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ABSTRACT

Therapeutic angiogenesis refers to strategies of inducing angiogenesis to treat diseases 
involving ischemic conditions. Historically, most attempts and achievements have 
been related to coronary and peripheral artery diseases. In this review, we propose the 
clinical application of therapeutic angiogenesis for the treatment of pediatric ischemic 
retinopathy, including retinopathy of prematurity, familial exudative retinopathy, and NDP-
related retinopathy. These diseases are all characterized by the reduction of physiological 
angiogenesis and the following induction of pathological angiogenesis. Therapeutic 
angiogenesis, which supplements insufficient physiological angiogenesis, may be a 
therapeutic approach for ischemic conditions. Various molecules and modalities can be 
utilized to apply therapeutic angiogenesis for the treatment of ischemic retinopathy, as in 
coronary and peripheral artery diseases. Experiences with cardiovascular diseases provide a 
useful reference for the further clinical application of therapeutic angiogenesis in pediatric 
ischemic retinopathy. Recombinant proteins and gene therapy are powerful tools to deliver 
angiogenic factors to retinal tissues directly. Furthermore, endothelial progenitor or bone 
marrow-derived cells can be injected into the vitreous cavity of the eye for therapeutic 
angiogenesis. Intraocular injections are highly promising for the delivery of therapeutics for 
therapeutic angiogenesis. We expect that therapeutic angiogenesis will be a breakthrough in 
the treatment of pediatric ischemic retinopathy.

Keywords: Retinal diseases; Ischemia; Physiologic neovascularization; Angiogenesis 
modulating agents; Therapeutics

INTRODUCTION

Therapeutic angiogenesis was proposed as a therapeutic approach targeting clinical 
problems due to the local rarefaction of blood vessels, insufficient neovascularization, 
or both.1,2 After the first suggestion in 1993, ongoing active attempts have been made to 
apply therapeutic angiogenesis to the treatment of cardiovascular diseases.3-6 Therapeutic 
angiogenesis employs various angiogenic factors, including vascular endothelial growth 
factors (VEGFs), fibroblast growth factors (FGFs), and hepatocyte growth factor (HGF), 
to induce neovascularization in ischemic tissues. Although preclinical studies of protein, 
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gene, and cell therapies were promising, therapeutic angiogenesis is still not a mainstay 
treatment option for coronary and peripheral artery diseases after the modest success of 
clinical trials. In this review, we instead suggest that pediatric ischemic retinopathy might be 
a promising target of therapeutic angiogenesis. Based on the lessons from clinical studies on 
cardiovascular diseases and recent preclinical studies on ischemic retinopathy, the clinical 
application of therapeutic angiogenesis to treat patients with pediatric ischemic retinopathy 
should be investigated through a mechanism-based approach. The eye is an easily accessible 
organ for the local delivery of therapeutic materials in protein, gene, and cell therapies. This 
characteristic may help apply modalities of therapeutic angiogenesis in a more feasible way 
for the treatment of ischemic retinopathy.

PEDIATRIC ISCHEMIC RETINOPATHY

Pediatric ischemic retinopathy refers to a spectrum of retinal diseases characterized 
by hypovascularization-related ischemia of the retinal tissue (Fig. 1). In patients with 
retinopathy of prematurity (ROP), familial exudative vitreoretinopathy (FEVR), and NDP-
related retinopathy, there are areas without retinal vessels (known as avascular retina) in the 
peripheral retina due to the insufficient development of retinal vasculature. The presence of 
insufficient retinal vessels results in an ischemic retinal microenvironment.

