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Metric learning is a class of efficient algorithms for EEG signal classification problem.

Usually, metric learning method deals with EEG signals in the single view space. To

exploit the diversity and complementariness of different feature representations, a new

auto-weightedmulti-view discriminativemetric learningmethod with Fisher discriminative

and global structure constraints for epilepsy EEG signal classification called AMDML is

proposed to promote the performance of EEG signal classification. On the one hand,

AMDML exploits the multiple features of different views in the scheme of the multi-view

feature representation. On the other hand, considering both the Fisher discriminative

constraint and global structure constraint, AMDML learns the discriminative metric

space, in which the intraclass EEG signals are compact and the interclass EEG signals

are separable as much as possible. For better adjusting the weights of constraints and

views, instead of manually adjusting, a closed form solution is proposed, which obtain

the best values when achieving the optimal model. Experimental results on Bonn EEG

dataset show AMDML achieves the satisfactory results.

Keywords: metric learning, multi-view learning, auto-weight, EEG signal classification, epilepsy

INTRODUCTION

Epilepsy is characterized by an unexpected seizure periodicity, where brain temporary dysfunction
is caused by abnormal discharge of neurons (Kabir and Zhang, 2016; Gummadavelli et al., 2018;
Li et al., 2019). During the seizure, motor dysfunction, intestinal and bladder dysfunction, loss
of consciousness, and other cognitive dysfunction often occur. Since the occurrence of epilepsy
is often accompanied by changes in spatial organization and temporal dynamics of brain neural
neurons, many brain imagingmethods are used to reveal abnormal changes in brain neural neurons
caused by epilepsy. EEG signal is an important signal to record the activity of neurons in the brain.
It uses electrophysiological indicators to record the changes in the electrical wave of the cerebral
cortex generated during brain activity. It is the overall reflection of the activity of brain neurons
in the cerebral cortex. Many clinical studies have shown that due to abnormal discharge of brain
neurons, epilepsy-specific waveforms, such as spikes and sharp waves, appear during or shortly
before the onset of seizures, so identifying EEG signals is an effective detection of epilepsy method.
Clinically, the detection of seizures based on EEG signals mainly relies on the personal experience
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of doctors. However, modern EEG recorders can generate up to
1,000 data points per second, and the standard recording process
can last for several days. This procedure will make manual
screening require a lot of physical and mental exhaustion, and
after a long period of observation, the doctor’s judgment is easily
affected by fatigue.

With the gradual development of smart healthcare, more and
more machine learning algorithms are applied to the detection
of epilepsy of EEG signals (Jiang et al., 2017a; Juan et al.,
2017; Usman and Fong, 2017; Richhariya and Tanveer, 2018;
Cury et al., 2019). In the view of machine learning, the EEG
signal recognition contains two stages: feature extraction and
classification method. The commonly used feature extraction
methods for EEG signals are time-domain feature extractions
and frequency-domain feature extractions (Srinivasan et al.,
2005; Tzallas et al., 2009; Iscan et al., 2011). Since the original
EEG signal is the time series signal, the time-domain feature
extractions are generally based on the original EEG signal; then,
the relevant statistics of the time series are calculated, and the
epilepsy EEG features are extracted, using the kernel principal
component analysis (KPCA) (Smola, 1997). The frequency-
domain features are to transform the original EEG signal in
the time domain to the frequency domain and then extract
the relevant frequency-domain features as EEG features (Griffin
and Lim, 1984). Although these feature extraction methods
provide good performance in some practical applications, there
is no feature extraction method that can be applied to all
application scenarios. EEG signals are generated by numerous
brain neuron activities. Due to the non-linear and non-static
nature of EEG signals, how to extract effective features is
still an important challenge. For those reasons, the multiple
feature based multi-view learning concept has become a hot
topic in EEG signal classification (Yuan et al., 2019; Wen
et al., 2020). Different from using the single feature type,
the multi-view learning method can comprehensively use a
set of data features obtained from multiple ways or multiple
levels. Each view of the data features may contain specific
information not available in other views. Specifically, these
independent and diverse features can be extracted from time-
domain, frequency-domain, and multilevel features of signals.
Appropriately designed multi-view learning can significantly
promote the performance of EEG signal classification. For
example, Spyrou et al. (2018) proposed a multiple features-
based classifier to use spatial, temporal, or frequency EEG data.
This classifier performs dimensionality reduction and rejects
components through evaluating the classification performance.
Twomulti-view Takagi–Sugeno–Kang fuzzy systems for epileptic
EEG signals classification are proposed in Zhou et al. (2019)
and Jiang et al. (2017b), respectively. The former fuzzy system
is developed in a deep view-reduction framework, and the
latter fuzzy system is developed in a multi-view collaborative
learning mechanism.

