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Introduction

SARS-CoV-2 and its anatomy
The coronavirus disease of 2019 (COVID-19) 
has infected over 242 million people, leading to 
over 4.9 million deaths worldwide, at the time of 
this publication.1 It is caused by the Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2),2,3 closely related to Severe Acute 
Respiratory Syndrome Coronavirus (SARS-CoV) 
and Middle East Respiratory Syndrome 
Coronavirus (MERS-CoV).3,4 SARS-CoV-2 is a 
single-stranded positive sense ribonucleic acid 
(RNA) virus, 50–200 nm in diameter, consists of 
four structural proteins (about 33% of viral 

genome) – Spike (S), Envelope (E), Membrane 
(M), and Nucleocapsid (N).5 The S protein, 
comprising of S1 and S2 subunits, mediates viral 
entry into the host cell membrane via the human 
cell angiotensin converting enzyme 2 (ACE2) 
receptor.5 The remaining 67% of the viral genome 
encodes polyproteins and precursors that further 
cleave into 16 non-structural proteins (nsp), like 
the RNA-dependent RNA polymerase (RdRp), 
critical for viral life cycle – replication and host 
immune system regulation.6 RdRp complex like 
nsp-12, with assistance of other cofactor proteins 
(like nsp7-nsp-8 heterodimer), handles the viral 
replication and transcription process of the 
virus.6,7 Interestingly, across RNA viral classes, 
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various sequence motifs and tertiary structures of 
RdRps are conserved.4,7–11 These conserved 
RdRp motifs are essential for its catalytic func-
tion, hence useful as potential drug targets.4,12

COVID-19 pathogenesis and symptoms
COVID-19 is a multisystemic viral disease and 
commonly affects the respiratory tract.13 SARS-
CoV-2 is transmitted mainly through droplets 
and exhibits pulmonary tropism, which is attrib-
utable to ACE2 receptors being widely distrib-
uted across lung epithelial cells.14 Clinical 
manifestations in human hosts can be wide rang-
ing from asymptomatic to symptomatic disease 
with potential for sudden symptom evolution.12,14 
Symptoms of mild disease may include fever, 
myalgia, cough, fatigue, anosmia, dysgeusia, and 
shortness of breath while moderate-severe or crit-
ical illness may lead to prolonged hospitalization, 
cytokine storm, viral pneumonia, secondary bac-
terial or fungal pneumonia, arrhythmias, acute 
kidney injury, neurological illness, and so on.12 
The COVID-19 response in some individuals can 
lead to a complex immunological cascade leading 
to a cytokine storm with damage to multiple 
organs.13,15 Symptomatic disease could eventually 
lead to post-acute COVID-19 syndrome.16,17 The 
exact duration for which these symptoms persist 
after resolution of acute disease remains to be 
fully understood.

COVID-19 management
While COVID-19 prevention is largely associated 
with targeting viral spike and structural proteins 
by highly efficacious vaccination – generating 
robust humoral antibody response – hospitaliza-
tion-associated patient management and therapy 
is critically symptom associated. Identification of 
clinical disease staging – clinical symptoms com-
bined with laboratory and radiologic assessment 
– are critical for risk stratification, triage, and 
early therapeutic intervention of patients who 
progress to severe disease, requiring hospitaliza-
tion.13,18 In hospitalized patients, mechanical ven-
tilation, oxygen therapy, and symptomatic 
treatment have been the mainstay of therapy.19 
While there is no clinically effective therapy for 
COVID-19 in singular, several therapeutic agents 
such as corticosteroids, antivirals, monoclonal 
antibodies, and convalescent plasma are currently 
being administered and evaluated, many a times, 

in conjunction. Antivirals have a special role to 
play, repurposed through their role in other viral 
infections, preventing viral entry into the host 
cells and causing suppression of viral replication 
at various steps.20 Some key antivirals of interest 
are listed in Table 1.

