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Abstract

Computational modeling techniques are playing increasingly important roles in advancing a systems-level
mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and
clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the
mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular
signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple
modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE
(stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation
and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic
inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate
the capabilities, power and scope of ENISI MSM.

Background: Computational techniques are becoming increasingly powerful and modeling tools for biological
systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from
nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to
understand immunological processes from signaling pathways within cells to lesion formation at the tissue level.
This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge
implementation.

Implementation: Object-oriented programming approach is adopted to develop a suite of tools based on ENISI.
Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore,
performance matching between the scales is addressed.

Conclusion: We used ENISI MSM for developing predictive multiscale models of the mucosal immune system
during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell
responses contribute to tissue damage in the gut mucosa following immune dysregulation.

Introduction

This paper presents ENISI, a multiscale agent-based
modeling platform for computational immunology.
ENISI is the first agent-based modeling platform target-
ing enteric mucosal immune systems and capable of

integrating multiple modeling techniques such as ODE,
ABM, and PDE.

Computational modeling in immunology

Computing technologies are playing increasingly impor-
tant roles in immunological research. Computational
models can accelerate the knowledge discovery process
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through effective utilization of techniques from mathe-
matics, computer science as well as engineering. n silico
experimentation and model analysis such as visual and
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data analytics enable novel computational hypothesis
generation that guide wet-lab experimentation, thereby
accelerating the generation of new knowledge. Tradi-
tionally, researchers develop small and domain-specific
models adopting reductionist approaches. These meticu-
lously constructed models could have great amount of
details; however, they are often single scale (ex: gene
regulation, signaling, etc.) and use only one type of
modeling technology. The systematic and comprehen-
sive understanding of large-scale biological systems such
as the immune system requires developing multiscale
models through integration of multiple modeling tech-
nologies as well as large and diverse data types. Immu-
nological processes are studied today with advanced
technologies at various spatial scales. For instance, ima-
ging techniques and microscopy are used to identify
tissue-level changes, flow and mass cytometry for
extracting cellular-level differences, and RNA-seq,
RT-PCR or microarray for gene-level variation. Utiliza-
tion of such high-dimensional big and diverse data types
calls for more comprehensive modeling approaches.
Furthermore, studying biological phenomena at different
scales often requires different modeling technologies.
ENISI is a multiscale modeling platform that efficiently
integrates multiple modeling technologies to investigate
immunological mechanisms across spatiotemporal
scales.

Modeling technologies

Types of modeling technologies are diverse; however, in
this study the focus is on equation-based and agent-
based models. Equation based models are captured using
mathematical equations, such as ordinary differential
equations (ODE) and partial differential equations (PDE).
ODEs can easily capture entity changes in time but not
in space. PDEs can capture changes in both time and
space but are more complex to solve. In general, the
complexity of equation-based models is determined by
the number of equations describing the model. Small
numbers of equations can be analytically solved; however,
large numbers of equations can only be solved numeri-
cally. Even though mathematical equations are often ele-
gant and efficient representations, many biological
phenomena can not be easily captured using this mathe-
matical formalism.

An agent-based model, ABM, is comprised of agents
and their interactions. Like objects in objected-oriented
design, agents in ABMs can capture arbitrary complex
knowledge. For example, agents can; i) have properties to
represent different entity states, such as sex, genotypes,
size and color, ii) be assigned to specific locations and
move spatially, iii) interact with the environment and
other agents, iv) be represented in a hierarchical struc-
ture. ABM is capable of modeling multiscale and highly
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complex biological phenomena; furthermore, ABM can
also integrate multiple modeling technologies.

Modeling tools
Computational modeling technologies cannot be sepa-
rated from the modeling tools. Without user-friendly
tools, modeling is a daunting task for scientists without
extensive computational skills. A key feature of a practi-
cal and valuable multiscale modeling tool rests in its abil-
ity to assist biologically skilled scientists build useful
multiscaled models to generate novel hypotheses.
Engineers can use Matlab to develop ODE-based mod-
els; however, computational biologists rely on tools such
as COPASI [1] and Virtual Cell [2] due to their custo-
mized user-friendliness and usability features. COPASI
provide user interfaces for defining equations, entities,
and rate laws. Biologically skilled scientists with limited
knowledge of mathematical equations can utilize
COPASI to model complex networks. COPASI currently
supports only ODE-based models. For agent-based mod-
eling, there are several existing tools such as SIMMUNE
[3] and Basic Immune Simulator, BIS [4]; however, these
are not designed to be easily extended to developing mul-
tiscale models of enteric immune systems. For generic
modeling framework, computational biologists uses
NetLogo [5,6] or Repast [7]. In comparison, NetLogo has
better development efficiency but Repast provides better
flexibility and performance. Moreover, the high-perfor-
mance computing (HPC) capability of Repast provides
greater scalability.

ENISI Visual and ENISI MSM

Development of ENISI, Enteric Immune Simulator, led
to the development of a comprehensive model for
enteric immune systems. ENISI can be used to develop
multiscale models using ODE, PDE, and agent-based
modeling frameworks. The resulting multiscale models
include intracellular as well as intercellular scales and
are able to represent signaling pathways, transcriptional
regulation, metabolic networks, gene-regulatory net-
works, cytokine and chemokine diffusions, cell move-
ment, tissue compartments simultaneously (Figure 1). In
ENISI, intracellular signaling networks are modeled by
ODEs; extracellular chemicals and proteins diffusions

Intracellular signaling Cell-cell movement & interaction Cytokine diffusion
ODE model ABM model PDE model

Tissue model with projections, compartments, and visualizations

Figure 1 ENISI MSM: A multiscale modeling platform
integrating intracellular, cellular, and tissue scales and multiple
modeling technologies.
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are modeled using PDEs; and the cell movements are
modeled by agent-based models.