Besides the multi-view learning, classification algorithm is
very important for EEG signal classification. One of the recent
trends is the metric learning method. Metric learning method
learns a more suitable distance measurement criterion in the
feature space from the training data. Metric learning can be

used for specific tasks, such as classification and clustering, so
as to more accurately represent the similarity between samples.
Different from traditional Euclidean distance, such as nearest-
neighbors classifiers and K-means, metric learning aims to
find the appropriate similarity measures between data pairs to
maintain the required distance structure (Cai et al., 2015; Wang
et al., 2015; Lu et al., 2016). The appropriately distance metrics
can provide a good measure of the similarity and dissimilarity
between different samples. For example, Liu et al. (2014)
developed a similaritymetric-learning in the process of EEGP300
wave recognition. Compared with traditional Euclidean metric,
the proposed global Mahalanobis distance metric shows the
better discriminative representation. Phan et al. (2013) proposed
a metric learning method using the global distance metric from
labeled examples. This method successfully applied on single-
channel EEG data for sleep staging and does not need artifact
removal or boostrapping preprocessing steps. Alwasiti et al.
(2020) proposed a deep metric learning model and tested it
for motor imagery EEG signals classification. The experimental
results show that the proposed deep metric learning model can
converge with very small number of training EEG signals.

Inspired by the distance metric and multi-view learning, we
present a new auto-weighted multi-view discriminative metric
learning method with Fisher discriminative and global structure
constraints for EEG signal classification called AMDML. To
better exploit the correlation and complementary data features
of multiple views, both the Fisher discriminative constraint
and global structure constraint are adopted in the construction
process of the distance metric matrix. In such common metric
space, the intraclass EEG signals are compact, and interclass EEG
signals are separable as much as possible. Simultaneously, an
auto-weighted learning strategy is developed to automatically
adjust constraint and view weights during the model learning
process. The contributions of our work are as follows: (1)
Both Fisher discriminative and global structure information of
multiple view data features are considered in the multi-view
metric learning model with the high discriminative performance;
(2) in the optimization process, the constraint and view weights
can be adjusted auto-weighted by the closed form solution,
instead of adjusted manually. Thus, the constraints balance
and multiple view collaboration can be optimized; and (3) the
experimental results on Bonn EEG dataset justify the applicability
of AMDML for EEG signal classification.

RELATED WORK

Metric Learning
Here, we introduce the baseline method in the study. Xing et al.
(2003) proposed a distance metric considering side-information
(DMSI) method. Using the given similar and dissimilar pairs
of samples, DMSI learns a good distance metric to identify the
“similar” relationship between all pairs of samples so that similar
pairs are close and dissimilar pairs are separated. Let S and D be
two sets of pair as

S = {(xi, xj)|xi and xj are similar}, (1)

D = {(xi, xj)|xi and xj are dissimilar}. (2)
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The optimization problem of DMSI is represented as

min
M

∑

(xi ,xj)∈S

∥

∥xi − xj
∥

∥

2

M

s.t.
∑

(xi ,xj)∈D

∥

∥xi − xj
∥

∥

M
≥ 1,

M ≥ 0.

(3)

A key point in DMSI is that all samples that are not clearly
identified as similar are dissimilar. In addition, metric learning
tries to find an appropriate measurement to preserve the distance
structure. The distance metric considers a positive semidefinite
matrixM, and

∥

∥xi − xj
∥

∥

M
is induced as a Mahalanobis distance

∥

∥xi − xj
∥

∥

M
=

√

(xi − xj)
T
M(xi − xj) (4)

When the learned M is a diagonal matrix, Equation (3) can be
solved by the Newton–Raphson method; whenM is a full matrix,
Equation (3) can be solved by an iterative optimization algorithm
with gradient ascent and iterative projection strategies.

