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Acute ischemic stroke (AIS) has been a common threat to human health and may lead to severe outcomes without proper and
prompt treatment. To precisely diagnose AIS, it is of paramount importance to quantitatively evaluate the AIS lesions. By
adopting a convolutional neural network (CNN), many automatic methods for ischemic stroke lesion segmentation on magnetic
resonance imaging (MRI) have been proposed. However, most CNN-based methods should be trained on a large amount of
fully labeled subjects, and the label annotation is a labor-intensive and time-consuming task. Therefore, in this paper, we
propose to use a mixture of many weakly labeled and a few fully labeled subjects to relieve the thirst of fully labeled subjects. In
particular, a multifeature map fusion network (MFMF-Network) with two branches is proposed, where hundreds of weakly
labeled subjects are used to train the classification branch, and several fully labeled subjects are adopted to tune the
segmentation branch. By training on 398 weakly labeled and 5 fully labeled subjects, the proposed method is able to achieve a
mean dice coefficient of 0:699 ± 0:128 on a test set with 179 subjects. The lesion-wise and subject-wise metrics are also
evaluated, where a lesion-wise F1 score of 0.886 and a subject-wise detection rate of 1 are achieved.

1. Introduction

Stroke has been one of the most serious threats to human
health, which can lead to long-term disability or even death
[1]. In general, stroke can be divided into ischemia and hem-
orrhage based on the types of cerebrovascular accidents,
where ischemic stroke accounts for 87% [2]. In clinical prac-
tice, multimodal magnetic resonance images (MRIs), includ-
ing the diffusion-weighted imaging (DWI) and the apparent
diffusion coefficient (ADC) maps derived from multiple
DWI images with different b values, have been used in diag-
nosing acute ischemic stroke (AIS), thanks to the short acqui-

sition time and high sensitivity [3]. As AIS progresses rapidly
and may lead to severe outcomes, it is of paramount impor-
tance to quickly diagnose and quantitatively evaluate the
AIS lesions from the multimodal MRIs, which is, however,
time-consuming and requires experienced medical imaging
clinicians. Therefore, it is quite necessary to develop auto-
matic methods in analyzing the images.

Many automatic stroke lesion segmentation methods
have been developed in the literature. For instance, Nabiza-
deh et al. [4] proposed a gravitational histogram optimiza-
tion by identifying the abnormal intensity. To reduce the
false positive rate, Mitra et al. [5] used the random forest to
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extract features and identify the lesions based on multimodal
MRIs. Maier et al. [6] adopted the support vector machine
based on the local features extracted from multimodal MRIs.
Although such methods achieved high performance on
ischemic stroke lesion segmentation, their modeling capabil-
ities were significantly limited due to their heavy dependence
on handcrafted features.

A convolutional neural network (CNN) has recently pre-
sented an exceptional performance in computer vision. By
training on a large number of fully labeled subjects where the
stroke lesions were annotated in a pixel-by-pixel manner, the
CNN-based methods have shown their great potentials in seg-
menting ischemic stroke lesions on the MRIs [7–11]. As a
CNN typically has millions of parameters, such methods
require hundreds of fully labeled subjects to train the CNN.
Figure 1 presents some examples of fully labeled subjects. It is
obvious that annotating pixel-by-pixel labels is a tedious task
and would take a significant amount of time to establish a large
dataset with fully labeled subjects, which makes it impossible to
establish a medical imaging dataset with a comparable size to
the commonly used datasets in computer vision. This moti-
vates us to develop segmentation methods while reducing the
annotation burden for medical imaging clinicians.

Few-shot learning has recently been adopted in image
semantic segmentation [12–15]. By fine-tuning the network
parameters with a few samples, the CNN can achieve high
segmentation accuracy in many tasks. Typically, the few-
shot learning methods require ImageNet [16] pretrained
parameters to help extract features. In the medical image seg-
mentation task, however, it is not possible to find a dataset as
large as ImageNet to obtain pretrained parameters. There-
fore, it is necessary to design an auxiliary task with easily
obtained labels to pretrain the network.

In particular, we make use of many weakly labeled sub-
jects and propose to use weakly supervised learning method
to facilitate the AIS lesion segmentation. Different from the
other AIS lesion segmentation methods [17–21], the weakly
labeled subjects are annotated as whether each slice of a sub-
ject incorporates lesion or not, as shown in Figure 1, which
significantly reduces the cost on annotation.