ENISI adopts object-oriented principal, i.e., entities on
different scales are objects and these objects are hier-
archically organized. During the development of ENISI,
three versions were released; ENISE HPC [8] ENISI
Visual [9] and ENISI MSM [10]. ENISI HPC focuses on
scalability by implementing a parallel simulation frame-
work, ENISI Visual focuses on visualizations, and ENISI
MSM on the integration and performance matching
among heterogeneous modeling technologies.

In the rest of this paper, related works are introduced
before describing the scales, technologies and tools
implemented in ENISI. Subsequently, the paper will
focus on the technical challenges encountered during
the system development, including the adoption of
object-oriented design principals, the visualizations, and
the performance matching techniques used for the inte-
gration of heterogeneous modeling technologies. The
paper will present an empirical proof-of-concept study
before discussing scope and limitations of the system as
well as potential future directions

Related work
Modeling in biology has long history tracing back to
1970s [11]. Early modeling techniques utilized a reduc-
tionist approach and models were largely based upon
mathematical equations. With the introduction of com-
putational systems biology [12,13] and the emergence of
computation technologies, computational biology [14]
and modeling techniques [15,16] have seen significant
progress, including techniques such as equation-free
modeling for describing dynamic systems [17] as a result
of rapid increase in the computational power. In com-
putational immunology, artificial immune systems (AIS)
[18,19] have emerged as an independent research area
across multiple disciplines, including mathematics, engi-
neering, computer science, and immunology.
Computational modeling techniques can capture exist-
ing knowledge into models and discover new knowledge
through model analyses and simulations. In this study,
we focus on three popular modeling techniques in com-
putational immunology, i.e., ODE, PDE, and agent-based
[10,19-22]. Perelson et al. [23] presented ODE models
for the dynamics among HIV virus and immune cells.
Agent-based models can be powerful tools [24] for com-
putational biology. Parunak et al. [25] compared ABM
with equation-based models. Materi et al. [26] discussed
computational modeling techniques, including ODE,
PDE, and ABM, and tools used in drug discovery and
development. The virtual cell [2] is a software environ-
ment for modeling a single cell using ODEs and PDEs.
In regard of multiscale models, identifying the appro-
priate linkages that facilitate integration of different
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models across scales is critical. Krinner et al. [27]
coupled an agent-based model of hematopoietic stem
cells with an ODE model of granulopoiesis and imple-
mented this multiscale model in Matlab. Dwivedi et al.
[28] presented a multiscale model of Interleukin-6-
mediated immune regulation in Crohn disease and its
application in drug discovery and development; the mul-
tiscale model was based on ODE. Hayenga et al. [29]
argued that i) vascular systems are complex and require
faithful multiscale models composing of sub models at
all scales (macro, micro, and nano), and ii) efficiently
coupling between sub models is critical for the perfor-
mance of such models.

In a recent work, a multiscale modeling approach was
utilized to identify the chemical, biological and mechani-
cal mechanisms of scar formation and wound healing
where cross-talk between the different fields could have a
significant impact on would management and individua-
lized care [30]. Furthermore, novel software workflow
(EPISIM) is being developed for semantic integration of
SBML-based quantitative models in multiscaled tissue
models and simulation [31]. In essence, using EPISIM or
similar tools it is possible to link cellular states such as
differentiation to biochemical reaction networks such as
lipid metabolism pathways. In addition, calibrated models
can be integrated with a larger pool of reusable models
available in the Biomodels database, which has over 163
metabolism themed models [32].

However, the challenges of modeling and specifically
multiscale modeling are manifold, such as model com-
plexity, large parameter space for model calibration, dif-
ferences in time scales, cellular states as well as
differences in technology used for the development of
each individual scale. Hence, even though novel software
workflow (such as EPISIM) are being developed for
semantic integration of SBML-based quantitative models,
the multiscale integration is still in its infancy. In ENISI
MSM, deterministic and rule-based models are integrated
in a unified fashion. Nonetheless, one of the key strengths
of a multiscale modeling technology rests in its usability
which would allow researchers with limited technical
expertise build multiscale models.

Developing multiscale modeling tools could be
achieved by programming the software in Java, C++ or
any other programming language. In addition, there are
also several existing agent-based immune simulators,
including SIMMUNE [3], ParIMM [33], ImmSim [34],
SIS [35], and NFSim [36], that have been developed
over the past decade. For instance, SIMMUNE is a mod-
eling environment where cell-cell and cell-molecule
interactions could lead to an adaptive behavior that is
context specific. SIMMUNE takes a generic approach
and can be used to simulate a wide area of signaling
cascades that may not directly relate to immunology.



Mei et al. BVIC Bioinformatics 2015, 16(Suppl 12):52
http://www.biomedcentral.com/1471-2105/16/512/S2

ImmSim is a very simple rule-based cellular automaton
that was able to reproduce several phenomena in immu-
nology. However, due to the lack of modularity and
scalability, the needed effort to refine and expand a gen-
eric simulator to a specific field is considerable and
requires extensive technical knowledge. Similarly, Basic
Immune Simulator, BIS [4], and lymph node B cell
simulator [37] are two additional examples of immune
simulators that are developed using open source plat-
forms. BIS was developed using Repast NetLogo [5,6], a
popular ABM platform, and lymph node B cell simula-
tor was developed using Rhapsody [38]. They both pro-
vide suitable animations. Additionally, Railsback et al.
[39] surveyed several common platforms that could be
used for the development of multiscale platforms,
including Repast [7], Netlogo [5,6], and Swarm [40].
Macal et al. [41] presented comparisons of the develop-
ment approaches and concluded that in general Netlogo
and mathematic packages are easier to develop but pro-
vide less capabilities; Repast, on the other hand, is more
involved and complex but it provides added benefits and
can be more powerful. Furthermore, Matlab, an engi-
neering programming language, is also widely used in
computational modeling [27,42,43]. The latter has its
limitations, including not being open source. COPASI
[1] on the other hand is an open source software tool
that is based on C++ but provides language bindings to
python and Java; it is SBML-compliant and provide
practical user interface (UI) for ODE-based models.
COPASI can be used efficiently in the development of
multiscale models that are modular and scalable.