Several clinical trials recruiting patients across the 
disease stages are trying to identify the most effi-
cacious drug(s) for efficacious COVID-19 ther-
apy, and retroviral therapies have been of most 
interest.21,23 Remdesivir has been used under 
emergency use authorization in several countries, 
demonstrating some efficacy in shortening recov-
ery time in COVID-19 patients.27 The combina-
tion of lopinavir with ritonavir showed some 
favorable outcome, but a clinical trial was discon-
tinued due to side effects.19 Ribavirin, a guanine 
analog targeting viral RdRp was found to be inef-
fective in improving COVID-19 recovery out-
comes, although in combination triple therapy 
with lopinavir and ritonavir, with interferon beta-
1b, some improvement in efficacy was observed 
to decrease recovery in hospitalized patients with 
mild to moderate COVID-19.25 In addition, sin-
gular therapy with umifenovir (arbidol) did not 
improve patient outcomes.26 Favipiravir, similar 
in action to remdesivir, inhibits transcription and 
replication of multiple RNA viruses by targeting 
RdRp.28

Favipiravir

Drug development and pharmacodynamics
In the process of viral replication, RdRp is a criti-
cal element, conserved across RNA viruses but 
absent in human cells, making it a promising anti-
viral target.12 Favipiravir was developed by 
Toyama Chemical Company Limited and was 
first approved for clinical use in Japan in 2014, for 
novel and re-emerging influenza virus infections. 
It was discovered through a library screen of 
chemical candidates utilizing a plaque reduction 
assay.28,29 Understanding efficacy of favipiravir in 
COVID-19 is of particularly high interest,30,31 as 
it has been shown to have effective in vitro and in 
vivo antiviral activity against RNA viruses of mul-
tiple families – orthomyxoviridae, bunyaviridae, 
arenaviridae, filoviridae, rhabdoviridae, para-
myxoviridae, flaviviridae, togaviridae, picornavir-
idae, and caliciviridae.22,32,33 Favipiravir is a 
pyrazine carboxamide derivative and is a prodrug; 
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its active metabolite, favipiravir ribofuranosyl 5′ 
triphosphate (T-705 RTP), is formed by phos-
phoribosylation and is a nucleoside analog caus-
ing disruption of viral replication.29,33–35 It was 
observed that neither favipiravir nor favipiravir-
ribofuranosyl-5′-monophosphate inhibited RdRp 
activity, instead the triphosphate metabolism of 
favipiravir to T-705 RTP lead to active influenza 
viral inhibition, through concentration dose-
dependent studies.28 Plaque reduction with time 
of addition assays were utilized to define the 
mechanism of action by exposing influenza 
infected cells to favipiravir. It was observed that 
plaque inhibitory activity was observed during the 
replication phase and not adsorption or release 
phase.28 While competitive assays were used to 
investigate the mechanism of inhibition,28 it was 
observed that the antiviral activity of favipiravir 
was significantly decreased in presence of natural 
purine nucleoside and not pyrimidine bases, thus 
indicating its mechanism of action as a pseudo 
purine, through RdRp.28,36 Although the precise 
interaction is not known, it is hypothesized that 
this active form either binds to the catalytic for-
mat of RdRp or gets misincorporated to the nas-
cent growing viral RNA, leading to chain 
termination by ambiguous base-pairing, in turn 
causing abrupt break in viral replication36,37 
(Figure 1). Sequencing of nucleoprotein clones 
revealed a higher mutation frequency and associ-
ated shift in the nucleotide profiles of 

the nucleoprotein gene. In addition, no viable 
favipiravir-resistant mutants were observed, sug-
gesting a ‘virucidal’ effect.28,34 The wide-spec-
trum activity of favipiravir may be associated with 
this misincorporation effect. The lethal mutagen-
esis and subsequent chain termination mecha-
nism has been suggested against multiple RNA 
viral infections as well.34,35,38,39 One study indi-
cated that binding of the T-705 RTP to RdRp 
may not lead to sufficient inhibition of norovirus 
activity.40 Although, it may be possible that vari-
able concentration and availability of the drug 
may be key in impacting the mechanism of 
action.37 In addition, as this mechanism of action 
is vastly different to some other antivirals that 
inhibit cellular RNA or DNA synthesis – as with 
ribavirin and the neuraminidase inhibitors – favi-
piravir, instead, specifically acting on viral RdRp 
may be responsible for observed lower toxicity 
while being target sensitive and efficacious across 
multiple classes of RNA viruses.36 At 50% inhibi-
tory concentration, favipiravir was about 2650 
times more selective for influenza RdRp, while 
lacking inhibition of human RNA or DNA 
synthesis.36,41

Pharmacokinetics and safety
Favipiravir is metabolized mainly by aldehyde oxi-
dase (AO) and partly metabolized to a hydroxy-
lated form by xanthine oxidase (XO). A glucuronate 

Table 1.  Repurposed antivirals being evaluated for therapeutic activity in COVID-19.

