti

(12) end
(13) end
(14) while iter<max_iter do // iterate until termination criterion met
(15) for i⟵ 1 to N do
(16) for d⟵ 1 to D do
(17) r1⟵ rand (0, 1); r2⟵ rand (0, 1)
(18) vi,d⟵wvi,d + c1r1 (pbesti,d – xi,d)+ c2r2 (gbestd – xi,d) // update the particle’s velocity
(19) End
(20) xi⟵ xi + vi // update the particle’s position
(21) if f (xi)< f (pbesti) then // compare particle’s best position
(22) pbesti⟵ xi
(23) if f (pbesti)< f (gbest) then // compare swarm’s best position to current particle’s position
(24) gbest⟵pbesti

(25) End
(26) End
(27) End
(28) w⟵wmax − (wmax −wmin)× iter/max_iter // decrease inertia weight
(29) iter⟵ iter + 1
(30) end

ALGORITHM 1: Particle swarm optimization algorithm.
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Step 1. the data set is divided into a training set and a test set.
,e training set is used as the original subset F.

Step 2. the RF model is trained using subset F, and the
variable importance scores of each feature in the subset are
calculated.

Step 3. the least important feature is eliminated from F, and Step
2 is repeated until the desired number of features is obtained.

Step 4. after allowing the new training set to be the feature
subset F obtained by RF–RFE, the PSOSVR process is initiated.

3.6. Performance Criteria. Two common statistical metrics,
root-mean-square error (RMSE) and MAPE, are used to
evaluate the performance of the forecasting models (Table 1)
by comparing the deviation between the real and forecast
values. Lower RMSE and MAPE values represent higher

accuracy, thus indicating that the forecast values are reliable.
Lewis [41] developed a table (Table 2) containing typical
MAPE values for analyzing and interpreting industrial and
business data.

3.7. Parameter Settings. ,e size of the population is set at
50; acceleration factors c1 and c2 are both set at 2.0; and the
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Figure 2: Concept of k-fold CV (k� 5).
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t – 1 t

t
t + 1
t + 1 t + 2

...
...

...

Sample series

Observed value
Currently predicted value

Figure 3: Rolling-based forecasting mechanism.

(1) Define: let T be the data set. F � f1, . . . , fp􏽮 􏽯 be the
set of p original features; R () be the final ranking;
N be the desired number of features.

(2) Output: subset of features F
(3) for k⟵ 1 to N do
(4) Rank set F using random forest
(5) f∗⟵ last ranked feature in F
(6) R (p – i+ 1)⟵f∗

(7) F⟵ F –f∗

(8) end

ALGORITHM 2: Random forest—Recursive feature elimination
(RF–RFE).

Historical dataset

Testing
set

Training
set

Train RF model

Calculate the importance
of the features 

Eliminate least 
relevant feature

Feature subset

Train optimal 
SVR model

Test SVR model

FS-PSOSVR
forecast

Initialize (C, σ, ε) and
parameters

Train SVR model

Calculate 
the fitness value

Update personal best and 
global best

Update velocity and
position of each particle

Satisfy
condition

Satisfy
stopping 
criteria

Optimal SVR
parameters (C, σ, ε)

Yes

Yes

PSO

FS

No

No

Figure 4: Flowchart of FS–PSOSVR.

Table 1: Performance metrics.

Metrics Calculation

RMSE
�����������������

(1/N)􏽐
N
i�1(yi −fi)

2
􏽱

MAPE (1/N)􏽐
N
i�1|(yi −fi)/yi| × 100%

yi is the actual value, fi is the forecast values, and N is the sample size.
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maximum number of iterations (max_iter) is set at 100.
,ese parameters are selected according to Bratton and
Kennedy [42]. In this study, the search scopes of the SVR
parameters are set at C� [20, 210], σ � [2−8, 20], and ε� [2−8,
20]. ,e traditional SVR model uses the grid search method
(GRIDSVR) to determine the optimal parameters. GRIDSVR
increments the parameters exponentially; thus, the search
spaces of GRIDSVR are set as C� [20, 21, 22, . . ., 210], σ � [2−8,
2−7, 2−6, . . ., 20], and ε� [2−8, 2−7, 2−6, . . ., 20].