The gastrointestinal tract has evolved to allow absorp-
tion of food and nutritional components required to
sustain the organism and facilitate colonization of the
mucosa by commensal bacteria while eliciting immune
responses against pathogens. Gastroenteric bacteria
including Helicobacter pylori, Escherichia coli, and Clos-
tridium difficile can cause acute and chronic inflamma-
tions impacting worldwide populations. To better
understand the impact of these pathogens on the
immune system, and characterize the immune response,
a systematic multiscale model of the gastrointestinal
immune system that spans across tissue, cell, proteins
and genes was developed [44,45]. Chakraborty et al. [46]
reviewed several successful computational models in
immunology and suggested that hierarchically accurate
multiscale comprehensive models can be of great value
for understanding the effect of i) drugs designed to cor-
rect pathologies, and ii) cellular and molecular level pro-
cesses that could lead to effective self-tolerance to
address the fight against tumors as well as chronic infec-
tions. Finally, more recently Sloot et al. [47] reviewed
multiscale modeling in biomedicine and discussed some
challenges.
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Our previous work [8,48] has shown that implemen-
tation of ENISI using MPI achieves great scalability for
up to 576 processing elements when simulating a
population of 10 million cells. Also, we have demon-
strated experience with ODE, SDE and ABM
[21,49,50]. We have constructed a system of 29 ODEs
representing dysregulated immune responses in IBD
[51]. Building on our previous work, ENISI MSM [10]
integrates COPASI, the ODE solver, ENISI, the agent
based simulator and ValueLayer library from Repast,
and the PDE solver to model cytokine and chemokine
diffusion. COPASI [1], an ODE-based modeling tool, is
widely used for computational biology for modeling
“inside the cell” signaling/transcriptional networks
inside the cell and performing steady-state and time
course analyses in the ENISI MSM platform. ENISI
Visual [9] is an ABM tool for simulating tissue-level
immune responses and cell populations in the gut.
ENISI allows design of multiple synthetic compart-
ments, such as the lumen, epithelial barrier, or lamina
propria; it can also simulate multiple types of immune
and epithelial cells. The ENISI MSM prototype allowed
a real time visualization of the simulation. ValueLayer,
the PDE solver of our MSM platform, uses REPAST
[52] a family of advanced, free, and open source Java-
based ABM platform [7] as a reusable software infra-
structure [53].

ENISI MSM [10] extended ENISI Visual and integrate
COPASI based ODE [20] and SDE [54] models into
ABM. ENISI MSM was able to address the limitations
of previous ENISI tools by providing the capabilities to
model at four orders of spatiotemporal scales in an inte-
grated and seamless fashion.

ENISI is the first multiscale modeling platform that
can couple ODE, PDE, SDE, and ABM models concur-
rently engineered to investigate mucosal immune
responses. Table 1 shows the scales, their properties,
modeling technologies and the tools used for each scale.
This paper focuses on the design architecture and
implementation challenges of ENISI, including object-
oriented design principal, visualizations, and perfor-
mance matching. Three performance coupling and
matching techniques between different sub-models are
also presented.

ENISI: modeling scales, technologies, and tools

ENISI simulates gut mucosal immune responses. The
gut immune system accounts for 70% of the human
immune system. ENISI models four different scales: tis-
sue, cellular, intercellular, and intracellular. ENISI archi-
tecture and its scales have been summarized in Figure 1
and Table 1. In the following sections, the implementa-
tion, modeling technologies and tools utilized for each
scale are presented.
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Table 1. The four scales of ENISI models, their spatial and temporal properties, as well as modeling technologies and

tools for each scale

Scale Example scenarios Spatial (m) Time (s) Technology Tool

Intra-cellular Signaling pathways Nano Nano ODE COPASI

Cellular Cell movement and subtypes Milli Tens ABM ENISI

Inter-cellular Cytokine diffusion Milli Tens PDE Valuelayer

Tissue Inflammation and lesions Centi Thousands Projections ENISI

Tissue scale dangerous microorganisms. Intestinal epithelial cells

In the tissue scale, ENISI currently support modeling five dif-
ferent tissue types: the lumen, epithelium, lamina propria,
draining lymph nodes, and blood (Table 2). ENISI tissues are
implemented as compartments in two-dimensional spaces.
Repast provides both grid and continuous spaces classes for
further implementation. Grid spaces are useful to define
neighbors while continuous spaces can be used to imple-
ment motion plans. ENISI models can implement multiple
compartments in the grid; it can also provide boundaries
between these compartments using the continuous spaces
through the use of vertical lines, horizontal lines, or irregu-
lar shapes. The cells inside each tissue can move based on
Brownian and chemokine-driven motions; these cells can
also cross boundaries and move across different tissues.

Cellular scale
ENISI simulates the following immune cell types: epithelial
cells, macrophages, dendritic cells, neutrophils, B cells,
T cells, and bacteria. The cells are modeled as agents in
agent-based models. Each cell is an instance of an agent
that has its own states and moves inside its designated
compartments. Each cell type or agent is implemented as
a class in Java. The Java cell objects can be placed inside a
space in Repast and Repast simulation engine will execute
the defined motion plan during each simulation cycle. The
motion plan will determine the next location of the cell
based upon the current location and the cell’s speed.