Drug Mechanism Primary application

Remdesivir Targets viral proteases and RdRp Hepatitis C, Respiratory Syncytial Virus 
(RSV), Human Immunodeficiency Virus 
(HIV), Ebola and Marburg viral disease21

Favipiravir Inhibits RdRp (purine nucleoside 
analog)

Multiple RNA viral diseases – Influenza, 
Ebola, Yellow fever, etc.22

Lopinavir and ritonavir Inhibits viral proteases HIV, SARS, MERS23

Molnupiravir Competitive substrate of viral RdRp Influenza, Chikungunya virus, 
Respiratory syncytial virus, Ebola, SARS, 
MERS24

Ribavirin Acts on viral RdRp in replicating viral 
genome (guanine analog)

RSV, Hepatitis C, SARS, MERS25

Umifenovir Inhibits fusion of viral S protein to 
ACE2

Influenza, SARS26

ACE2, angiotensin converting enzyme 2; HIV, Human Immunodeficiency Virus; MERS, Middle East Respiratory Syndrome; 
RNA, ribonucleic acid; RSV, Respiratory Syncytial Virus; SARS, Severe Acute Respiratory Syndrome.
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conjugate was observed in human plasma and 
urine as a metabolite other than the hydroxylated 
form. It is predominantly excreted into the urine as 
a hydroxylated form, with minimal unchanged 
drug. The pharmacokinetic profile of favipiravir 
has been studied through dose-escalated studies, 
with oral dosage for adults at 1600 mg twice daily 
on day 1 (loading dose), followed by 600 mg twice 
daily for 4 days, with the total duration of therapy 
being 5 days.29 The maximum plasma concentra-
tion was achieved within 2 h after administration of 
a single dose, although plasma concentration 
quickly decreased, with half-life between 2 and 
6 h.29,42 Interestingly, administration of multiple 
doses led to an increase in the time to maximum 
plasma concentration and half-life.42 Favipiravir is 
associated with dose- and time-dependent phar-
macokinetics, possibly explainable by saturation of 
the main enzymatic pathway as it was shown to 
inhibit AO in vitro.29,42 In Ebola-infected patients, 
the favipiravir plasma concentration surprisingly 
decreased between treatments, potentially due to 
severe disease conditions or intrinsic properties of 
favipiravir metabolism.43 In variable disease condi-
tions, favipiravir bioavailability and the hepatic 
first pass can be altered, through an increase in the 
activity of the AO with temperature.32,43

The literature suggests that favipiravir is a well-
tolerated drug.32 The most frequently reported 
adverse effects of favipiravir when used for influ-
enza treatment, are mild to moderate diarrhea, 
asymptomatic increase of blood uric acid and 

transaminases, and a decrease in the neutrophil 
count.29 In a study evaluating the inhibition prop-
erties of favipiravir against human and mouse nor-
ovirus RNA polymerases, it was found that 
favipiravir ribonucleoside triphosphate was recog-
nized as a substrate of the human mitochondrial 
RNA polymerase, but did not result in inhibition 
of the DNA-dependent RNA polymerase nor 
cause mitochondrial toxicity in cells.32,40 Despite 
good tolerance observed, a major concern to safety 
of clinical favipiravir use is related to its teratogenic 
tendencies. In studies with fetal/embryo models  
of multiple animal species, teratogenicity was 
observed across all.44 The exposure dosage causing 
teratogenicity was comparable with the proposed 
human use dosage. Therefore, it is strongly recom-
mended that favipiravir not be administered to 
pregnant or possibly pregnant individuals.29,44 Due 
to this high risk of teratogenicity and embryotoxic-
ity, favipiravir is conditionally marketed with strict 
regulation in Japan.32 Hence the clinical use of 
favipiravir is restricted to novel or re-emerging 
influenza viruses, only when that virus is resistant 
to other influenza antivirals, while being manufac-
tured and distributed only upon request by the 
Minister of Health, Labor and Welfare in Japan.29,32