Bonn EEG Dataset
The EEG signal data in the experiment is from the website of the
Bonn University, Germany (Tzallas et al., 2009). The Bonn EEG
dataset contains five groups of EEG signal sets called as groups
A–E. The example samples in groups A–E are shown in Figure 1.
Each EEG data group consists of 100 single-channel EEG signal
segments of 23.6 s and 173.6Hz rate. The basic information of
five groups is listed in Table 1. EEG signal data in groups A and
B is sampled from five healthy volunteers, and EEG signal data

in groups C–E is sampled from five patients at different states of
epileptic seizure.

PROPOSED METHOD

Objective Function
After collecting a set of EEG signals, we obtain N samples

presented as {xi, li}
N
i=1, where li is the class label of sample xi.

According to the label information, we construct two sets of
sample pairs such that Xs = {(xi, xj)|li = lj} is the intraclass

sample set and Xd = {(xi, xj)|li 6= lj} is the interclass sample

set. Then, generating multiple view of data samples, we obtain

{xmi }
M
m=1 from M different view features of each sample, where

xmi is the mth view of sample xi. For discriminative projecting,

we build the k-nearest neighbor intraclass graph {Gm}Mm=1 and

interclass graph {Pm}Mm=1 in each view, which use the supervised
information to describe the local geometrical structure of the

TABLE 1 | The basic information of EEG data groups of A–E.

Group Basic information

A EEG signals of healthy volunteers in awaken state with eyes

open

B EEG signals of healthy volunteers in awaken state with eyes

closed

C EEG signals of patients in hippocampal formation of the

opposite hemisphere of brain

D EEG signals of patients in epileptogenic zone during periodic

lulls

E EEG signals of patients during seizure activity

FIGURE 1 | Original epileptic EEG signals in five groups.
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data. The intraclass graph Gm can be computed as

Gm
i,j =

{1�|Xs| if xmi ∈ Nk1 (x
m
j ) or x

m
j ∈ Nk1 (x

m
i ) and (xi, xj) ∈ Xs,

0 otherwise
(5)

where Nk1 (x
m
j ) denotes the intraclass sample set containing the

k1 nearest neighbors of xmi .
The graph Pm can be computed as

Pmi,j =

{1�|Xd | if xmi ∈ Nk2 (x
m
j ) or x

m
j ∈ Nk2 (x

m
i ) and (xi, xj) ∈ Xd ,

0 otherwise
(6)

where Nk2 (x
m
j ) denotes the interclass sample set containing the

k2 nearest neighbors of xmi .
Then, the intraclass correlation constraint FmG from the mth

view can be written as

FmG = 1
2

N
∑

i,j
Gm
i,j

∥

∥

∥
HTxmi −HTxmj

∥

∥

∥

2

2

= 1
2

N
∑

i,j
Pmi,j(H

T(xmi − xmj )(x
m
i − xmj )

T
H)

= Tr(HTXmLmGX
mTH)

(7)

where LmG is the Laplacian matrix on Gm, and LmG is computed as
LmG = Dm

G − Gm. Dm
G is a diagonal matrix, and the element in Dm

G
is Dm

G,i,i =
∑

j G
m
i,j . Tr () is for the trace operator.

The interclass correlation constraint FmP from the mth view
can be written as

FmP = 1
2

N
∑

i,j
Pmi,j

∥

∥

∥
HTxmi −HTxmj

∥

∥

∥

2

2

= 1
2

N
∑

i,j
Pmi,j(H

T(xmi − xmj )(x
m
i − xmj )

T
H)

= Tr(HTXmLmP X
mTH)

(8)

where LmP is the Laplacian matrix on Pm, and LmP is computed as
LmP = Dm

P − Pm. Dm
P is a diagonal matrix, and the element in Dm

P
is Dm

p,i,i =
∑

j P
m
i,j .

For global structure knowledge of multiple-view data
preservation, the following global structure consistency Qm

is employed

Qm = 1
2

N
∑

i,j
Wi,j

∥

∥

∥
HTxmi −HTxmj

∥

∥

∥

2

2

= 1
2

N
∑

i,j
Wi,j(H

T(xmi − xmj )(x
m
i − xmj )

T
H)

= Tr(HTXmLWXmTH)

(9)

where W is an adjacent matrix whose element is Wi,j = 1/N2.

LW is the Laplacian matrix on W, and LW is computed as LW =

DW − W, DW is a diagonal matrix, and the element in DW
is Dm

W,i,i = 1/N.
The basic principle of Qm is to use the global structural

information through cross-view data covariance. The term
XmLWXmT is equivalent to the centering matrix of the mth

view data, i.e., XmLWXmT = E[(x − 1
N

∑

i
xi)(x−

1
N

∑

i
xi)

T
].