The different immune cell types can have subtypes
depending on the immune responses and their micro-
environments as described below.

« Epithelial cells form the organism’s first line of
defense by preventing the entry of potentially

Table 2. Compartments of the immune system modeled by ENISI

are continuously exposed to large numbers of com-
mensal bacteria but are relatively insensitive to them.
Following contact with pathogens they produce
inflammatory mediators and anti-microbial peptides.
+ Macrophages initiate the innate immune response
against microbes following recognition of pathogen-
associate molecular patterns through pattern recog-
nition receptors. Following the phagocytosis of
pathogens, macrophages present the antigens to T
cells and produce different molecules, thus leading
to the expansion and differentiation of lymphocytes.
Depending on the environmental signals macro-
phages can differentiate into at least two different
subsets, M1 ("classic” activation or pro-inflamma-
tory) and M2 ("alternative” activation or anti-inflam-
matory). M1 macrophages are potent effector cells
that produce pro-inflammatory cytokines while M2
macrophages counteract inflammatory responses and
create an environment that promotes angiogenesis
and tissue remodeling.

+ Dendritic cells (DCs) are located at sites of patho-
gen entry in the gastrointestinal mucosa and are
involved in the induction of effector and regulatory
responses. Immature DC are professional antigen-
presenting cells with the capacity to internalize and
process pathogens, and present antigens via the
MHC-class II pathway. Effector dendritic cells are
professional antigen presenting cells with a role in
inducing T cell-dependent effector responses such as
T helper 1 (Thl) and Th17 responses. Tolerogenic
DCs are a subset of DCs that mediate mechanisms
of antigen specific tolerance induction in the periph-
ery through induction of regulatory T cells (Treg).

Tissue type Description
Lumen The inner open space of a tubular organ such as the stomach or intestine.
Epithelium (Ep) The thin monolayer of epithelial cells separating the lumen and LP. The epithelium is composed of several subsets of

epithelial cells, but intraepithelial lymphocytes can also be present.

Lamina propria (LP)
is an effector site.

The connective tissue underlying the Ep where most of the immune cells associated with the stomach mucosa reside. LP

Draining lymph nodes  The secondary lymphoid organs draining the gastrointestinal tract. The LNs are inductive sites of the mucosal immune

(LNs) system; where immune responses are induced.

Blood The source for the monocytes such as Macrophages, dendritic cells, and neutrophils.
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« Neutrophils are part of the innate immune system
and are highly motile. Neutrophils can be attracted
by cytokines secreted by epithelial cells and macro-
phages and quickly move to the infected or inflamed
areas. Neutrophils play a key role in defending against
invading pathogens. They can recruit and activate
other immune cells, phagocyte pathogens, and release
soluble antimicrobials.

+ CD4+ T cells are lymphocytes that mediate adaptive
immune response. T cells usually are recruited by
DCs and activate other immune cells such as B Cells
and macrophages. There are several phenotypes of
CD4+ T cells, including T helper 1 (Th1), T helper
17 (Th17), and regulatory T cells (Treg). Thl cells
represent an effector subset of CD4+ T cells involved
in the cellular immune response and host defense
against intracellular pathogens. They are centrally
involved in cell-mediated immunity and the produc-
tion of complement fixing antibodies. Th17 cells are
a subset of effector T helper cells that produce inter-
leukin-17 (IL-17) and exhibit effector functions such
as clearance of pathogens, as well as involvement in
lesions during immune mediated diseases such as
inflammatory bowel disease. Treg cells are CD4+
T cells, which are critical for the maintenance of
immune cell homeostasis.

« B cells are lymphocytes that play a major role in the
humoral immune response. They produce antibodies
against antigens, function as professional antigen-
presenting cells (APCs), and eventually develop into
memory B cells following activation by antigen
interaction.

« Bacteria are prokaryotic microorganisms. There are
approximately ten times as many bacterial cells in the
human flora as there are human cells in the body,
with large numbers of bacteria on the skin and as gut
flora. The vast majority of the bacteria in the body
are harmless, and some are even beneficial, for
the immune and provide signals that facilitate toler-
ance and nutrition. However, a few species of bacteria
are pathogenic and cause infectious diseases, includ-
ing cholera, tuberculosis, dysentery, syphilis, anthrax,
leprosy, and bubonic plague.

Intercellular scale

Intercellular scale refers to cytokines and chemokines
that are secreted by cells and diffuse in the gut tissue
microenvironment and useful for engaging receptors on
the cell surface and triggering signaling inside the cells.
The cytokines, chemokines, and their change in concen-
tration over time are modeled by PDE models. The PDE
solver of ENISI MSM uses ValueLayer library of Repast
Symphony [7]. The two main classes of the ValueLayer
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library are GridValueLayer and ValueLayerDiffuser.
GridVaueLayer stores the values for a grid space and pro-
vide methods to manipulate the values for individual grid
cells. ValueLayerDiffuser diffuses the values of the Grid-
ValueLayer according to the two constants: evaporation
constant and diffusion constant. The evaporation con-
stant determines the degradation value and the diffusion
constant determines the migrations of values of a grid
cell to its neighboring grid cells. The grid space could be
modeled using two- or three-dimensional space.