Use in influenza
Early literature on favipiravir dates to 2001. Also 
known as T-705, favipiravir was tested in vitro for 
its antiviral properties against Influenza A, B, and 
C, against all of which it was found effective. It 

Figure 1.  Schematic showing the mechanisms of action associated with favipiravir.
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was also reported to have activity against oseltami-
vir and amantadine-resistant Influenza A. The 
Influenza A viral strains originally studied 
included H1N1, H2N2, and H3N2.45 Selective 
viral RNA polymerase inhibition without inhibi-
tion of cellular RNA or DNA synthesis was 
reported as its proposed mechanism of action.36 
Takahashi et al.46 reported that T-705 retained its 
efficacy against influenza-infected mice when 
compared with oseltamivir despite a delay of 
treatment initiation of up to 25-h post infection. 
Sidwell et al.47 reported activity of T-705 against 
mice infected with avian H5N1 influenza. 
Antiviral drug regimens studied in mice yielded 
statistically significant protection against death at 
doses of or higher than 30 mg/kg/day given twice 
a day for 5 days. The effect of delaying therapy by 
up to 72 h after infection was also studied and 
Furuta et al. reported that T-705 retained its anti-
viral property in protecting mice against death at 
doses of 300 mg/kg/day given every 6 h for 
5 days.41,48 Favipiravir resistance was first reported 
by Goldhill et  al.49 who stated that a K229R 
mutation in RdRp would confer drug resistance 
to favipiravir among pandemic 2009 H1N1 
Influenza A viral strains. In one study, the combi-
nation of favipiravir with oseltamivir showed syn-
ergy at low doses in animal models infected with 
H1N1, H3N2, and H5N1 Influenza A viral 
strains.50 Wang et al.51 found accelerated clinical 
recovery among patients with severe Influenza on 
favipiravir and oseltamivir combination therapy 
compared with oseltamivir alone.

The approved favipiravir drug regimen in Japan 
for the treatment of Influenza is 1600 mg (loading 
doses) on day 1 followed by 600 mg twice a day, 
with the total duration of therapy being 5 days.29,52 
Other experimental clinical studies in influ-
enza53–56 used a regimen of 1800 mg (loading 
doses) followed by 800 mg twice a day, for a total 
duration of therapy of 5 days. Evidence from clin-
ical trials assessing over 2000 patients suggests 
that favipiravir is well-tolerated.51,53–56 Adverse 
drug reactions reported include elevation in 
serum uric acid levels, diarrhea, elevation of liver 
enzymes, and reduction in neutrophil count.52

Use in other viral diseases

Viral hemorrhagic fevers
The causative agents of viral hemorrhagic fevers 
(VHFs) belong to Arenaviridae, Bunyaviridae, 

Filoviridae, and Flaviviridae families of viruses, all 
of which are RNA viruses. Prominent VHFs 
caused by these viruses include Ebola viral dis-
ease and Yellow Fever among others. Favipiravir 
was trialed in rural Guinea during the Ebola virus 
disease (EVD) outbreak in 2014 as a multicenter 
proof-of-concept non-comparative trial. Nuanced 
conclusions were drawn about the efficacy of favi-
piravir as the trial was nonrandomized and all 
study participants received the drug given the 
public health crisis at the time. The authors 
reported that although favipiravir monotherapy 
may not be effective in patients with very high 
viremia, its clinical utility in intermediate to high 
viremia would merit investigation.57 Another ret-
rospective observational study on outcomes of 
patients treated with compassionate use favipira-
vir versus untreated patients showed a lower-case 
fatality ratio among those treated with favipiravir 
thereby conferring survival benefit.58 Translational 
research on the efficacy of favipiravir against EVD 
done in macaques showed survival benefit among 
the infected animals that received ⩾ 150 mg/kg of 
favipiravir. The authors observed inhibition of 
viral replication inhibition in a concentration-
dependent manner and concluded that favipiravir 
plasma trough concentrations > 70–80 μg/ml 
were linked to lower viral loads and improved 
survival.59

Favipiravir has been tested in vitro against other 
etiological agents of VHFs including Bunyaviridae 
and Arenaviridae. Gowen et al.60 studied the in vitro 
inhibitory effects of favipiravir (T-705) and ribavi-
rin in monkey kidney Vero 76 cells against La 
Crosse virus, Punta Toro virus, sandfly fever virus, 
and rift valley fever virus (Bunyaviruses) and found 
that the drug inhibited the growth of the tested 
viral strains and was less toxic than ribavirin. The 
same authors examined the in vitro activity of favi-
piravir (T-705) against Junin virus, Pichinde virus, 
and Tacaribe virus (Arenaviruses) and found that 
the drug was highly active against the tested viral 
strains in cell cultures. The drug also afforded pro-
tection to hamsters infected with Pichinde virus 
and mice infected with Punta Toro virus.