4. Results and Discussion

,e auto.arima and ets functions of the R forecast package
[43] were used to identify (S)ARIMA and ETS models. ,e
Python module sklearn.svm, which is an interface of the
LIBSVM library [44], was used to train the SVR-basedmodels.

4.1. Data Sets and Preprocessing. ,is paper presents a hy-
brid AI model to forecast tourist arrivals to Taiwan from the
top four markets. To evaluate the proposed approach, we
applied it to data on tourist arrivals to Taiwan that have been
used in several papers [6, 45–47] as a case study. Specifically,
data for monthly tourist arrivals to Taiwan from 2006 to
2016, collected from the Tourism Statistics Database [48],
were used. Japan, Hong Kong and Macao, South Korea, and
the United States (Figure 5) were selected as the four groups
that contributed the most visitors to Taiwan. Visitors from
China were excluded because drastic fluctuations often
occur as a result of the cross-strait relationship and political
uncertainty. Each data set was divided into two subsets:

Training set: used for training the model; it consisted of
the monthly data for 2006–2015.

Test set: used for testing the forecast accuracy; it con-
sisted of the monthly data for 2016.

Hsu et al. [49] noted that scaling original data helps
improve forecast performance and predictive accuracy by
not allowing attributes with greater numerical ranges to
dominate those with smaller numerical ranges and avoiding
potential numerical problems. In this study, each data set
was normalized within the range [0.15, 0.85] using the
following:

􏽦Xt �
Xt −Xmin

Xmax −Xmin
× 0.7 + 0.15, (15)

where Xt is the number of tourist arrivals at time t and Xmax
and Xmin are the maximum and minimum numbers of
tourist arrivals in the period of the data set, respectively.

4.2. Comparison of Time Series Models and SVR-Based
Models. Figure 6 depicts the differences between the actual
data and forecast results. ,ese figures reveal that the results

obtained using the proposed FS–PSOSVR method more
accurately reflect the actual data compared with the results
obtained using the other methods.,eMAPE and RMSE for
each method in Table 3 were also employed to compare
forecast performances. To test and verify the forecasting
ability of the AI model for the time series model, the ETS,
ARIMA, and SARIMA models were set as the objects of
comparison. Compared with the time series model, instead
of confirming whether the data belong to a stationary state
and considering whether other statistical tests should be
applied, the AI model learns from characteristics of the
training data. Table 4 lists the average MAPE values of the
forecasts obtained using ETS, ARIMA, SARIMA, GRIDSVR,
PSOSVR, and FS–PSOSVR. For the time series forecasting
problem, the AI model demonstrated a similar ability to the
time series model. Moreover, the FS–PSOSVR method was
superior in solving the forecasting problems.

4.3. Comparison of GRIDSVR, PSOSVR, and FS–PSOSVR.
,is study measured the ability to obtain the optimal pa-
rameters of GRIDSVR and PSOSVR to prove that the ef-
fectiveness of the SVR method depends on the parameters
selected. ,e method that GRIDSVR employs to reach the
most suitable parametric combination is a grid search, which
involves calculating the fitness value of each grid. ,is may
indicate that the most suitable parameter combinations do
not exist in the grid; therefore, PSO was used to improve
analysis of the problem. Table 5 presents the optimal values
of the three SVR parameters for each SVR-based model. ,e
results obtained using PSOSVR were more accurate than
those obtained using GRIDSVR (Figure 6). ,is observation
indicates that PSO achieved more favorable forecasting
results.

To increase forecasting accuracy, the FS method was
employed. RF–RFE was used to identify the reliable lagged
variables. To determine the appropriate number of features,
this study tested four to eight features to determine which
number was optimal. ,e lagged variables are presented in
Table 6, and yt−i indicates the number of visitors i months
ago. ,e results indicated that after applying FS, the pre-
diction ability was superior to that of PSOSVR without FS.
Additionally, by removing the input variable with less
influencing power, a more suitable result was obtained.