It represents the average squared distance between all samples
of the mth view in the metric space. Therefore, Qm can be
considered as a principal component analysis (PCA) (Smola,
1997)—like the regularization term in themth view.

The goal of AMDML is to find an optimal discriminative
distance metric in a multi-view learning model, and in such
metric space, it can exploit the complementary information of
different view data features and further enforce the proposed
method to be more discriminative. To achieve this goal, we
learn a metric that maximizes the Fisher analysis constraint
(interclass/intraclass correlation ratio), simultaneously
maximizing the preservation of the global structure consistency
constraint. The objective function of AMDML is designed as

min
H,2

M
∑

m=1
2r

m
FmG−FmP
Qm ,

s.t.HTH = I,
M
∑

m=1
2m = 1, 2m ≥ 0,

(10)

The projection matrix H helps to build a discriminative metric
space amongmultiple views, such that the feature correlation and
complementary structural information amongmultiple views can
be exploited. The vector Θ = [21,22, ...,2M] is the view weight
vector, and its element 2m indicates the role importance of the
mth view. When 2m tends to 0, it means the data features of the
mth view are useless for discrimination task. The 2m=1 means
that only one type of data features from one view is used in
AMDML, and in this case, Equation (10) is a single view learning
problem. To better utilize the complementary information of
multiple features rather than the best feature, we use index
parameter r (r > 1) on 2m.

Equation (10) can be represented as

min
H,2

M
∑

m=1
2r

m
Tr(HTXm(LmG−LmP )X

mTH)

Tr(HTXmLWXmTH)
,

s.t.HTH = I,
M
∑

m=1
2m = 1, 2m ≥ 0.

(11)

However, the optimization of Equation (11) involves a complex
operation of inverse. Using a constraint weight parameter
γ , we reconstruct Equation (11) into the following weighted
optimization model

min
H,2,γ

M
∑

m=1
2t
m(γ 2HTXm(LmG − LmP )XmTH − γTr(HTXmLWXmTH)),

s.t.HTH = I,
M
∑

m=1
2m = 1, 2m ≥ 0.

(12)

where γ represents a constraint weight tradeoff Fisher
discriminative constraint and global structure constraint. It
is noted that the constraint weight γ and view weight 2 are not a
manually adjusted parameters. In this study, we adaptively adjust
γ and 2 in two closed form solutions, respectively.
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Optimization
Because the optimization problem of Equation (12) is a non-
linear constrained non-convex problem, in this study, we solve
the optimization problem in Equation (12) using the iteratively
optimization strategy to obtain the AMDML parameters of H,
Θ , and γ . First, we tune parameter H while fixing parameters
Θ and γ . The optimization problem in Equation (12) can be
reformulated as follows:

min
H

M
∑

m=1
2t

m(γ
2Tr(HTXm(LmG − LmP )X

mTH)− γTr(HTXmLWXmTH)),

s.t.HTH = I,

(13)

Thus, H can be easily calculated by solving the eigenvalue
decomposition problem as follows:

(

M
∑

m=1

2t
m(γ 2Xm(LmG − LmP )XmT − γ (XmLWXmT )))H = αH (14)

In terms of the Lagrange optimization, the minimization of
Equation (14) can be converted with multiplier as follows:

J(Θ , γ ,α) =

M
∑

m=1

2t
m

(

γ 2Tr(HTXm(LmG − LmP )X
mTH)

−γTr(HTXmLWXmTH)
)

− α(

M
∑

m=1

2t
m − 1).

(15)

Next, we tune parameter Θ while fixing parametersH and γ .

Let ∂J(Θ ,γ ,α)
∂Θm

= 0 and ∂J(Θ ,γ ,α)
∂α

= 0, we have







t2t−1
m γ 2(Tr(HTXm(LmG − LmP )X

mTH)− γTr(HTXmLWXmTH))− α = 0,
M
∑

m=1
2m − 1 = 0.

(16)

We can obtain 2m as follows:

2m =
(1/(γ 2Tr(HTXm(LmG − LmP )X

mTH)− γTr(HTXmLWXmTH)))
1/(t−1)

M
∑

m=1
(1/(γ 2Tr(HTXm(LmG − LmP )X

mTH)− γTr(HTXmLWXmTH)))
1/(t−1)

. (17)

Finally, we tune parameter γ while fixing parameters H and
Θ . In terms of the Lagrange optimization, the solution of γ is
∂J(Θ ,γ ,α)

∂γ
= 0; we can obtain γ as follows:

γ =

2t
m

M
∑

m=1
Tr(HTXmLWXmTH)

22t
m

M
∑

m=1
Tr(HTXm(LmG − LmP )X

mTH)

(18)

Based on the above analysis, the proposed AMDML method is
presented in Algorithm 1.