ROP

ROP is a vision-threatening retinopathy involving abnormal retinal vascular development 
in premature infants, as its name implies (Fig. 1A).7 The incidence and severity are related 
to low birth weight and gestational age.8 Because the retinal vasculature is not complete in 
premature infants, the peripheral retina is without retinal vessels. Hypoxia in the peripheral 
retina activates hypoxia-mediated signaling pathways, increasing the secretion of angiogenic 
factors.7 This, in turn, induces a fibrovascular reaction in the retinal tissues. The stages of 
ROP reflect the degree of fibrovascular proliferation along the borders of the avascular and 
vascularized retina. The severity increases from the demarcation line (stage 1) to ridge with 
volume (stage 2), extraretinal fibrovascular proliferation (stage 3), and tractional retinal 
detachment (stage 4, partial; stage 5, total).7
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Fig. 1. Representative clinical photographs of patients with pediatric ischemic retinopathy. (A) A fundus photograph of a patient with retinopathy of prematurity. 
(B) A fluorescein angiography photograph of a patient with familial exudative vitreoretinopathy. (C) A fluorescein angiography photograph of a patient with NDP-
related retinopathy. The margins between vascularized and avascular retinas are indicated with white arrows.



Animal models that mimic the pathogenesis and consequences of ROP have been 
developed.2,9,10 These models are valuable tools to investigate the potential of therapeutic 
approaches for ROP. The most widely utilized model is an oxygen-induced retinopathy 
(OIR) model in mice.9, 10 In this model, neonatal pups are exposed to 75% oxygen for 5 days 
from postnatal day 7 (P7) to P12. This procedure leads to the regression of central vessels. 
Then, the mice in normal room air (20% oxygen) experience relative hypoxia (due to the 
rarefaction of the retinal vessels) in the central retina, which peaks at P14. As in patients 
with ROP, neovascular tufts develop along the area between the avascular and vascularized 
retina. Usually, pathological neovascularization peaks at P17. If therapeutic approaches are 
developed to recover from rarefaction of the retinal vasculature, it will be possible to prevent 
the following pathological neovascularization.

FEVR

FEVR is another vision-threatening retinopathy involving retinal hypovascularization in infants 
and children (Fig. 1B).11 The principal feature of the disease is an avascular peripheral retina, 
as in ROP.12 This leads to pathological retinal neovascularization in the peripheral retina, with 
or without exudates and further retinal detachment.13 It is noteworthy that patients with FEVR 
possess variants in genes encoding molecules of the norrin/frizzled class receptor-4 pathway, 
one of the Wnt/β-catenin signaling pathways, including NDP, FZD4, LRP5, and TSPAN12.14 
Norrin (encoded by the NDP gene) is a Wnt ligand, frizzled class receptor-4 (coded by the FZD4 
gene) is a receptor, and low-density lipoprotein receptor-related protein 5 (from the LRP5 gene) 
and transpanin 12 (from the TSPAN12 gene) are coreceptors with frizzled class receptor-4.

As in patients with FEVR, Ndp or Fzd4 knockout mice demonstrated insufficient retinal 
vasculature compared to wild-type mice.15,16 Angiogenesis takes place through multiple steps: 
1) the activation of endothelial cells by angiogenic factors, 2) the invasion and protrusion of 
new sprouts, 3) the proliferation of endothelial cells to support sprout elongation, 4) lumen 
formation to build vessel loops, and 5) the initiation of blood flow, the establishment of a 
basement membrane, and the recruitment of mural cells to stabilized new vessels.17 Primary 
retinal endothelial cells from Fzd4 knockout mice demonstrated a lower potential to migrate 
and form tubules in in vitro angiogenesis assays.15 In addition, Ndp knockout mice showed less 
proliferation of endothelial cells in the retinal vasculature in vivo. Because insufficient frizzled 
signaling leads to retinal hypovascularization in mutant mice and possibly in patients with FEVR, 
therapeutic strategies to restore aberrant frizzled signaling might be of therapeutic potential.

1. NDP-related retinopathies
Mutations in the NDP gene have been reported in patients with a spectrum of retinal 
diseases, including FEVR and ROP.18-23 In this context, NDP-related retinopathies have been 
proposed to include X-linked FEVR, ROP, persistent hyperplastic primary vitreous, Norrie 
disease, and Coats disease.24 Although the manifestations of NDP-related retinopathies vary, 
incomplete retinal vascular vasculature is a common feature of these conditions (Fig. 1C). 
Other phenotypes include fibrous stalk in persistent hyperplastic primary vitreous, exudates 
in Coats disease, and fibrovascular membranes in FEVR, ROP, and Norrie disease, which are 
provoked and exacerbated by ischemia due to incomplete retinal vasculature. NDP-related 
retinopathies are mainly induced by mutations in the NDP gene and resultant insufficiency 
of the norrin protein. In this context, NDP gene therapy and norrin protein supplementation 
may be useful therapeutic approaches.
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2.  Common pathological mechanisms and current treatment options of 
pediatric ischemic retinopathy