Yellow fever is a VHF caused by the yellow fever 
virus (YFV), a flavivirus. The YFV distribution 
runs through tropical and subtropical Africa and 
South America. Clinical disease could be asymp-
tomatic or may manifest with fever, chills, head-
ache, myalgia, jaundice, bleeding, shock, and 
organ failure. The mortality rate of those with 
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severe symptomatic disease can be > 30%. 
Julander et  al. found T-705 to be moderately 
effective against YFV in cell culture. It was also 
found to be an effective treatment in YFV infected 
hamsters conferring survival benefit among the 
infected animals treated with T-705.61

West Nile Virus
West Nile Virus (WNV) is a vector-borne (mos-
quito) disease caused by the West Nile Virus, a 
flavivirus. The spectrum of disease can vary from 
asymptomatic infection to mild febrile illness to 
severe viral meningitis or encephalitis. To date, 
there is no approved antiviral for the treatment of 
WNV. Morrey et al. studied the efficacy of orally 
administered favipiravir (T-705) among rodents 
infected with WNV and found the drug to be 
active against WNV. The drug’s lack of activity 
past the second day on viral infection was attrib-
uted to either the lack of a standard drug regimen 
or insufficient bioavailability in the brain or lack 
of neuronal metabolism to convert favipiravir to 
T-705 RTP.62

Nipah virus
Nipah virus is an emerging zoonotic infection 
caused by the Nipah virus which belongs to the 
Paramyxoviridae family of viruses. Outbreaks have 
been reported out of Malaysia, Bangladesh, and 
India periodically. Fruit bats are its natural reser-
voir, and the virus can be transmitted to humans 
either from bats or via an intermediate host such 
as pigs or via human-to-human transmission. 
Clinically, the disease manifests as viral encepha-
litis with features of respiratory compromise. To 
date, there is no approved treatment or vaccine 
for Nipah virus. The disease has a high mortality 
rate, ranging upward of 40%.63 Favipiravir has 
shown in vitro activity against vero cells infected 
with Nipah virus and prevented viral replica-
tion.64 Dawes et al.64 also found benefit of favip-
iravir administration among hamsters infected 
with Nipah virus and reported that treated ham-
sters infected with the virus did not develop any 
signs of clinical disease.

Respiratory viral diseases (other than influenza 
and COVID-19)
Human metapneumovirus (hMPV) and RSV, 
previously classified under Paramyxoviridae, 
belong to the family Pneumoviridae and can cause 

upper or lower respiratory tract disease in humans. 
Parainfluenza virus can cause similar disease and 
belongs to the Paramyxoviridae family of viruses. 
Favipiravir (T-705) demonstrated activity against 
all these viruses in vitro in a study done by 
Jochmans et al. The authors also reported in vivo 
drug activity in hamsters infected with hMPV.65

Use in COVID-19
Early genomic sequencing of SARS-CoV-2 virion 
suggested over 90% homology, across several 
essential enzymes, with other coronaviruses, par-
ticularly those causing SARS and MERS.66 In a 
quest for identifying effective therapy amid a cata-
strophic global pandemic, this knowledge helped 
trigger the ‘repurposing’ of multiple antiviral drugs 
including broad-spectrum antivirals and more spe-
cifically, drugs previously directed toward therapy 
of SARS, MERS, and other viral infections. The 
mechanism of action of favipiravir against SARS-
CoV-2 is similar to that previously described in lit-
erature. After viral incorporation of T-705 RTP by 
RdRp, the nascent coronaviral RNA undergoes 
slowed RNA synthesis, chain termination, and 
viral mutagenesis, while evading the viral RNA 
repair mechanism. The SARS-CoV-2 RdRp has 
been described to have 10-fold higher activity than 
other viral counterparts, while simultaneously 
being prone to high nucleotide incorporation and 
error rates.67 These processes significantly bottle-
neck the RNA replication by causing nucleotide 
shifts in an unbalanced viral environment with 
already low cytosine levels.67 These critical hall-
marks of the SARS-CoV-2 virion machinery make 
it vulnerable to RdRp inhibitors.