Our proposed method consists of three processes: clas-
sification, segmentation, and inference. In the classification
process, the network is trained on the weakly labeled sub-
jects as a classifier to obtain a set of pretrained parameters.
In the segmentation process, the network freezes the pre-
trained parameter and is further trained on the fully
labeled subjects. In the inference process, the classification
branch generates class activation mapping (CAM) [22]
and the segmentation branch predicts the segmentation
result. A postprocessing algorithm is adopted to combine
the CAM with the segmentation result to generate a final
prediction. By using 398 weakly labeled subjects and 5
fully labeled ones, the proposed method is able to achieve
a dice coefficient of 0:699 ± 0:128. The lesion-wise and
subject-wise performances are also evaluated, where a
lesion-wise F1 score of 0.886 and a subject-wise detection
rate of 1 are achieved.

2. Materials and Methods

In this section, we propose a deep learning-based method
using a few fully labeled subjects for AIS segmentation on
two-modal MR images, and the pipeline is presented in
Figure 2. In particular, our proposedmethod consists of three
processes: classification, segmentation, and inference. In the
classification process, the network is trained on the weakly
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Figure 1: Examples of fully labeled and weakly labeled subjects. The first two columns show fully labeled examples, and the last two are
weakly labeled ones, where the label “yes” indicates that the slice has a lesion and “no” indicates the opposite. Best viewed in color.
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labeled subjects as a classifier. This process obtains a set of
pretrained parameters. In the segmentation process, the net-
work is trained end-to-end on the fully labeled subjects by
freezing the pretrained parameters. That is to say, in order
to avoid overfitting, only the decoder is trained using a few

fully labeled subjects. In the inference process, the classifica-
tion branch generates class activation mapping (CAM) [22]
and the segmentation branch predicts the segmentation
result. Then, a postprocessing method is adopted to combine
the CAM with the segmentation result to generate a final
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Figure 2: Whole pipeline of the proposed method. Best viewed in color.
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prediction. As we will show in this paper, only 5 fully labeled
subjects are adequate to achieve accurate segmentation.

2.1. Multifeature Map Fusion Network. Different from the
few-shot semantic segmentation on natural images where
the ImageNet pretrained parameters were easily obtained,
there is no available large dataset for brain MRIs. A multi-
feature map fusion network (MFMF-Network) is proposed
and trained on the weakly labeled subjects to extract fea-
tures whose architecture is presented in Figure 3. The pro-
posed MFMF-Network is a two-branch CNN, where the
backbone CNN is a VGG16 [23] truncated before the
5th MaxPooling layer.

As Figure 2 shows, we add a global average pooling
(GAP) followed by a fully connected (FC) layer at the top
of the main-pathway CNN as the classification branch, which
is trained by the weakly labeled subjects at the classifica-
tion process. On the other hand, the segmentation branch
fuses the upsampled feature maps from convolutional
blocks 4, 7, and 10, which is used to generate a pixel-
wise segmentation map.

Intuitively, the feature maps of the deeper convolutional
block have much lower spatial resolution than the original
input images but with better semantic information. We fur-
ther incorporate the squeeze-and-excitation (SE) module
[24] into the upsample layer as depicted in Figure 3(b), such
that the network can focus on the feature maps that contrib-
ute most to AIS segmentation.

The training of the MFMF-Network takes two steps. In
the classification process, the backbone CNN, together with
the classification branch, is trained on the weakly labeled sub-
jects as a classifier. In the segmentation process, the segmen-
tation branch is trained on a few fully labeled subjects, while
the parameters of the backbone CNN are frozen.

2.2. Postprocessing. In the inference process, as Figure 2
shows, the classification branch generates CAM [22] as

Mc x, yð Þ =〠
k

wc
k∙f k x, yð Þ, ð1Þ

where f kðx, yÞ represents the activation of unit k in the last
convolutional layer of main-pathway CNN at the spatial
location ðx, yÞ andwk is the weight corresponding to the class
c for unit k. Note that as the AIS lesion segmentation is a
binary segmentation task, that is, c = 2, therefore, we only
consider the CAM of the lesion class. The CAM is nor-
malized to generate a segmentation probability map, and
a binary segmentation result Mcðx, y ; δÞ is further
obtained by using a threshold of δ = 0:5. Simultaneously,
the segmentation branch predicts the segmentation proba-
bility map. The binary segmentation result Scðx, y ; δÞ at
the spatial location ðx, yÞ is also obtained by using the
same threshold δ.