It is noteworthy that insufficient physiological angiogenesis is a crucial feature of ischemic 
retinopathy. This leads to hypoxia-mediated pathological neovascularization, which results 
in bleeding, exudate formation, and fibrovascular proliferation.25,26 Nevertheless, current 
treatment options for ischemic retinopathy only target pathological neovascularization 
or its complications, such as vitreous hemorrhage and retinal detachment. In patients 
with pediatric ischemic retinopathy, laser photocoagulation destroys the retinal tissues 
in the peripheral vascular retina, suppressing the metabolic demand and the secretion 
of angiogenic and inflammatory factors.7,12 In addition, to minimize VEGF-mediated 
pathological neovascularization, anti-VEGF antibody (bevacizumab; Genentech, South 
San Francisco, CA, USA) is administered to patients with ischemic retinopathies such as 
ROP, FEVR, and diabetic retinopathy.27-29 Vitreous hemorrhage and retinal detachment are 
managed by surgery, such as vitrectomy and encircling. Unfortunately, there are no clinically 
proven approaches directly targeting retinal hypovascularization for the treatment of 
ischemic retinopathy.

THERAPEUTIC ANGIOGENESIS

Therapeutic angiogenesis is a direct therapeutic approach to supplement physiological 
angiogenesis in ischemic areas for the treatment of diseases involving ischemic conditions. 
Historically, attempts have been made to apply therapeutic angiogenesis for the treatment of 
cardiovascular diseases characterized by hypovascularization. These experiences might help 
to develop therapeutic approaches based on therapeutic angiogenesis for the treatment of 
pediatric ischemic retinopathy. Coronary artery disease occurs when atheromatous processes 
prevent blood flow through the coronary artery.30 In contrast, peripheral artery disease 
is caused by atherosclerotic occlusion of the arteries to the legs.31 The ability of various 
angiogenic factors to induce therapeutic angiogenesis has been tested in preclinical studies 
and patients with coronary and peripheral artery diseases. The list of these factors includes 
angiogenin, angiopoietin, FGF, granulocyte colony-stimulating factor, HGF, insulin-like 
growth factor-1, nitric oxide, platelet-derived growth factor, transforming growth factor, 
tumor necrosis factor alpha, and VEGF.1,32-34 Among them, VEGF, FGF, and HGF have been 
the most widely studied in clinical trials.

1. Coronary artery disease
Selected clinical studies of therapeutic angiogenesis on coronary artery disease are 
summarized in Table 1, which includes the first trials of different therapeutic materials, 
phases, and administration methods. These studies exemplify the primary concerns regarding 
the clinical application of therapeutic angiogenesis for the treatment of human diseases.

Protein therapy
The first clinical trial using a recombinant protein for therapeutic angiogenesis in patients 
with coronary artery disease tested the therapeutic potential of FGF-1 injected into the 
myocardium.35 During an elective bypass operation for multivessel coronary artery disease, 
FGF-1 was applied to the myocardium. In this study, at 12 weeks after the injection, intra-
arterial digital subtraction angiography demonstrated that a dense capillary network 
appeared around the injection site.35 Laham et al.36 showed that there was a trend toward a 
reduction in the target ischemic area on magnetic resonance assessment in patients who 
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received an epicardial injection of FGF-2 while undergoing coronary bypass surgery. The first 
clinical trial using intracoronary recombinant VEGF reported that there was an improvement 
in myocardial perfusion on single-photon emission computed tomography (SPECT) in 
patients with severe coronary artery disease who were not optimal candidates for angioplasty 
or bypass surgery.37 The results of these phase 1 trials were promising. However, the following 
phase 2 trials failed to provide clear-cut evidence of therapeutic effectiveness for more 
extensive clinical utilization of therapeutic angiogenesis to treat coronary artery disease.3,38-40 
A single intracoronary infusion of FGF-2 did not improve exercise tolerance or myocardial 
perfusion in patients with coronary artery disease who were considered suboptimal 
candidates for standard surgical or catheter-based revascularization in the FIRST trial.38 
In addition, an intracoronary infusion of VEGF did not offer any improvement in exercise 
treadmill test time by day 60 in patients with stable angina who were judged unsuitable for 
revascularization based on coronary angiography.39