Algorithm 1 | The proposed AMDML method.

Input: M views of m pairs of EEG signals;

Output: the best metric H = Hl .

Set Θ = [1/M , 1/M , ..., 1/M ] and compute H using Equation (13).

Repeat

t = t+1

Fix H(t), and compute Θ (t) using Equation (17);

Fix 2(t), and compute H(t) using Equation (18)

Compute L(t) using Equation (15);

Until
∥

∥J(t)-J(t-1)
∥

∥ ≤ δ or t ≥ tmax

TABLE 2 | Ten EEG classification tasks.

Tasks EEG signal groups

Task 1 A and C

Task 2 A and D

Task 3 A and E

Task 4 B and C

Task 5 B and D

Task 6 B and E

Task 7 {A, B} and {C, D}

Task 8 {A, B} and E

Task 9 {A, B} and {D, E}

Task 10 {A, B} and {C, E}

EXPERIMENT

Experimental Settings
In the experiment, we extract three types of data feature
including KPCA, wavelet packet decomposition (WPD) (Wu
et al., 2008), and short-time Fourier transform (STFT) (Griffin
and Lim, 1984). We design 10 classification tasks, and the basic
information of tasks is as shown in Table 2. In order to show
the performance of our method, we compare AMDML with four
single-view classification methods [including DMSI (Xing et al.,
2003), large margin nearest neighbor (LMNN) (Weinberger and
Saul, 2009), neighborhood preserving embedding (NPE) (Wen

et al., 2010), and RDML-CCPVL (Ni et al., 2018)] and three
multi-view methods [including MvCVM (Huang et al., 2015),
VMRML-LS (Quang et al., 2013), and DMML (Zhang et al.,
2019)]. In the LMNN method, the number of target neighbors
k was set to k = 3, and the weighting parameter µ is selected
within the grid {0, 0.2,..., 1}. In the RDML-CCPVL method, the
regularization parameter is selected within the grid [0.01, 0.1, 0.5,
1, 5, 10, 20] and the number of clusters is selected within the grid
[2, 3,..., 20]. In theMvCVMmethod, the regularization parameter
is selected within the grid [0.01, 0.1, 0.5, 1, 5, 10, 20]. In VMRML-
LS, the regularization parameters γA = 10−5, γB = 10−6, and
γW = 10−6, and the element in weight vector is selected in [1,
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TABLE 3 | The classification performances of AMDML on 10 classification tasks.