Nevertheless, since few fully labeled subjects are used to
train the segmentation branch, it is inevitable to generate
some false positives. To fully utilize the rich semantic infor-
mation from the weakly labeled data, we further fuse the
CAM generated from the classification branch with the seg-

mentation branch output to reduce the FPs, which is com-
puted as

Pc x, yð Þ =Mc x, y ; δð Þ∙Sc x, y ; δð Þ: ð2Þ

2.3. Evaluation Metrics. In this subsection, we introduce a
number of metrics to evaluate our proposed method. First,
the dice coefficient (DC) is used to evaluate the pixel-level
segmentation performance. It measures the overlap between
the predicted segmentation P and the ground truth G and is
formulated as

DC =
2 G ∩ Pj j
Gj j + Pj j , ð3Þ

where ∣∙ ∣ denotes the number of pixels in the set.
In addition, we further propose the lesion-wise precision

rate PL, the lesion-wise recall rate RL, and the lesion-wise F1
score as metrics, which are defined as

PL =
m#TP

m#TP +m#FP
, ð4Þ

RL =
m#TP

m#TP +m#FN
, ð5Þ

F1 =
2PL∙RL
PL + RL

, ð6Þ

where m#TP, m#FP, and m#FN are the mean number of
true positives (TPs), false positives (FPs), and false negatives
(FNs), respectively, which are calculated in a lesion-wise
manner. In this paper, a 3D connected component is per-
formed on both the ground truth and the predicted segmen-
tation map. A TP is defined as a connected region on the
predicted segmentation map that overlaps with that on the
ground truth. The number of TPs is counted on each subject,
and the mean number of TPs (m#TP) is then obtained by
averaging the number of TPs over all subjects. A FP is
counted if a region on the predicted segmentation has no
overlap with any region on the ground truth. While a FN is
counted if a region on the ground truth has no overlap with
any region on the predicted segmentation.

We further use the detection rate (DR) to measure missed
subjects as a subject-wise metric, which is defined as

DR = NTP
N

, ð7Þ

where N denotes the number of all subjects and NTP denotes
the number of subjects with any TP lesion detection.

3. Experiments

In this section, we will introduce the experimental data, the
implementation details, and the results.

3.1. Data and Preprocessing. The experimental data includes
582 subjects with AIS lesions, which were collected from a
retrospective database of Tianjin Huanhu Hospital (Tianjin,
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Figure 3: Our proposed network architecture. (a) Unit parameter description. (b) SE module. (c) Multifeature map fusion network (MFMF-
Network). Best viewed in color.
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China) and anonymized prior to the use of researchers. Eth-
ical approval was granted by the Tianjin Huanhu Hospital
Medical Ethics Committee. MR images were acquired from
three MR scanners, with two 3T MR scanners (Skyra, Sie-
mens, and Trio, Siemens) and one 1.5TMR scanner (Avanto,
Siemens). DWIs were acquired using a spin echo-type echo
planner imaging (SE-EPI) sequence with b values of 0 and
1000 s/mm2. The parameters used in DWI acquisition are
shown in Table 1. ADC maps were calculated from the scan
raw data in a pixel-by-pixel manner as

ADC =
ln S1 − ln S0

b1 − b0
, ð8Þ

where b characterizes the diffusion-sensitizing gradient
pulses, with b1 = 1000 s/mm2 and b0 = 0 s/mm2 in our data.
S1 is the diffusion-weighted signal intensity with b1 = 1000
s/mm2. S0 is the signal with no diffusion gradient applied,
i.e., with b0 = 0 s/mm2.

The AIS lesions were manually annotated by two experi-
enced experts (Dr. Song Jin and Dr. Chen Cao) from Tianjin
Huanhu Hospital. The entire dataset includes 398 weakly
labeled subjects and 184 fully labeled subjects, and they are
divided into the training set and test set. The training set
includes 398 weakly labeled subjects and 5 fully labeled sub-
jects, which are used to train the network parameters. The
test set includes the remaining 179 fully labeled subjects to
evaluate the generalization capacities on unknown samples.
For the sake of simplicity, we name the weakly labeled and
fully labeled subjects in the training set as cla-data and seg-
data, respectively.