Gene therapy
In the treatment of coronary artery disease, naked plasmid DNA encoding the VEGF165 gene 
was injected directly into the ischemic myocardium, improving myocardial perfusion on 
SPECT imaging.41 Additionally, intramyocardial delivery of an adenoviral vector encoding 
the VEGF121 gene improved symptoms, treadmill exercise assessment, and angiographic 
assessment in patients with reversible left ventricular ischemia by dobutamine stress 
echocardiography.42 Similarly, intramyocardially administered naked plasmid DNA encoding 
the VEGF-2 gene also reduced ischemia on electromechanical mapping and improved 
myocardial perfusion on SPECT scanning.43 A phase 1/2 trial showed that the myocardial 
transfer of plasmid DNA encoding the VEGF-2 gene through catheter delivery significantly 
reduced the anginal class in patients with Canadian Cardiovascular Society (CCS) class III or 
IV angina refractory to maximum medical therapy, multivessel coronary artery disease not 
suitable for bypass surgery or angioplasty, and reversible ischemia on stress SPECT imaging.44 
However, another phase 1/2 study (the AGENT trial) on the intracoronary administration 
of an adenoviral vector encoding the FGF-4 gene only demonstrated insignificant trends of 
improvement in exercise time in patients with CCS class 2 or 3 angina.45
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Table 1. Selected clinical studies on therapeutic angiogenesis for coronary artery diseases
Therapeutic approach Phase of clinical 

trials
Administration 

route
Reference

Protein therapy
FGF-1 1 Intramyocardial Schumacher et 

al.35

FGF-2 1 Epicardial Laham et al.36

VEGF165 1 Intracoronary Hendel et al.37

FGF-2 (FIRST trial) 2 Intracoronary Simons et al.38

VEGF165 (VIVA trial) 2 Intracoronary Henry et al.39

Gene therapy
Plasmid encoding VEGF165 gene 1 Intramyocardial Losordo et al.41

Adenoviral vector encoding VEGF121 gene 1 Intramyocardial Rosengart et al.42

Plasmid encoding VEGF-2 gene 1 Intramyocardial Vale et al.43

Plasmid encoding VEGF-2 gene 1/2 Intramyocardial Losordo et al.44

Adenoviral vector encoding FGF-4 gene (AGENT trial) 1/2 Intracoronary Grines et al.45

Cell therapy
BM or circulating blood-derived progenitor cells 
(TOPCARE-AMI trial)

1 Intracoronary Assmus et al.48

BM-derived mononuclear cells 2 Intracoronary Strauer et al.49

BM-derived mononuclear cells 1 Transendocardial Perin et al.50

BM-derived mononuclear cells 1 Intramyocardial Tse et al.51

FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; BM, bone marrow.



Progenitor cells
Progenitor cells can home to local injured and ischemic tissues and participate in 
damage repairing and wound healing by secreting growth factors and stimulating 
neovascularization.46,47 In this context, bone marrow-derived or circulating blood-derived 
cells were administered to patients with coronary artery disease in several clinical trials. In 
the TOPCARE-AMI trial, an intracoronary infusion of bone marrow or circulating blood-
derived progenitor cells was associated with functional recovery at a 4-month follow-up 
in patients with acute myocardial infarction.48 Strauer et al.49 attributed the therapeutic 
effects of intracoronary transplantation of bone marrow-derived mononuclear cells to 
myocardial regeneration and neovascularization in patients with acute myocardial infarction 
after mechanical angioplasty and subsequent stent implantation. Transendocardial and 
intramyocardial implantation of bone marrow-derived mononuclear cells also demonstrated 
beneficial effects on myocardial blood flow and ventricular function.50,51

2. Peripheral artery disease
Selected clinical studies of therapeutic angiogenesis for peripheral artery disease are 
summarized in Table 2, which includes the first trials of various therapeutic materials, 
phases, and administration methods.