Alongside an effective vaccine, antivirals have a 
critical role in containing local spread of infection 
by curtailing viral load and shedding, at an early 
infection stage.68 Studies suggest viral load in the 
upper and lower respiratory tracts in patients with 
mild infection peak in the early stage of infection, 
days 4 and 6, respectively, while in moderate-
severely infected patients they peak in later stages, 
days 8 and 11.69 Thus, the role of antivirals like 
favipiravir may be higher in mild-moderate infec-
tions at an early stage of the disease, to control the 
viral load, shedding, and infectivity rates,70 to help 
reduce the burden of hospitalization and associated 
patient care on an already overwhelmed system.

An early study (February 2020) showed that favi-
piravir at higher concentrations (EC50 = 61.88 μM) 
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was able to minimize viral infection in vero E6 
cells in vitro.71 While these in vitro studies sug-
gested a need for further evaluation, the efficacy 
of favipiravir in patients infected with COVID-19 
was initially assessed through two separate clini-
cal trials in China (February 2020).72 The inclu-
sion criteria for both the trials included patients 
within the early stage of disease, from manifesta-
tion of symptoms and positive test result with 
reverse transcription polymerase chain reaction 
(RT-PCR), and patients with severe disease were 
excluded. In one of the trials, patients with 
COVID-19 were treated with a combination of 
favipiravir and alpha interferon (n = 30), while the 
other treatment arm was treated with lopinavir 
and ritonavir combination with alpha interferon.72 
The second clinical trial assessed the efficacy of 
favipiravir against therapy with baloxavir mar-
boxil.72 In addition, after initial approval of favip-
iravir for treatment of COVID-19 in China 
(February 2020), another study with 80 patients 
showed it had promise as an antiviral therapeutic, 
with lower side effects when compared with the 
lopinavir/ritonavir treatment arm.73 While these 
initial studies showed some favorable results, 
there were safety concerns for use due to side 
effects like teratogenicity, prolongation of QTc 
interval and hyperuricemia as evidenced in use 
for other pathologies.74 Interestingly, in a rand-
omized controlled trial conducted on patients to 
receive either favipiravir or arbidol, with a pri-
mary outcome for recovery on day 7, favipiravir 
did improve latency to relief of cough and fever 
but did not improve clinical recovery rate, while 
the most frequently observed side effect was 
hyperuricemia.75

Subsequently, other studies have been conducted 
to understand the efficacy of favipiravir in 
COVID-19. Studies have suggested that favipira-
vir could lead to viral clearance by day 7 and 
improve clinical outcome by 2 weeks when admin-
istered in early stages of infection.76,77 In one 
study, the median time to viral clearance was 
about 12.8 days in patients when favipiravir ther-
apy was initiated on day 1, and increased to 
17.8 days when therapy was started on day 6.78 In 
addition, there were significant differences in 
duration of hospitalization, with need for oxygen-
ation and mechanical ventilation, in patients with 
mild or asymptomatic infection when favipiravir 
therapy initiated late stage versus early. Thus, it 
may be important to initiate favipiravir therapy at 
an early stage of disease in asymptomatic or 

mildly infected COVID-19 patients, to achieve 
reduction in viral load and disease progres-
sion.76,77 Importantly, dosing regimens could sig-
nificantly change the clinical outcome of the 
patient, lower doses indicating to have lower 
association with better outcomes.76 Comparison 
of multiple trials suggests that favipiravir may not 
have a significant beneficial effect on improving 
patient mortality rate in subjects with mild to 
moderate COVID-19, and this may be associated 
with the timeline of therapy initiation.77 However, 
it is necessary to assess the favipiravir therapy ini-
tiation timeline, dosage, duration, and safety 
through trials with larger sample size.