WPD STFT KPCA Full views

Task 1 LMNN 95.00 96.14 96.19 96.18

NPE-KNN 95.05 96.29 96.34 96.38

NPE-SVM 95.08 96.17 96.29 96.49

RDML-CCPVL 96.07 96.64 96.58 96.97

DMSI 96.11 96.53 96.52 96.88

AMDML-KNN 97.75 97.62 97.88 99.19

AMDML-SVM 97.86 97.55 97.86 99.18

Task 2 LMNN 93.92 94.73 95.00 95.88

NPE-KNN 94.01 95.03 95.21 95.71

NPE-SVM 94.06 95.00 94.54 96.07

RDML-CCPVL 94.60 95.06 95.88 96.17

DMSI 94.45 95.08 94.64 96.22

AMDML-KNN 97.29 97.86 98.38 99.77

AMDML-SVM 97.22 98.03 98.30 99.78

Task 3 LMNN 94.75 94.92 95.11 95.40

NPE-KNN 94.01 94.01 95.42 95.72

NPE-SVM 94.98 94.08 95.41 95.64

RDML-CCPVL 94.56 95.59 95.88 95.70

DMSI 94.72 95.34 95.26 96.24

AMDML-KNN 96.72 98.82 98.35 99.35

AMDML-SVM 96.83 98.90 98.48 99.41

Task 4 LMNN 92.76 92.90 93.07 94.45

NPE-KNN 94.00 93.02 94.48 94.70

NPE-SVM 93.00 93.04 93.42 94.65

RDML-CCPVL 93.52 93.56 93.90 94.92

DMSI 94.21 94.01 94.45 95.03

AMDML-KNN 96.71 97.88 97.44 99.42

AMDML-SVM 96.88 97.86 97.42 99.35

Task 5 LMNN 91.81 93.89 94.10 95.46

NPE-KNN 92.99 93.08 93.43 95.71

NPE-SVM 92.98 93.13 94.46 95.66

RDML-CCPVL 94.54 94.66 94.91 95.99

DMSI 94.50 95.04 95.11 95.37

AMDML-KNN 98.76 98.87 98.40 99.39

AMDML-SVM 99.83 98.89 98.39 99.41

Task 6 LMNN 96.72 96.92 96.16 97.36

NPE-KNN 96.05 96.93 97.09 97.22

NPE-SVM 96.91 97.01 97.22 97.42

RDML-CCPVL 96.57 97.62 96.90 97.37

DMSI 96.49 97.49 96.81 97.02

AMDML-KNN 97.73 98.89 97.39 99.45

AMDML-SVM 97.89 98.94 97.35 99.38

Task 7 LMNN 93.76 93.87 93.05 95.37

NPE-KNN 93.93 94.06 93.41 95.73

NPE-SVM 96.03 95.97 95.43 95.68

RDML-CCPVL 95.54 95.59 94.94 95.94

DMSI 95.29 95.36 94.73 95.08

(Continued)
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TABLE 3 | Continued

WPD STFT KPCA Full views

AMDML-KNN 97.74 97.89 97.31 99.39

AMDML-SVM 97.92 97.81 97.36 99.44

Task 8 LMNN 94.79 95.86 95.12 96.40

NPE-KNN 94.95 96.00 95.44 96.41

NPE-SVM 94.94 95.99 95.45 96.09

RDML-CCPVL 95.57 96.09 95.89 96.14

DMSI 95.63 95.94 96.15 96.18

AMDML-KNN 97.72 98.82 98.41 99.45

AMDML-SVM 97.90 98.92 98.45 99.46

Task 9 LMNN 92.78 94.94 94.06 95.37

NPE-KNN 92.93 95.05 94.44 95.68

NPE-SVM 93.01 95.04 95.43 95.62

RDML-CCPVL 94.52 95.66 95.94 95.98

DMSI 94.67 92.51 96.04 96.40

AMDML-KNN 96.69 97.83 97.37 99.42

AMDML-SVM 96.99 97.90 97.43 99.38

Task 10 LMNN 93.87 93.86 93.13 94.31

NPE-KNN 94.02 92.97 93.44 94.49

NPE-SVM 93.04 94.09 94.48 94.66

RDML-CCPVL 95.57 95.56 94.98 96.01

DMSI 95.17 94.22 94.10 94.56

AMDML-KNN 97.78 97.83 96.41 98.40

AMDML-SVM 97.89 97.97 96.38 98.37

The bold values represents mean the best classification performance in the tasks.

5, 10]. In the DMML method, the number of interclass marginal
samples is selected within the grid [1, 2,..., 10]. In the proposed
AMDML method, the parameters k1 and k2 in Equations (5)

and (6) are selected in [2, 3,..., 10]. The widely used K-nearest
neighbor (KNN) and support vector machine (SVM) are used as
the classifiers for the proposed AMDML, and we name them as
AMDML-KNN and AMDML-SVM, respectively.We empirically
set the nearest neighborhood number of KNN classifier as [1, 3,...,
9] and train SVM model using LIBSVM (Chang and Lin, 2011).
All methods are implemented inMATLAB using a computer with
2.6 GHz dual-core CPU and 8 GB RAM.

Performance Comparisons With
Single-View Methods
We first compare the performance of AMDML with several
single-view classification methods. NPE using two classifiers
KNN and SVM are named as NPE-KNN and NPE-SVM,
respectively. Table 3 shows the classification performance of
these methods on Bonn EEG dataset using three signal views
(WPD, STFT, and KPCA) and full views. When AMDML uses
single-view feature data, the parameter 2m is fixed with 2m=1
in its objective function. For a fair comparison, three signal
views features are combined for four single-view classification
methods in full views. We can see that, on the one hand, both

AMDML-KNN and AMDML-SVM using full-view features are
better than them using only single-view features. For example,
the performances of AMDML-KNN with full-view feature are
1.44, 1.57, and 1.31% higher than its performance in WPD,
STFT, and KPCA on Task 1, respectively. On the other hand, the
classification accuracy of methods AMDML-KNN and AMDML-
SVM are better than single-view methods on 10 tasks. These
results show that (1) the simple combination of features is limited
to improve classification performance for single-view methods,
and (2) due to the inherent diversity and complex of EEG signals,
it is suitable to exploit multiple view features to better make
use of the correlation and complementary EEG data. Thus, the
multi-view learning framework can promote the EEG signal
classification performance.