4.4. Analysis for Individual Data

4.4.1. Japan. Increasing the accuracy of forecasting is espe-
cially helpful for Japanese tourists because the tourismmarket
from Japan has remained steady. ,e MAPE value of each
forecasting model was less than 10; according to the in-
terpretation of MAPE values by Lewis [41], all MAPE results
can be categorized as denoting high accuracy. For the FS–
PSOSVR method, the greatest gap between the experimental
results and real data occurred in the data from August 2016.
Based on the data from Taiwan’s Tourism Bureau, compared
with the growth rate in 2015—which remained constant—the
growth rate for the entire year of 2016 increased significantly
to 16.5%. Among the data for each month, the growth rate of

Table 2: Interpretation of MAPE values.

MAPE Interpretation
<10% Highly accurate forecasting
10–20% Good forecasting
20–50% Reasonable forecasting
>50% Inaccurate forecasting

Computational Intelligence and Neuroscience 7



Japanese visitors traveling to Taiwan increased to approxi-
mately 30%.,is dramatic growth is the main reason that the
experimental outcomes do not match the forecast [50]. Al-
though the SARIMA model obtained results that were more
similar to the real numbers in March and August 2016,
causing their RMSE values to decrease, the holistic results
were still slightly higher than the actual results. ,is suggests
that the SARIMAmodel does not accurately reflect the actual
tourist trend.

4.4.2. Hong Kong and Macao. As with the results for Japan,
all MAPE results for Hong Kong and Macao indicated high
accuracy.,e number of visitors fromHong Kong andMacao
inMarch and April is influenced by the Easter vacation. Every
model used by this study suggested that the number of
tourists increases in April but decreases in May. In 2016, the

Easter vacation, occurring in March, was the external factor.
,is external factor—the variable dates of the Easter
vacation—is not accounted for in the univariate analysis. In
contrast to August and September of the previous year (2015),
the growth rate in 2016 slightly increased (1.75% for August
and 0.35% for September). ,is reveals that most of the
models used in this study overestimated visitors from Hong
Kong and Macao, and they are therefore unsuitable.

4.4.3. South Korea. Only the SARIMA and FS–PSOSVR
models reached the standard of high accuracy for South Korea.
,e other models achieved adequate results, but substantial
differences between each model’s results were observed. Dif-
ferences in tourism levels can be inferred from changing
government policies. In the past 3 years, the Taiwanese gov-
ernment has commissioned more advertisements to promote
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Figure 5: Monthly tourist arrivals from January 2006 to December 2016 from (a) Japan, (b) Hong Kong andMacao, (c) South Korea, (d) the
United States, and (e) the total number.
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Figure 6: Forecast results for different datasets: (a) Japan; (b) Hong Kong and Macao; (c) South Korea; (d) the United States; and (e) total
tourist numbers.
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tourism. Compared with the statistics from 3 years prior to
that, the number of South Korean tourists rose considerably.
,is noticeable growth produces deviations that influenced the
final forecasting results. Because of the SVR model’s ability to
learn from historical data, the differences that GRIDSVR and
PSOSVR obtained were markedly larger than those obtained
using other models from August, September, and December of
2016. Nonetheless, in contrast to the forecasting results ob-
tained using the other two SVR models, FS–PSOSVR—which
selects the features with higher influence authority in advan-
ce—obtained an accurate result.

4.4.4. United States. All the MAPE results indicated high
accuracy; this is because the tourism market of the United
States has remained steady over the last decade. Visible
fluctuations occurred in April, November, and December of
2016. In the past two years, the number of American visitors
increased dramatically in April—by 22.03% in 2015 and
4.95% in 2014—even though the total number of visitors in
2016 decreased by 0.84%. For November and December, the
real data indicated rises of 16.71% and 12.66%, respectively,
which were much higher than those observed in 2015 (8.99%
and 9.87%) and 2014 (7.36% and 5.55%). Consequently,
a larger discrepancy occurred between the real and predicted
numbers.