As the MR images were acquired on the three different
MR scanners, their matrix sizes are different, as shown in
Table 1. Therefore, we resample all the MR images to the
same size of 192 × 192 using linear interpolation. The pixel
intensity of each MR image is normalized into that of zero
mean and unit variance, and the DWI and ADC slices are
channel-wise concatenated as dual-channel images and fed
into the MFMF-Network. Data augmentation technique is
adopted in both the classification process and the segmenta-
tion process. In particular, each input image is randomly
rotated by a degree ranging from 1 to 360 degrees, flipped

vertically and horizontally on the fly, so as to augment the
dataset and reduce memory footprint.

3.2. Implementation Details. The parameters of the proposed
MFMF-Network are shown in Figure 3. In the classification
process, we initialize the main-pathway CNN using the pre-
trained parameters of VGG16 on ImageNet [16]. The FC
layer parameters are initialized from zero-mean Gaussian
distributions with a standard deviation of 0.1. After training
the classification branch, we freeze the main-pathway CNN
and initialize the other parameters in the segmentation
branch, as suggested in [25]. In both the classification and
segmentation processes, the RAdam method [26] with β1 =
0:9 and β2 = 0:999 is used as the optimizer and the initial
learning rate is set as 10−3. The loss function used in this
paper is binary cross-entropy (BCELoss).

We randomly select 0.1 of the cla-data as the validation
set, which is used to fine-tune the hyperparameters in the
classification process. During training, the learning rate is
scaled down by a factor of 0.1 if no progress is made for 15
epochs on validation loss, and the training stops after 30
epochs with no progress on the validation loss. For the seg-
mentation process, we pick all slices with lesions from the
seg-data to train the segmentation branch. Dynamic learning
rate scheduling is also adopted, where the learning rate is
scaled down by a factor of 0.1 if no progress is made for 15
epochs on training loss. We stop the training of the segmen-
tation process if the learning rate is 10−9 or no progress after
30 epochs on the training loss.

The experiments are performed on a computer with an
Intel Core i7-6800K CPU, 64GB RAM, and Nvidia GeForce
1080Ti GPU with 11GB memory. The network is imple-
mented in PyTorch. The MR image files are stored as Neuro-
imaging Informatics Technology Initiative (NIfTI) format
and processed using Simple Insight ToolKit (SimpleITK)
[27]. We use ITK-SNAP [28] for visualization.

3.3. Results. The proposed method is evaluated on the test set
with 179 fully labeled subjects. For the sake of comparison,
we also train and evaluate U-Net [29], FCN-8s [30], Res-
UNet [21], and the method proposed in [31] on our dataset.
For fairness consideration, the encoder parts of these
methods are also pretrained as a classifier on our weakly
labeled data. In particular, for the few-shot segmentation
method proposed in [31], we split the slices of the seg-data
with AIS lesions into the support set and query set. Other
experimental details are the same as our proposed method
except for freezing the pretrained parameters.

Figure 4 visualizes some examples of AIS segmentation.
As Figure 4 shows, our proposed method, i.e., column (h),
is accurate on both the large and small AIS lesions. Even
though U-Net and Res-UNet have more multifeature fusion,
they overestimate the lesion but ignore the details of adjacent
lesions. On the other hand, FCN-8s uses three-scale feature
fusion, which is the same as our method, but the outputs of
its last convolutional layer resampled to the size of input
images require interpolation of 32 times, which inevitably
leads to an overestimated lesion region. For the few-shot seg-
mentation method proposed in [31], the multifeature fusion

Table 1: Parameters used in DWI acquisition.

MR scanners Skyra Trio Avanto

Repetition time (ms) 5200 3100 3800

Echo time (ms) 80 99 102

Flip angle (°) 150 120 150

Number of excitations 1 1 3

Field of view (mm2) 240 × 240 200 × 200 240 × 240

Matrix size 130 × 130 132 × 132 192 × 192
Slice thickness (mm) 5 6 5

Slice spacing (mm) 1.5 1.8 1.5

Number of slices 21 17 21
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combines the support set with the query set to train the
parameters. Nevertheless, the proportion of positive pixels
in the medical slice is typically smaller than that of the natu-