Implemented in the ValueLayer library, the diffusion
of cytokines and chemokines follows equation (1), where
vn is the value of the grid cell itself at step n. The values
of ce and cd are evaporation constant and diffusion con-
stant respectively. The last part of the equation is the
summation of the differences between all the neighbor-
ing cells and the cell itself.

ighbor
Un = o # [tnoy +cax D (WS = v, 6))

Intracellular scale

Intracellular scale models the signaling reactions at the
protein level inside each individual cell during the
immune response. ODE-based models are used to repre-
sent the intracellular pathways. The model development
and simulations are performed using COPASI [1].
COPASI, a widely used ODE-based modeling tool in
computational biology, was originally designed for bio-
chemical reactions. In addition, all the ODE reactions are
first order and users can specify the rate of such reactions
and change the parameters in the rate functions. COPASI
was further expanded to model stochastic differential
equations [54]. The three main steps for developing a
COPASI model are summarized for the sake of clarity:

1. Developing the network model. Development of
the first iteration of the model topology, which does
not include dynamical properties, can be achieved
using CellDesigner [55]. The initial model can then
be imported into COPASI where additions can be
made to the model. For instance, dynamical specifi-
cations can be added to all the ODEs for all the
reactions.

2. Calibrating the model. Model calibration focuses
on parameter estimation by fitting the simulations
generated by the model with experimental data,
extracted from literature or directly from wet-lab.
COPASI provides a simple user-interface for the
model calibration process.

3. Performing analyses. The types of analyses that
can be performed in COPASI include metabolic,
steady state, time course, and sensitivity etc.
analyses.
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ENISI simulations
The multiscale model simulated in ENISI is executed in
the following steps:

1. Initialization of simulated entities, including: i) the
grid and continuous space; ii) cells, their subtypes,
and their locations; and iii) value layers for inter-
cellular cytokines.
2. During each simulation cycle the following actions
are executed:
a. Movement: Cells move according to their
movement plan and cytokines diffuse according
to the diffusion constant.
b. Computing and updating: Each cell inspects its
location from the projections, obtains cytokine
concentrations from the ValueLayers, sends
information to the ODE solver, and calculate its
subtypes and cytokines that secret into the
environment.
c. Visualization: The cell icon locations, the
respective colors, and the grid cell background
color will change during each simulation cycle.

Development challenges

ENISI is implemented in Java and based upon the Repast
Symphony. COPASI is written in C++; however, it pro-
vides a Java language binding which is instrumental in
the development of this tool. The PDE solver library
ValueLayer is part of Repast Symphony. Due to the
hybrid modeling technologies we have encountered many
challenges in developing ENISI, a multiscale modeling
tool for computational immunology. In this section, the
focus will be on three major challenges: 1) system design
principle, 2) visualization, and 3) performance matching.

Object-oriented design

Development of a multiscale modeling tool that incorpo-
rates multiple modeling technologies is challenging. It is
therefore important to use a system design principle that
will be able to integrate ODE, PDE, and ABM modeling
technologies efficiently. Objected-oriented (OO) system
design is widely used in software development for more
than two decades. Objects in object-oriented design are
similar to agents in agent-based modeling platforms.
However, there are some fundamental differences, for
instance, in agent-based modeling, an agent usually cor-
responds to a simulated entity, yet objects do not have
such limitation in the OO systems. In the OO design,
every entity is an objects. Each object can have data, set
of properties, set of operations, and be associated with
many other objects. For instance, a tissue is an object, it
can have name, color, location, and concentration of
chemicals etc. A cell can also be an object, it can have
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locations, mobility, phenotype, genotype, etc. A tissue
can have many cells inside. A tissue can have methods to
control the movement of cells. A cell can have methods
to interact with the tissue object and neighboring cells.
Furthermore, an ODE solver can be an object. If intercel-
lular pathway networks are modeled using an ODE
model, a cell can have an object of an ODE model and an
object of an ODE solver. Hence, the ODE solver can take
the ODE model as an input and compute the model
simulation results. In fact, the object-oriented design
principal is essential in the ENISI implementation. The
OO design is the only principle that can consistently
encapsulate heterogeneous concepts, entities, and rela-
tionship of multiscale models simultaneously in an effi-
cient and modular manner.

ENISI MSM utilizes extensively object-oriented pro-
gramming features such as encapsulations, inheritance,
and polymorphism. Encapsulations: Objects can be used
to encapsulate data and methods together. Many imple-
mentation details are encapsulated into objects and objects
can represent a cell, a subcomponent such as an ODE sub
model or a cytokine with its propagation and dispersion
following PDEs. Inheritance and polymorphism: Common
data and methods can be captured by a superclass that is
inherited by multiple subclasses. For example, T cell can
be represented by a super class and T cell subsets, such as
Thl, Th2, Treg, Th9, or Th17, can be represented by sub
classes. The same method can be implemented differently
in the sub classes of epithelial and myeloid cells so that
polymorphism can be achieved.

Visualizations

ENISI simulates immune responses to enteric pathogens.
It was developed based upon a popular ABM platform
[56]. It simulates multiple compartments including lumen,
epithelial, and lamina propia and multiple types of cells
and microbiota components including epithelial cells,
T cells, B cells, macrophages, neutrophils, dendritic cells,
and bacteria. Each cell type can have several subtypes. For
instance, T cells can be resting T cells, T Helper cells, or
T regulatory cells.

To be able to control, observe, and adjust the simula-
tions, ENISI provides interfaces for users to change simu-
lating settings such as initial numbers of cells and
simulation speed. ENISI provides real time simulation
videos. Simulation snapshots and videos can also be
saved as audio/video files. Cells are visualized as icons
and they change colors when in different subtypes. The
environment is represented as both 2-d grid spaces and
also continuous space. Cells are moving and secret cyto-
kines and chemokines into the tissue environment. The
chemokines and cytokines diffuse in the environment
and are visualized as background colors. In general, the
inflammatory cell subtypes are represented in red colors
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and the regulatory cell subtypes in green colors. The
same applies to the background colors. Red background
indicates inflammatory cytokines while green indicates
regulatory cytokines. The simulation results can be
observed in real time. The simulation results can also be
saved for further processing as tab-separated files.