The use of favipiravir on a compassionate or 
approved basis for the indication of COVID-19 
treatment has been put through clinical trials 
across the globe. Table 2 summarizes key pub-
lished clinical trials (including from preprint serv-
ers) to date. The drug was trialed in cases of 
asymptomatic and mild-moderate disease as well 
as in moderate-severe cases of COVID-19 pneu-
monia. While most trialed a regimen of 1600 mg 
loading dose (two doses) on day 1 followed by 
600 mg twice daily, other regimens used 1800 mg 
loading dose (two doses) followed by 800 mg twice 
a day. The length of drug therapy with favipiravir 
was varied and ranged from 7 to 14 days. At the 
present time, favipiravir is not approved for use in 
COVID-19 by the United States Food and Drug 
Administration or its European counterpart, the 
European Medicines Agency. The formally rec-
ommended dose and duration of therapy remain 
awaited based on results of the ongoing clinical 
trials. However, it is noteworthy that 600 mg twice 
daily maintenance dose has been used to manage 
COVID-19 in some international markets.79 Doi 
et al. studied the effect of early versus late favipira-
vir use among adolescents and adults with asymp-
tomatic or mild COVID-19 and noted that viral 
clearance by day 6, which was their primary end-
point, was similar between the two groups. 
Secondary and exploratory endpoints, that is, viral 
load reduction by day 6 and time to defervescence 
were met in the early treatment arm.80 Another 
group of researchers who studied the drug’s effi-
cacy versus supportive care alone, among patients 
with mild to moderate COVID-19, found shorter 
time to cessation of viral shedding with favipiravir 
but this was not statistically significant. The 
median time to clinical cure among symptomatic 
patients at baseline was reportedly significantly 
faster with favipiravir.81 Ivashchenko et  al. 
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observed statistically significant differences 
between favipiravir treatment groups compared 
with standard of care at the time (hydroxychloro-
quine or chloroquine or lopinavir/ritonavir); in 
terms of viral PCR clearance, Cai et al. suggested 
favorable radiographic outcomes in the favipiravir 
treatment arm compared with control (lopinaivr/
ritonavir) in addition to shorter median time for 
viral clearance.82,83 The optimal dosages and dura-
tion of drug therapy with favipiravir for COVID-
19 remain indefinite. Further clinical trials with 
specific aims to guide these aspects of treatment 
are warranted.

Future directions
Table 3 summarizes publicly available informa-
tion about ongoing favipiravir clinical trials.89–95 
The GETAFIX, FLARE, COVERAGE, and 
VIRCO trials are focused on drug efficacy early in 
the treatment of COVID-19 and the COVERAGE 
trial will be looking specifically at geriatric 
patients. The PRINCIPLE trial collaborative 
group evaluated the use of azithromycin among 
adults 50 years of age or more with medical 
comorbidities and all adults above 65 years of age 
with COVID-19 and found that its use did not 
shorten the time to clinical recovery or reduce the 
risk of hospitalization.96 Interim results of the 
PRINCIPLE trial also reported clinical utility of 
inhaled budesonide among patients with COVID-
19 at risk for adverse outcomes.97 The findings 
from the PRINCIPLE trial about favipiravir’s 
clinical utility remain awaited. Bosaeed et  al.89 
have proposed a multicentric randomized con-
trolled trial to evaluate efficacy of favipiravir and 
hydroxychloroquine combination in comparison 
with control. Hassaniazad et al.90 also published 
about an upcoming single-center, randomized, 
open-label clinical trial among moderately ill 
patients with COVID-19 evaluating the safety 
and efficacy of favipiravir and interferon beta-1a 
combination in comparison with lopinavir/ritona-
vir and interferon beta-1 combination.

Conclusion
Favipiravir, among other drugs, has gained prom-
inence since 2020 because of the COVID-19 pan-
demic and its versatility as a broad-spectrum 
antiviral that inhibits RdRp and targets viral rep-
lication. While its utility has shown benefit in a 
few clinical trials, others yielded mixed results. 
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The drug’s full potential as a therapy for COVID-
19 remains to be determined, including its opti-
mal timing of administration, dosage, and 
duration of therapy. It is fairly well-tolerated with 
a major safety concern being its teratogenic 
potential. Adverse drug reactions among patients 
included hyperuricemia, QTc interval prolonga-
tion, and elevation in hepatic enzymes. Finally, 
favipiravir’s prospect as a post-exposure prophy-
lactic agent in COVID-19 remains to be tested.
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