Protein therapy
In patients with peripheral artery disease and intermittent claudication, FGF-2 was infused 
into the femoral artery of the ischemic leg in a phase 1 trial by Lazarous et al.52 Intraarterial 
FGF-2 was well-tolerated and increased the blood flow of the calf.52 In a phase 2 clinical trial 
of 190 patients with intermittent claudication, intraarterial FGF-2 resulted in a significant 
increase in peak walking time at 90 days.53

Gene therapy
The potential of gene therapy in the treatment of peripheral artery disease has been more 
extensively investigated in several clinical trials. The first clinical trial using a plasmid 
encoding the VEGF165 gene was done in a female patient with 40% stenosis of the proximal 
popliteal artery on arteriography.54 Arterial gene transfer with a hydrogel-coated balloon-
angioplasty catheter resulted in an increase in collateral vessels at the knee, mid-tibial, and 
ankle levels at 4 weeks after treatment.54 Intramuscular administration of naked plasmid 
DNA encoding the VEGF165 gene transiently increased serum levels of VEGF, induced 
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Table 2. Selected clinical studies of therapeutic angiogenesis for peripheral artery diseases
Therapeutic approach Phase of clinical 

trials
Administration route Reference

Protein therapy
FGF-2 1 Intraarterial Lazarous et al.52

FGF-2 (TRAFFIC trial) 2 Intraarterial Lederman et al.53

Gene therapy
Plasmid encoding VEGF165 gene 1 Intraarterial Isner et al.54

Plasmid encoding VEGF165 gene 1 Intramuscular Baumgartner et al.55

Plasmid encoding HGF gene 1/2 Intramuscular Powell et al.56

Adenoviral vector or plasmid encoding 
VEGF165 gene

2 Intraarterial Mäkinen et al.57

Adenoviral vector encoding VEGF121 gene 
(RAVE trial)

2 Intramuscular Rajagopalan et al.58

Cell therapy
BM-derived mononuclear cells 1 Intramuscular Tateishi-Yuyama et al.59

FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; HGF, hepatocyte growth factor; BM, bone 
marrow.



newly visible collateral blood vessels on contrast angiography, and improved distal flow on 
magnetic resonance angiography in patients with nonhealing ischemic ulcers and/or rest 
pain due to peripheral artery disease.55 In a phase 1/2 trial using a plasmid encoding the 
HGF gene, intramuscular injection induced a dose-dependent increase in transcutaneous 
oxygen tension in patients with critical limb ischemia.56 In a randomized, placebo-controlled, 
double-blinded phase 2 study, intraarterial gene transfer via an adenoviral vector or a plasmid 
encoding the VEGF165 gene increased vascularity distal to the gene transfer site on digital 
subtraction angiography in patients with claudication or critical lower-limb ischemia.57 
Unfortunately, intramuscular delivery of an adenoviral vector encoding the VEGF121 gene 
did not increase the peak walking time, ankle-brachial index, or quality-of-time measures 
in another phase 2 randomized, double-blind clinical trial (the RAVE trial) in patients with 
disabling intermittent claudication.58

Cell therapy
As preclinical studies have demonstrated that bone marrow-derived mononuclear cells 
increased collateral vessel formation in ischemic limbs, intramuscular injection of these cells 
into the gastrocnemius of patients with unilateral ischemia of the leg improved the ankle-
brachial index, transcutaneous oxygen pressure, rest pain, and pain-free walking time.59