Tissues and compartments

Figure 2A illustrates the three compartments of ENISI:
lumen is on its left side, epithelium in the middle vertical
layer, and lamina propria on the right side of the figure.
The gastric lymph node and blood are not shown in this
visualization. Both compartments can provide immune
cells during the immune response. The recruitment of
immune cells is represented by the influx of immune
cells from the right side of lamina propia.

Cell and cell state transition

Each cell has different states or phenotypes. For instance,
an immature macrophage cell can become pro-inflamma-
tory (i.e., M1) when in contact with pro-inflammatory
T helper cells. In each simulation cycle, each cell inspects
its neighbors and its environment and decides to either
keep or change its state to an alternative state. Different
cell types are represented by different symbols and the
symbols change colors when the cells change functional
types.

In general, with pro-inflammatory neighboring cells
and pro-inflammatory cytokines, a cell has higher prob-
ability to change its state to pro-inflammatory. State
transitions in this agent-based simulator are stochastic
processes. The cell types, states, and symbols of ENISI
Visual are presented in Figure 2B. In addition, all cells
have dead states and their colors are black independent
of their original state.

Cytokine, chemokines, and microenvironment

ENISI users can add multiple cytokines and chemokines
into a model by manipulating the concentrations of
ValueLayers in the grid space. Some immune cells move
depending on the concentrations of certain chemokines,
while others change their internal states according to
the cytokines presented in their microenvironment.

The grid cell background color is visualized based upon
the cytokine or chemokine concentrations. Currently,
three cytokines can be visualized as three primary colors.
Figure 3 shows the different patterns of background col-
ors of grid cells. Color codes assigned to highlight the
inflammatory response by shades of red and the regula-
tory response by shades of green.

User interfaces, snapshots and animations
The interface allows users to control the initial cell con-
centrations, simulation outputs, and simulation speed
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etc. The users can also set batch simulation mode.
Simulation outputs can be represented by animations,
figures, and output data files. The data can be further
processed through other data processing tools.

In addition to controlling the simulation speed, user
can initiate, step, run, pause, or reset the simulation.
Users can take snapshots and record videos. Figure 3
shows the ENISI interface, the right panel displays the
simulation, and in the top panel are the control buttons
while on the left side are the simulation settings. The
windows can be dragged, repositioned, or relocated.
Furthermore, additional windows can also be added to
display complementary information from the simulation
(such as diagrams of cell counts).

Performance matching

Different scales have different spatiotemporal properties;
therefore, performance tuning between layers is neces-
sary. In this section, three techniques used for perform-
ing tuning are further discussed.

Hybrid frequencies

The simple implementation of ENISI MSM calls all the
sub-models in the different scales in each simulation
cycle. If the cost of performing a sub-model simulation
of scale s; is cg;, then the cost for each simulation cycle
will be approximately %; cg; if the sub-model coupling
cost is neglected as compared with the simulation costs
of sub-models. However, different scales have different
spatiotemporal properties and the frequencies of sub-
model simulations can be different for different scales.
Therefore, if the simulation frequency of scale s; is fg;,
i.e., the number of simulations performed in each simu-
lation cycle, then the simulation cost of one cycle will
be %; f; cg. For instance, if the simulation of one scale is
performed once every 10 simulation cycles, then the fre-
quency will be 0.1. In essence, the hybrid simulation fre-
quencies across scales will significantly improve
performance of a multiscale model.

Optimal number of ODE solver objects

The number of projections and the number of cytokines
tend to be small. For instance, in the empirical study
section, the model has 2 projections and 6 cytokines. Each
cytokine has one ValueLayer object and calls it to calculate
the diffusions. On the contrary, one may have a large
numbers of cells of different types, where each cell will
call an ODE solver object to calculate the intracellular
ODEs. If each cell is allocated with one dedicated ODE
solver object, then the ODE solver needs to load the
model file once and can remember all the status across
the simulations. However, ODE solver COPASI object is a
large object; therefore, loading millions of such objects in
the memory will significantly slow the simulations.
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Consequently, it will be more efficient if only one
ODE solver COPASI object is implemented. The latter
can be designed to serve all the cell objects, and imple-
mented using the singleton design pattern. However,

each time the COPASI object has to be reinitialized to
the current settings of the cell, the latter has to be
called. This process can significantly increase the com-
putational load. Alternatively, one could keep a pool of
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ODE solver COPASI objects, which could have the
added benefit of multi-thread environment. The opti-
mized number of solver objects will depend on the
hardware and software configurations such as memory
size, CPU speed, number of cores etc. Furthermore,
with the implementation of a parallelized HPC version
of the ENISI MSM, the computational load will be dis-
tributed and considerably reduced, allowing the develop-
ment and simulations of significantly large models,
beyond unprecedented scales of 10° to 10'* agents [8].

Therefore, one possibility is to have one ODE solver
COPASI object that can serve all the cell objects; the
latter can be implemented using the singleton design
pattern. However, each time the COPASI object need to
be re-initialize to the current settings of the cell that
calls it; hence, increasing the computational load.
Another option would be to keep a pool of ODE solver
COPASI objects. This alternative will have benefits in
multi-thread environment while balancing the memory
and speed of the simulations. The optimized number of
solver objects depends on for instance, the hardware
and software configurations such as memory size, CPU
speed and, number of threads.