ral image, making the few-shot segmentation method in [31]
tend to ignore small lesions or misclassify the artifact regions
as lesions, as shown in Figure 4.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Visualization examples of the MRI slices and lesion segmentation results. (a–c) The original ADC map, DWI, and ground truth,
respectively. (d–h) The segmentation results of U-Net, FCN-8s, Res-UNet, the method in [31], and the proposed method, respectively.
The segmentation results are overlaid on the DWIs and highlighted in red.
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The quantitative evaluation results are summarized in
Table 2. As Table 2 shows, our proposed method achieves
the best results on all of the metrics except for the recall rate.
Specifically, our proposed method achieves a mean dice coef-
ficient of 0:699 ± 0:128 from the aspect of the pixel-level met-
ric, which is much higher than the results obtained by FCN-
8s [30] and the few-shot segmentation method [31] and is
also higher than that of U-Net [29] and Res-UNet [21]. For
the lesion-wise metrics, our proposed method achieves the
highest precision rate of 0.852 and the highest F1 score of
0.886 over the competitors. The recall rate of 0.923, however,
is slightly worse than U-Net and FCN-8s due to the fact that
they tend to cover a larger area than the real lesion size, which
reduces the number of FNs when many small lesions gath-
ered together. Furthermore, for the subject-wise metric, all
of the methods achieve a detection rate of 1 except for the
few-shot segmentation method in [31] and Res-UNet.

Figure 5 further plots the scatter map between the vol-
umes of the manual annotation and the predicted segmenta-
tion, where the purple line indicates a perfect match between
the predicted volumes and the ground truth volumes. As
Figure 5 shows, the predicted volumes of our proposed
method are closer to the true volumes than the competitors.

4. Discussions

4.1. How Many Weakly Labeled Subjects Do We Need? So far,
we have shown that our proposed method can achieve high
segmentation accuracy by using 398 weakly labeled and 5
fully labeled subjects. It is worth investigating whether we
can further reduce the number of weakly labeled subjects.
In particular, we randomly select proportions of 0.8, 0.6,
0.4, and 0.2 from the 398 subjects to train the classifica-
tion branch.

Table 3 summarizes the evaluation results with different
numbers of weakly labeled subjects. As we can see from
Table 3, we can achieve a DR of 1 when more than 238 sub-
jects are used to train the classification branch; besides, we
can also achieve a higher mean dice coefficient and recall rate
as the number of weakly labeled subjects increased. The other
metrics, including the precision rate and F1 score, generally
rise accompanied by small fluctuations.

4.2. Effect of Postprocessing. From Table 3, we can also see
that our proposed method uses 159 subjects to obtain the
pretrained parameters achieving a detection rate of 0.966,
which means that it fails to detect 6 subjects in the test set.

In fact, the detection rate is 1 when the segmentation branch
directly predicts the segmentation results without using post-
processing. However, the precision rate and the F1 score are
much lower than those using postprocessing. To investigate
the importance of postprocessing, we summarize the com-
parison results with different numbers of weakly labeled sub-
jects, as shown in Table 4. As Table 4 shows, postprocessing
greatly improves the dice coefficient, precision rate, and F1
score but reduces the detection rate, which is because of the
CAM generated by the classification branch. Figure 6 pre-
sents some samples of CAM. As Figure 6 shows, the CAM
shows a higher probability in the suspected lesion region with
the increasing number of weakly labeled subjects used in the
classification branch. In particular, the CAM shows a proba-
bility of 0 or a probability below the threshold of δ = 0:5 in
some subjects when less than 159 weakly labeled subjects
are used to train the classification branch, which leads to
missed diagnosis when postprocessing is used in the infer-
ence process. In a word, our postprocessing is critical for
AIS lesion segmentation in this research.

4.3. Single Modal vs. Multimodal. In this subsection, we
explore the effect of different modalities of MR images on
our results. We use single-modal and multimodal subjects
to train and test our proposed method. The dataset for train-
ing the classification branch includes all the 398 subjects
regardless of the modal combination. As Table 5 shows, the
multimodal subjects achieve the best results. The DWI also
achieves competitive results compared with the multimodal.
The DWI achieves competitive results due to the fact that
the AIS lesions appear as hyperintense on the DWIs, which
is more prominent to be recognized than that on the ADC
maps. The combinational use of the DWI and ADC map,
on the other hand, helps in reducing the FPs and FNs, which
largely improves the segmentation results.