4.4.5. Total. From July 2016, the total number of visitors
increased slowly, mainly because the number of visitors
from China decreased dramatically. Notably, the statistics
for September suggested much fewer visits than the previous
year. ,is suggests that policy changes and political events
have a dramatic effect on the willingness and ability of
tourists from China to travel to Taiwan. ,e influence of
policies is an external factor that cannot be predicted in the
univariate analysis. For all tourists, as for those from Hong
Kong, the Easter vacation had a strong influence, with the
most obvious discrepancy occurring in March and April.
,is demonstrates that the model cannot identify a steady
mode during the training process, leading to apparent
differences.

Because tourists from different countries may perceive
a destination differently because of unique motivations and
expectations [51], effective policy interventions can be
implemented to solve this problem. Furthermore, policy
interventions can guidance for tourism planning and de-
velopment, thereby creating a favorable tourism environ-
ment [52]. Also crucial for effective tourism planning is
maintaining the quality of tourists’ experiences and shaping
their perceptions of places and lifestyles [52, 53]. To increase
the number of visitors to Taiwan, the government and major

Table 3: Forecast tourist arrivals obtained using ETS, ARIMA, SARIMA, GRIDSVR, PSOSVR, and FS–PSOSVR.

Case ETS ARIMA SARIMA GRIDSVR PSOSVR FS–PSOSVR

Japan MAPE (%) 8.54 12.87 7.25 7.22 6.95 5.23
RMSE 18091.23 24665.02 11878.9 14670.95 13616.38 13308.91

Hong Kong and Macao MAPE (%) 11.07 16.28 12.10 12.39 12.24 10.65
RMSE 21045.26 23224.72 20043.2 21168.17 21013.52 19738.13

South Korea MAPE (%) 13.48 13.58 9.91 11.45 11.14 7.66
RMSE 13482.26 13515.24 8681.24 11439.02 11137.59 6807.39

,e United States MAPE (%) 4.79 10.03 3.95 5.45 4.62 3.84
RMSE 3626.19 6508.72 2786.49 3027.27 2883.04 2218.12

Total MAPE (%) 10.64 12.08 11.24 11.21 11.14 9.76
RMSE 100954.40 116687.03 111400.6 108457.15 107765.04 95910.99

Bold: the superior values.

Table 5: Training results of GRIDSVR, PSOSVR, and FS–PSOSVR.

Model Data set C ε σ

GRIDSVR

Japan 1024.00 0.0313 0.0156
Hong Kong and Macao 128.00 0.0039 0.0313

South Korea 1024.00 0.0156 0.0039
,e United States 128.00 0.2500 0.0625

Total 256.00 0.0039 0.0039

PSOSVR

Japan 805.03 0.0423 0.0130
Hong Kong and Macao 209.96 0.0039 0.0367

South Korea 776.87 0.0159 0.0039
,e United States 415.75 0.0467 0.0367

Total 216.66 0.0039 0.0039

FS–PSOSVR

Japan 564.45 0.1371 0.0241
Hong Kong and Macao 389.08 0.0039 0.0039

South Korea 673.88 0.0222 0.0094
,e United States 531.61 0.0268 0.0405

Total 1016.71 0.0087 0.0060

Table 6: Lagged variables of FS–PSOSVR.

Data set Lagged variables
Japan yt−12, yt−3, yt−2, yt−1
Hong Kong and Macao yt−12, yt−4, yt−3, yt−1
South Korea yt−12, yt−11, yt−10, yt−3, yt−2, yt−1
,e United States yt−12, yt−6, yt−3, yt−1
Total yt−12, yt−8, yt−4, yt−3, yt−2, yt−1

Table 4: Average MAPE of ETS, SARIMA, GRIDSVR, PSOSVR, and FS–PSOSVR.