Model reduction

The CD4+ T cell differential model [20] is a comprehen-
sive intracellular ODE-based model with 108 species, 46
reactions and 60 ODEs driving the activations and the

inhibition pathways. If each naive T cell calls this ODE
model to calculate its subtype and determine the cytokines
that it secretes, the computation cost will be astronomical.
For developing a multiscale model, the comprehensive
model was compressed into a reduced model with 9 spe-
cies, 9 reactions, and 6 ODEs (see section on Empirical
study). Alternatively, in cases where sufficient data are
available, supervised machine learning techniques from
artificial intelligence (AI) can be designed and optimized
to replace the ODEs in the model. In fact, we have demon-
strated [57-59] that Artificial Neural Networks (ANN) as
well as Random Forest (RF) algorithms are efficient alter-
natives to ODEs and can reduce the complexity of intra-
cellular network models by focusing on input and output
cytokines. ANN and RF were optimized and evaluated
using the CD4+ T cell differentiation model [20]; the
models were also assessed by three published independent
studies [60-62]. Because ODE-based modeling approaches
require detailed knowledge about kinetic parameters,
modeling using supervised learning methods can provide a
realistic alternative when models are calibrated with
experimental data. In the multiscale model development,
it will often be necessary to modify the single layer sub-
models before coupling them together into a multiscale
model. The reduction in model complexity can be
balanced with higher computational power for model
simulations and more realistic number of agents for simu-
lation studies.
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Empirical study

A proof-of-concept of multiscale model of gut inflamma-
tion was developed using the ENISI MSM system. This
model can be used to run ix silico simulations and com-
putational hypothesis generation for further experimental
validation; the model can also be used to test many
hypothetical scenarios that are not possible to analyze
with single scale models. Thus, the proposed approach
facilitates connecting specific molecular events occurring
inside the cell with major changes at the tissue level,
such as changes of tissue architecture and immuno-
pathologies occurring at the cellular and tissue levels.
The multiscale model developed clearly demonstrates the
capabilities of ENISI MSM as a multiscale modeling plat-
form and the performance tuning benefits of the three
proposed scale coupling techniques.

ABM, ODE, and PDE sub-models

In the ABM model, we have bacteria, dendritic cells,
and T cells that are implemented as three Java classes.
The bacteria have three possible states/subtypes: dead,
infectious, and tolerogenic. The dendritic cells have four
possible states: dead, immature, effector, and tolero-
genic. The T cells have five possible states: Th17, Thl,
Treg, naive and dead. Additional details regarding cell
types and subtypes can be found in [9].

The ODE model, implemented in COPASI, is a sim-
plified version from the comprehensive CD4+ T cell dif-
ferential model [20,49,63]. The network model,
developed in CellDesigner, is shown in Figure 4. To
summarize, naive T cells will differentiate into Thl cells
and secrete INFy into the micro-environment environ-
ment if cytokine IL-12 is positive. However, if TGF-f is
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Figure 4 The network of simplified CD4+ T cell differential
model utilized for the development of the ODE model.
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positive and IL6 is negative, then the naive T cells will
differentiate into Treg cell and secretes IL-10 into the
micro-environment. Furthermore, if both TGF-f and IL-
6 are both positive, the naive T cells will differentiate
into Th17 cell and secret IL-17 into the environment.
The COPASI ODE solver has a main object CCopasiDa-
taModel that can load a COPASI model file for the initi-
alization of the model. Following the initialization, the
report and tasks are organized for further processing by
the ODE solver. In addition, the ODE solver class also
provide a hashMap for storing the concentrations of
cytokines and chemokines. Those concentrations pro-
vide the initial values for entities in the model.

Six cytokines, three as inputs and three as outputs are
modeled and implemented in this study. The three
input cytokines are IL-12, TGFB, and IL-6. The three
output cytokines are INFy, IL-17 and IL-10. The six
ValueLayer objects are three evaporation constants,
which are set to 0.98, and three diffusion constants that
are set to 0.6.

Model settings

The area in the model is defined as a square region with
100 * 100 two-dimensional grid cells. At the start of the
simulation, there are 1,000 bacteria, 50% infectious and
50% tolerogenic. Furthermore, there are 2,000 naive
T cells and 2,000 immature dendritic cells. The bacteria,
T cells, and dendritic cells are evenly distributed in the
square area at random. In one simulation cycle, these
agents can move in a randomized fashion to any direc-
tion with an evenly distributed speed that can range
between 0 and 1 grid cell side length.

When the immature dendritic cells (iDCs) meet with
the infectious bacteria, (i.e. iDCs are in the same grid as
infectious bacteria), the iDCs will differentiate into effec-
tor subtype. The effector dendritic cells (eDCs) will
release IL-6 and IL-12 into the tissue micro-environment
by setting the concentrations of the two cytokine value
layer to 70, a relative value, at that grid cell. Alternatively,
if the iDCs are co-located with tolegenic bacteria, they
will differentiate into tolegenic dendritic cells (tDCs) and
release TGF-P into the tissue micro-environment.

Since the 500 tolerogenic bacteria, 500 infectious bac-
teria, and 2,000 iDCs are randomly distributed in the
area, some grid cells will have tDCs and some grid cells
will have eDCs. In addition, as the cytokines are diffusing
and evaporating, some grid cells will have only TGF-$
positive, some will have both TGFP and IL-6 positive.
Therefore, naive T cells will differentiate into Treg,
Th17, or Thl cells depending on their location and the
cytokines present in those location.

Each naive T cell will sense the concentrations of
the cytokines in its grid cells and send those values to the
ODE COPASI solver. The ODE solver will load the
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COPASI model file, set the input concentrations, and then
perform the time course simulations. Ultimately the con-
centrations of the three output cytokines, i.e., [FNy, IL-17
and IL-10, will be extracted and returned back to the
T cell objects. Finally, the naive T cell will differentiate
into Thl, Th17, or Treg accordingly and the three cyto-
kines will be released into the tissue micro-environment.