Performance Comparisons With
Multi-View Methods
In this subsection, we compare AMDML with several multi-
view classification methods. The multi-view metric learning
method DMML uses KNN and SVM as testing classifiers,
and two classifiers are named as DMML-KNN and DMML-
SVM, respectively. Figure 2 shows the classification accuracies
of all methods on all EEG classification tasks. In addition, we
use balanced loss lbal (Wang et al., 2014; Gu et al., 2020) to
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FIGURE 2 | Classification accuracies of six methods on 10 EEG classification tasks.

FIGURE 3 | lbal performance of six methods on all EEG classification tasks.

evaluate the classification accuracy on positive class ACCpositive

and negative class ACCnegative:

lbal = 1− (ACCpositive + ACCnegative)/2

Figure 3 shows lbal performance of all methods on EEG
classification tasks. Experiment results show that compared
with all multi-view classification methods, both AMDML-
KNN and AMDML-SVM have a positive effect on improving
classification performance. AMDML-KNN and AMDML-SVM
achieve the satisfactory classification performance in almost all
of the EEG signal categories. In the framework of multi-view
learning and to discriminate each emotion category best from
all other categories, AMDML learns discriminative metric space
to utilize the global and local information by adopting Fisher
discriminative constraint and global structure constraint. Thus,
the intraclass compactness and interclass EEG signals separability
can perform better in the learned metric space. In addition, the

auto-weighted learning strategy used in the proposed method
adjusts constraint and view weights. The optimal weights can be
obtained adaptively, and multiple feature representation in each
view can be collaborative leaned. Similar to the results shown
in Table 3, the classification accuracies of AMDML-KNN and
AMDML-SVM are comparative. To summarize, the results in
Figures 2, 3 confirm that the AMDMLmethod is effective in EEG
signal classification.

Model Analysis
To further validate the effects of performance of AMDML,
we discuss the effect of the k1 in Equation (5) and k2 in
Equation (6) in AMDML. The parameters k1 and k2 build the
k-nearest neighbor inter- and intraclass graphs, respectively. For
convenience, we set k1 = k2 in the range {2,..., 10}. Figure 4 shows
the classification accuracy of AMDML-KNNwith different values
of k1 for Tasks 1, 4, and 8; meanwhile, the k-nearest neighbor
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FIGURE 4 | Classification accuracy of AMDML-KNN with different values of k1
for (A) Task 1, (B) Task 4, and (C) Task 8.

in KNN are fixed with 7. We can see that the performance
of AMDML-KNN is not high sensitive to the variation
k1 and k2.

Next, for AMDML-KNN, we discuss the effect of the K
in KNN classifier. In KNN classifier, the class label of the
testing sample is determined by the distance from the K nearest

FIGURE 5 | Classification accuracy of AMDML-KNN with different values of K

for (A) Task 1, (B) Task 4, and (C) Task 8.

training sample. Figure 5 shows the classification performance
of different values of K for all tasks; meanwhile, fixing k1
= k2 = 5. We can see that the classification accuracy of
AMDML-KNN is relatively stable with respect to the variation
K. Therefore, we can set K empirically to 7 for Tasks 1,
4, and 8.
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CONCLUSION

In this paper, we propose a new multi-views metric learning to
achieve the robust distance metric for EEG signal classification.
In the scheme of the multi-view data representation, the
diversity, and complementariness of features of all views can be
exploited; meanwhile, both the Fisher discriminative constraint
and global structure constraint are considered, and the learned
classifier will obtain high generalization ability. Through learning
a discriminative metric space, AMDML shows the higher
classification performance. There are several directions of future
study. In this paper, we use the k-nearest neighbor intra- and
interclass graphs to exploit local discriminative information; we
will consider other discriminative terms in the multi-view metric
learning framework. Second, the gradient descent method used
in this study is a simple and common solution method. We may
develop a more effective method to speed up the solution of our
method. Third, we plan to apply the proposed method for more
EEG signal classification applications.
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