4.4. Impact of Using Lesion Slices Only. Note that we only
extract slices with AIS lesions from the 5 fully labeled subjects
in the seg-data to train the segmentation branch. In this sub-
section, we would like to further discuss whether the slices
without any lesion should be included. Table 6 summarizes
the evaluation results after training on all subjects and only
lesion slices. As Table 6 shows, the network trained on lesion
slices shows superior performance over that trained on all
slices on all metrics except the recall rate, which means that
training on both the normal and lesion slices will reduce
the number of FNs but increase the number of FPs. Intui-
tively, including the normal slices will make the class imbal-
ance problem more severe, leading to inadequate learning on
the lesion features. In fact, as the AIS lesion volume is much
smaller than the normal tissues in most cases, the lesion slices
have included much information about the normal tissue
appearance. We can then conclude that to improve the seg-
mentation accuracy, it is necessary to only include the lesion
slices when training the segmentation branch.

4.5. Performance on Large and Small Lesions. Clinically, an
AIS lesion is classified as a lacunar infarction (LI) lesion if
its diameter is smaller than 1.5 cm [32]. LI is much difficult

Table 2: Evaluation results on the test set. In particular, the mean
DC is presented in the way of mean ± standard deviation. The best
result has been highlighted in italic.

Method DC PL RL F1 DR

U-Net [29] 0:629 ± 0:152 0.285 0.942 0.437 1.000

FCN-8s [30] 0:289 ± 0:222 0.234 0.938 0.374 1.000

Res-UNet [21] 0:557 ± 0:227 0.494 0.901 0.638 0.972

Few-shot [31] 0:239 ± 0:253 0.191 0.591 0.288 0.642

Ours 0.699± 0.128 0.852 0.923 0.886 1.000
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to be diagnosed in clinical practice, especially when it is too
small to be noticed. Therefore, it is very necessary to evaluate
the performance on LI.

In this subsection, we divide the test set into the small
lesion set and large lesion set. A subject is categorized into
a small lesion subject only if all of the lesions are LI lesions.
Otherwise, it will be included in the large lesion set. In the test
set, there are 118 subjects and 61 subjects included in the
small lesion set and the large lesion set, respectively. As
Table 7 shows, we achieve a mean dice coefficient of 0:718
± 0:120 on the large lesion set, while a mean dice coefficient
of 0:689 ± 0:222 on the small lesion set. On other metrics, our
proposed method achieves higher performance on the small
lesion set.

In clinical diagnosis, large lesions are more easily diag-
nosed, while small lesions are not. Our proposed method
achieves high performance not only on large lesions but also
on small lesions.

4.6. Performance on the Public Dataset. To demonstrate the
effectiveness of the proposed method, the performance on
an external public dataset is further evaluated. In particular,
we choose to use the training set of SPES in the ISLES2015
challenge [33]. Even though the SPES task is originally
designed for ischemic stroke outcome prediction, the train-
ing set includes the ADC maps (known as DWI in SPES)
and the corresponding AIS lesion annotations. We randomly
split the subjects in the SPES training set into three sets, i.e.,
training set, validation set, and test set, with 5, 5, and 20 sub-
jects, respectively.

The classification branch is trained on our institutional
weakly labeled images with 398 weakly labeled ADC subjects,
and the segmentation branch is trained on the new training
set and the validation set. By noting that the public dataset
and our institutional dataset were acquired from various
MRI scanners with different parameters, the statistical prop-
erty varies, which is known as domain adaption. As the clas-
sification branch is trained on our institutional data, the
threshold of CAM has to be further tuned by using the vali-
dation set to adapt the SPES data.

For the sake of comparison, we also train and evaluate the
methods used in Section 3.3. For fairness consideration, the
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Figure 5: Predicted lesion volume versus ground truth volume.

Table 3: Evaluation results obtained by using different numbers of
weakly labeled subjects on the training set. The mean DC is
presented in the way of mean ± standard deviation. The best result
has been highlighted in italic.

Scale of the dataset DC PL RL F1 DR

79 subjects 0:557 ± 0:250 0.793 0.741 0.766 0.922

159 subjects 0:665 ± 0:181 0.854 0.872 0.863 0.966

238 subjects 0:675 ± 0:138 0.843 0.901 0.871 1.000

318 subjects 0.700± 0.134 0.821 0.920 0.867 1.000

398 subjects 0:699 ± 0:128 0.852 0.923 0.886 1.000
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encoder parts of these methods are also pretrained as a clas-
sifier on our 398 weakly labeled ADC subjects. In particular,
for the few-shot segmentation method proposed in [31], we
split the slices of the new training set with AIS lesions into
the support set and query set. Other experimental details
are the same as used in Section 3.3 except that the validation
loss determines when to stop the training.