During each simulation cycle, the quantitative infor-
mation will be visualized as described. The grid cell
background color is visualized based upon the cytokine
concentrations; the three cytokines are visualized as
three primary colors. The color codes are designed to
represent in red regions with higher Thl, in purple
regions with higher Th17, and in blue regions with
higher Treg cells. The intracellular ODE simulation
results are displayed as texts in the terminal window for
visual inspection during the simulation; the latter could
be saved for further analysis.

Simulation results

The stochastic component of the model will lead to a
situation where some areas in the grid will have higher
concentrations of Thl, some Th17, and some will have
a higher level of Treg cells (see Figure 3). Furthermore,
Figure 5 represents a chart of T cell counts in sub-
types; this representation highlights the temporal evo-
lution of the immune response and the concentration
of the different cell types over the course of the simu-
lation. For instance, the concentration of Thl, Th17,
and Treg cells are increasing in the initial stage of the
simulation; however, after about 20 cycles, Th17 is the
dominant cell type. This trend is due to the fact that
the cytokines were isolated during the initial stage, and
changes were made during the diffusion process and
the inter-association and transformation of the agents
in the later stages.
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Figure 5 T Cell counts in subtypes. Simulation performed using
the RM scenario. The X-axis is the simulation time in cycles and the
Y-axis is the numbers of different T Cell subtypes. This figure shows
the dynamics of T cell subtypes during the simulations.
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Scale coupling and performance tuning

A single COPASI ODE solver object was used to gener-
ate the simulations with the CD4+ T Cell differentiation.
During each cycle, simulations for all the three scales,
cellular, intracellular, and intercellular, are performed.
The performance, including initial CPU time for model
initialization, CPU time for simulation, and memory
footprint size, for this scenario (RM) is represented as
the first row in in Table 3. The second scenario (BM) is
implemented by replacing the reduced model with the
comprehensive model in scenario one. The CPU time
for 100 simulation cycles is significantly increased (> 75
times slower), showing that the comprehensive ODE
model can be extremely inefficient even if it could pro-
vide more accurate results. Therefore, for running prac-
tical simulations it will be necessary to reduce the
network before embedding it into multiscale models. In
the third scenario (MS), each T cell object has its own
ODE COPASI solver object. This scenario has longer
initialization time; in fact initializing 2,000 ODE solver
objects and loading 2,000 COPASI model files is extre-
mely time consuming. In addition, the memory footprint
is also significantly affected, an increase from about
400MB to 1.48GB. The MS scenario is based on the
Reduced model (RM). The fourth scenario, dynamic fre-
quency (DF), reduces the simulation frequency of the
intracellular layer (ODE model) from 1 to 0.1. Hence,
the ABM runs 10 simulation cycles and calls the ODE
solver only once. The CPU time for simulation 100
cycles is therefore reduced significantly.

All the simulations are performed with a Mac Pro
machine with Intel Core i7 2.7GHz 4-core CPU and
8GB memory. The performance metrics are measured
using the activity monitor. The performance compari-
sons between the four scenarios are listed in Table 3.
Further well-designed studies with better performance
profiling are required to quantitatively investigate the
scope and limitations of the three proposed scale cou-
pling techniques. In this comparison, predictive power
of the models should also be considered.

Future work

ENISI is the first multiscale modeling platform for model-
ing mucosal immune responses. ENISI MSM has modular
and coherent user interface and superior visualization.
The system accelerates the development of comprehensive
multiscale models by computational immunologists; in
addition, ENISI accelerates the in silico experimentation
process for hypothesis generation. It adopts an object-
oriented design and can easily integrate entities at different
scales. Furthermore, ENISI fuses heterogeneous modeling
technologies that are suitable for different spatiotemporal
scales. ENISI MSM fully integrates COPASI ODE models
with agent-based models (ABM) to connect four levels of
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Table 3. The performance metrics of four simulation scenarios

CPU Time for 100 simulation Cycles (sec)

Memory Footprint Size (MB)

Scenario Initial CPU Time (sec)

Reduced model (RM) 14.35 296.81
Big model (BM) 14.17 23119.69
Multiple ODE solvers (MS) 5301.96 309.75
Dynamic frequency (DF) 14.87 40.95

3991
4049
1480.0
3738

Initial CPU time is the CPU time used for the initialization of the simulation. In the RM, a reduced intracellular ODE model is utilized, where one single shared
ODE solver object is used; the simulation frequencies are 1 for all scales. BM utilizes the comprehensive ODE model. MS is based on multiple ODE solver objects,
one for each T cell object. DF uses reduced intracellular scale approach with simulation frequency from 1 to 0.1.

spatiotemporal scales. Three performance matching tech-
niques were also analyzed.

An array of computational tools has been developed to
address the urgent need of the scientific community
[3,4,26,33,34,36,37]; however, the challenges of modeling
and in particular multiscale modeling framework are
manifold. ENISI addresses some of these challenges by
adopting an integrated Object Oriented design principle.
In addition, we are actively working towards further
addressing these challenges by implementing the system
using High Performance Computing technology. HPC-
driven ENISI MSM will facilitate development of mas-
sively interacting models of the mucosal immune system
and realistic high-resolution simulations with signifi-
cantly larger number of agents (beyond 10'°). The paral-
lelized methods and higher computing power will be
instrumental in the development of a scalable system.
Additionally, as we have previously demonstrated [57-59]
Artificial Neural Networks (ANN) as well as Random
Forest (RF) algorithms are efficient alternatives to ODEs
and can reduce the complexity of intracellular network
models. we are working towards integrating machine-
learning algorithms into ENISI platform for well-
documented signaling pathways to increase scalability and
performance. We are also improving the visualization com-
ponent of the system by making the platform interoperable
with Vislt [64]. In summary ENISI empowers experimen-
talists with a strong tool for computational modeling, thus
facilitating fast and cost-effective knowledge discovery.
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