3.  Issues in the application of therapeutic angiogenesis for cardiovascular 
diseases

Several concerns have blocked the widespread clinical application of therapeutic 
angiogenesis for cardiovascular diseases. The first concern is whether new capillaries 
(formed through angiogenesis) without the simultaneous formation of larger arteries 
(through arteriogenesis) for supplying the capillaries are of less importance and patency.60,61 
Second, there was no clear consensus on the concentration, the timing, and the area of 
locally administered angiogenic factors.3,33,60 Prolonged tissue exposure to growth factors 
might be required for the development of robust and sustained neovascularization to secure 
the survival of the newly formed vasculature.62,63 Third, another major concern is excessive 
vessel growth in the target tissue in the form of hemangioma or a glomeruloid body.64 
Fourth, concerns have been raised regarding the development of abnormal vessels in other 
organs after systemic administration of angiogenic factors.60,65 In addition, a combination of 
2 or more angiogenic factors might be required for functionally mature neovascularization 
and consistent clinical benefits.66-68 In this context, using different factors acting through 
complementary mechanisms has been proposed as a solution to the clinical failure of 
single agents in cardiovascular diseases.69 For therapeutic angiogenesis to be applied to 
the treatment of human diseases, including ischemic retinopathy, these issues should be 
appropriately addressed.

POTENTIAL OPTIONS OF THERAPEUTIC ANGIOGENESIS 
AGAINST ISCHEMIC RETINOPATHY
The eye is easily accessible for the local delivery of therapeutic materials using various 
administration routes, including intravitreal and suprachoroidal injections, which are 
currently utilized for the treatment of retinal diseases (Fig. 2). Antibodies (bevacizumab), 
antibody fragments (ranibizumab; Genentech), and an antibody-mimicking fusion protein 
(aflibercept; Regeneron, Tarrytown, NY, USA) are widely administered via intravitreal 
injections to treat age-related macular degeneration and diabetic retinopathy. In addition, 
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retinal pigment epithelial cells from induced pluripotent stem cells and adeno-associated 
viral vectors containing therapeutic genes are injected into the subretinal space of patients 
with age-related macular degeneration and retinal dystrophies, respectively.70,71 These 
administration routes can also be used for therapeutic approaches inducing therapeutic 
angiogenesis for ischemic retinopathy. Potential options and examples of therapeutic 
angiogenesis against ischemic retinopathy are summarized in Table 3.

For protein therapy, recombinant proteins can be injected into the vitreous cavity. However, 
VEGF and FGF are unlikely to be suitable for the treatment of ischemic retinopathy via 
intravitreal injections, because VEGF and FGF levels are usually elevated in the vitreous 
in patients with ischemic retinopathy.72-75 Instead, a still-unidentified ‘X’ protein might 
be associated with an increase in therapeutic angiogenesis, as opposed to pathological 
angiogenesis.

One of the candidates for this ‘X’ protein is norrin, which is encoded by the NDP gene. As 
mentioned, Ndp-deficient mice demonstrate a distinct failure in the development of retinal 
vasculature.15,76 It is remarkable that the transgenic expression of norrin by a lens-specific 
promoter restores the formation of a normal retinal vasculature in Ndp-deficient mice.76 
This implies that intravitreal injection of norrin or ectopic expression of the NDP gene 
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Subconjunctival

Intravitreal

Subretinal

Suprachoroidal

Intrascleral

Intracameral

Topical

Intrastromal

Fig. 2. Various administration routes for delivery of therapeutic materials to the eye. The subretinal and 
intravitreal routes are currently utilized for the treatment of retinal diseases.



might restore physiological angiogenesis in ischemic retinopathy. Transgenic expression of 
norrin in the lens or retinal pigment epithelium successfully suppressed the pathological 
phenotypes of OIR in mice, the most widely utilized animal model of ischemic retinopathy.77 
In that study, there was no increase in pathological neovascularization. Norrin also decreased 
the avascular area and inhibited the formation of neovascular tuft in a murine model of 
OIR.78 This effect might be linked with the induction of insulin-like growth factor-1.79 Direct 
injection of the norrin protein or gene delivery through adeno-associated viral vectors of the 
NDP gene might have potential for the treatment of ischemic retinopathy. In another study 
using COMP-Ang1, a soluble and stable variant of angiopoietin-1,80 intravitreal injection of 
COMP-Ang1 promoted the formation of a vascular network in the central avascular area in 
OIR mice.81