Figure 7 plots some visualized examples on the test set.
Similar to the results obtained on our institutional data, the
proposed method achieves the best segmentation accuracy.
As Figure 8 shows, the proposed method is able to achieve
a mean dice coefficient of 0:651 ± 0:183, which highlights
the better capacity of our proposed method even in the
cross-domain case.

Table 4: Evaluation results by using different numbers of weakly labeled subjects with and without postprocessing. In particular, the mean
dice coefficient is presented in the way of mean ± standard deviation.

Scale of the dataset Postprocessing DC PL RL F1 DR

398 subjects

No

0:651 ± 0:158 0.403 0.956 0.567 1.000

318 subjects 0:649 ± 0:157 0.391 0.949 0.554 1.000

238 subjects 0:630 ± 0:165 0.383 0.949 0.546 1.000

159 subjects 0:593 ± 0:184 0.297 0.949 0.452 1.000

79 subjects 0:620 ± 0:209 0.487 0.898 0.632 0.979

398 subjects

Yes

0:699 ± 0:128 0.852 0.923 0.886 1.000

318 subjects 0:700 ± 0:134 0.821 0.920 0.867 1.000

238 subjects 0:675 ± 0:138 0.843 0.901 0.871 1.000

159 subjects 0:665 ± 0:181 0.854 0.872 0.863 0.966

79 subjects 0:557 ± 0:250 0.793 0.741 0.766 0.922

(a) (b) (c) (d)

(e) (f) (g)

1.0

0.5

0.0

(h)

Figure 6: Examples of CAM. (a) ADC slice. (b) DWI slice. (c) Ground truth. (d) 398 subjects. (e) 318 subjects. (f) 238 subjects. (g) 159
subjects. (h) 79 subjects. The CAM and ground truth are depicted on the DWI. Best viewed in color.

Table 5: Evaluation results of single-modal and multimodal MR
images. The mean DC is presented in the way of mean ± standard
deviation.

Modality DC PL RL F1 DR

ADC+DWI 0:699 ± 0:128 0.852 0.923 0.886 1.000

DWI 0:665 ± 0:166 0.743 0.876 0.804 0.989

ADC 0:451 ± 0:278 0.599 0.600 0.570 0.804

Table 6: Evaluation results of the MFMF-Network whose
segmentation branch is trained on different data, where “all slices”
means both the normal and lesion slices are used, and “lesion
slices” means that only lesion slices are used. The best result has
been highlighted in italic.

DC PL RL F1 DR

All slices 0:659 ± 0:124 0.702 0.931 0.801 1.000

Lesion slices 0.699± 0.128 0.852 0.923 0.886 1.000

Table 7: Evaluation results on large and small lesions. The best
result has been highlighted in italic.

DC PL RL F1 DR

Large lesion set 0.718± 0.120 0.846 0.887 0.866 1.000

Small lesion set 0:689 ± 0:222 0.858 0.962 0.907 1.000
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7: Visualization examples of the MRI slices and lesion segmentation results. (a, b) The original ADC map and ground truth,
respectively. (c–g) The segmentation results of U-Net, FCN-8s, Res-UNet, the method in [31], and the proposed method, respectively. The
segmentation results are overlaid on the ADCs and highlighted in red.
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Figure 8: Bar plots of the dice coefficient for different methods.
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5. Conclusion

In this paper, we proposed a deep learning-based method
using a few fully labeled subjects for AIS lesion segmentation.
Our proposed method consists of three processes: classifica-
tion, segmentation, and inference. Since there are no pre-
trained parameters available for processing medical images
using CNN, some weakly labeled subjects are used to train
the MFMF-Network to obtain a set of pretrained parameters
in the classification process. Then, only 5 fully labeled sub-
jects are used to train the segmentation branch.

The proposed method presents high performance on the
clinical MR images with a mean dice coefficient of 0:699 ±
0:128 from the aspect of the pixel-level metric. More impor-
tantly, it presents a very high precision rate of 0.852 and
recall rate of 0.923 from the lesion-wise metrics. Therefore,
the proposed method can greatly reduce the expense of
obtaining a large number of fully labeled subjects in a super-
vised setting, which is more meaningful in terms of engineer-
ing maneuverability.
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