ETS ARIMA SARIMA GRIDSVR PSOSVR FS–PSOSVR
MAPE (%) 9.70 12.97 8.89 9.54 9.22 7.43
Bold: the lowest average MAPE.
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tour operators must tailor their marketing efforts to each
individual territory and strive to construct and maintain
Taiwan’s positive image using various methods.

Lin and Kuo [54] asserted that the concept of nationality
implies notions of cultural values, social norms, and eco-
nomic development. Given the dynamic effect of nationality,
travel agencies could improve their inclusive group packages
to generate diversified images. Moreover, a culture of co-
operation between different and heterogeneous actors in the
business value chain should be fostered [52]. Another
necessary approach for Taiwan’s destination managers to
expand their market reach is to explore potential products
that may lure newly emerging markets to Taiwan, such as the
younger generation Y segment, while continuing to attract
the older Baby Boomer generation [55].

Taiwan’s policy makers and destination managers must
also acknowledge market diversity to devise more specific
strategies for different market segments and design desirable
destination experiences to attract more tourists throughout
the year [56]. Moreover, to provide a deeper level of en-
gagement with destinations, service providers must offer
a wide range of services and resources to tourists in order to
enable them to fully enjoy their stay, thereby positively
affecting their evaluation of Taiwan as a destination [53].
Destination managers in Taiwan must develop their capacity
and capability to deliver new and innovative products and
services to leverage the full potential of Taiwan as a tourist
destination [57].

4.5. Advantages and Limitations. ,e results show that
FS–PSOSVR performs superior forecasting of tourist arrivals.
FS–PSOSVR retains the advantages of FS, PSO, and SVR.
,ere are no additional parameters in the PSO and no limits
to the number of constraints. During the numerous iterations,
the most optimal particle transmits the information onto
other particles; thus, FS–PSOSVR has fast re-searching speed
[58]. Furthermore, PSO has no overlapping and mutation
calculations; thus, the search can be conducted at the particle
speed. FS–PSOSVR also has advantages in high di-
mensionality space because SVR does not depend on the
dimensionality of the input space. ,e advantage of feature
space representation in tourist arrival forecasting is the mean
squared error as well as that the loss function is also the mean
squared error [32].,e FS in FS–PSOSVR can reduce noise to
improve forecasting accuracy; furthermore, more interpret-
able features can facilitate understanding of the importance of
features. However, FS–PSOSVR has some limitations in terms
of convergence speed because PSO easily suffers from partial
optimism, which causes less accuracy in terms of regulation of
its speed and direction. ,e SVR model is a well-known
forecasting approach that has been applied to solve time series
problems [59]. Our results also demonstrated that FS–
PSOSVR was superior to SARIMA in terms of forecasting
tourist arrivals. However, FS–PSOSVR does not address how
to handle seasonal time series datasets. ,us, we suggest
applying decomposition techniques to obtain decomposed
seasonal time series data when a data set belongs to seasonal
time series data [60].

5. Conclusion

Forecasting of tourist arrivals is critical to accurately predict
requirements for infrastructure development. In this study,
we proposed an FS–PSOSVR algorithm for the forecast of
tourism demand. In FS–PSOSVR, FS is used to identify
essential data and improve the SVR forecasting effectiveness
of input variables. We applied PSO to tune the suitable
parameters for SVR and more effectively forecast tourism
demand. ,e predictive power of the method was compared
with that of five forecasting models: ETS, ARIMA, SARIMA,
GRIDSVR, and PSOSVR. ,e parameters acquired by FS–
PSOSVR were more accurate than the parameters derived
from GRIDSVR and PSOSVR, indicating that FS–PSOSVR
is more effective at optimizing the parameters of SVR than
GRIDSVR and PSOSVR are. Moreover, FS–PSOSVR
achieved greater forecasting accuracy than other methods
such as ARIMA, SARIMA, and ETS, indicating that FS–
PSOSVR is a relatively more effective means of forecasting
tourism demand.
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