Studies on animal models of ischemia provide evidence that endothelial progenitor cells 
(EPCs) migrate to the ischemic tissue.46,47 Circulating progenitor cells expressing the surface 
marker CD34, which are capable of differentiating into endothelial cells, are recruited to 
ischemic sites and committed to forming capillaries by hypoxia-regulated factors, such 
as stromal-derived factor-1, insulin-like growth factor binding protein-3, and VEGF.82,83 
This tendency can also be utilized in the treatment of ischemic retinopathy. Intravitreally 
administered CD34+ EPCs incorporate into the damaged retinal vasculature in mice with 
OIR, after ischemia/reperfusion injury, or streptozotocin-induced diabetic retinopathy, as 
well as in BBZDR/WOR rats in a rat model of diabetic retinopathy.84 Several groups have 
also reported the therapeutic potential of EPCs, although the protocols and the levels 
of commitment vary.85-89 Medina et al. reported that outgrowth endothelial cells, also 
called endothelial colony-forming cells,90 with higher expression of CD105 or CD146 from 
peripheral blood mononuclear cells contributed to vascular repair and reduced the stimuli 
for pathological angiogenesis.85 Prasain et al.86 demonstrated that outgrowth endothelial 
cells from human induced pluripotent stem cells reduced the avascular area and preretinal 
neovascular tufts. In another study, cord blood-derived EPCs were effective in restoring 
pathological changes in mice with OIR.87 A combination of bone marrow-derived CD34+ cells 
and vascular wall-derived endothelial colony-forming cells88 or co-administration of a peptide 
based on the helix-B domain of erythropoietin91 was suggested to enhance the therapeutic 
effects of EPCs in OIR mice.
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Table 3. Potential options and examples of therapeutic angiogenesis against ischemic retinopathy
Potential therapeutic options and examples Administration route Reference
Protein therapy

Angiopoietin-1 Intravitreal Lee et al.81

Norrin Intravitreal Tokunaga et al.78

Gene therapy
NDP Transgenic expression Ohlmann et al.76,77

Cell therapy
BM-derived CD34+ cells and vascular wall-derived ECFCs Intravitreal Li Calzi et al.88

Circulating CD34+ cells Intravitreal Caballero et al.84

Cord blood-derived EPCs Intravitreal Wang et al.87

ECFCs from iPSCs Intravitreal Prasain et al.86

ECFCs from PBMCs Intravitreal Medina et al.85;  
O'Leary et al.91

BM, bone marrow; ECFC, endothelial colony-forming cell; EPC, endothelial progenitor cell; iPSC, induced 
pluripotent stem cells; PBMC, peripheral blood mononuclear cell.



CONCLUSION

It is essential to restore the processes of physiological angiogenesis for the direct treatment 
of patients with ischemic retinopathy. Current treatment options, including laser 
photocoagulation and surgery, only target the resultant pathological angiogenesis and 
complications. In the clinical application of therapeutic angiogenesis for human diseases, 
the most important aspect is the tight regulation of angiogenic processes, from the initiation 
of angiogenesis to the remodeling of newly formed vessels. The angiogenic process must 
be controlled in order to obtain a functional vascular network.92 Avascular retinal tissues 
should be exposed to angiogenic factors or progenitor cells for a prolonged time to promote 
the sustained development of vessels. Preclinical studies using presumptive therapeutic 
approaches have shown potential, but more studies should be performed for clinical 
applications to be viable. However, we expect that the clinical application of therapeutic 
angiogenesis will be more promising in the context of ischemic retinopathy than for diseases 
in other organs because of the easy accessibility of the eye for local delivery methods. In 
addition, as in cardiovascular diseases, there is a tremendous unmet clinical need for 
the development of therapeutic approaches based on therapeutic angiogenesis in the 
treatment of ischemic retinopathy, as there is no effective pharmacological treatment.3,32 We 
suggest that robust preclinical and clinical studies should investigate the use of therapeutic 
angiogenesis for the treatment of ischemic retinopathy.
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