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Relapse of acute myeloid leukemia (AML) is still dramatically frequent, imposing the need for early markers to
quantify such risk. Recent evidence point to a prominent role for extracellular matrix (ECM) in AML, but its
prognostic value has not yet been investigated. Here we have investigated whether the expression of a 15-ECM
gene signature could be applied to clinical AML research evaluating a retrospective cohort of 61 AML patients
and 12 healthy donors. Results show that patients whose ECM signature expression is at least twice as that of

healthy donors have considerably longer relapse-free survival, with further stage-specific therapy outcomes.

1. Introduction

Although up to 80% of acute myeloid leukemia (AML) patients can
expect to enter a first complete remission period (CR1) after appro-
priate induction regimen, many of them will subsequently relapse and
face a dismal prognosis [1]. This adverse outcome is at the root of
AML's still dramatically high death rate (approximately 21380 new
AML cases will be diagnosed in USA in 2017, 50% of whom estimated
to die within the same year- the highest death rate among hematolo-
gical malignancies) [2], and the identification of new prognostic factors
predisposing to either a better or a worse outcome is imperative to
increase patients’ chance to survive AML. Gene expression signatures
have long since proven their potential usefulness in AML [3-6], but
their translation to the clinics has been largely unsuccessful mainly
because of the sophisticated methods they are based on (such as mi-
croarrays or specific chip platforms and RNA-seq) which are not readily
available in clinical labs [7].

The extracellular matrix (ECM), the non-cellular microenvironment
in which cells are embedded, plays crucial roles in both tissue home-
ostasis and disease [8]. In particular, in the hematopoietic niches, the
ECM has key roles in anchoring hematopoietic stem cells (HSC) to the
endosteal or the vascular structures, instructing the balance between
proliferative and anti-proliferative signals and ultimately allowing for
fine-tuning of the hematopoietic process throughout the life of the or-
ganism [8,9]. On the other hand, the ability of leukemia stem cells

(LSC) and AML cells to interact with the ECM is a detrimental feature
which generally fosters resistance to therapy and survival of minimal
leukemic clones, which relapse in time and re-install the disease [10]. It
is the case, in example, of CD44, the prototypical hyaluronic acid re-
ceptor with the further ability to bind to other ECM components (such
as osteopontin, fibronectin and selectins) [11]. It has been reported, in
fact, that CD44 expression on LSC and AML cells associates with re-
sistance to chemotherapy and increased aggressiveness of the disease
[11]. Much alike, integrin-mediated sensing of fibronectin determines
post-therapy survival of AML clones, thus ultimately facilitating its
relapse [12].

While many evidence can be found in the literature about the ability
of both normal and neoplastic hematopoietic clones to sense, and to
bind to, ECM, there is conversely a dramatic scarcity of knowledge on
the production of ECM by AML cells themselves, which also implies an
almost complete lack of knowledge on what roles direct ECM regulation
by AML cells play in the context of biological and clinical features of
AML.

Recently, we and others have reported on common and widespread
mechanisms controlling the expression of extracellular matrix genes in
AML and leukemic precursors [5,13], and shown the prognostic value
of what we called the “extracellular matrix signature of AML” [5]. Also,
we showed that machine-learning algorithms such as support vector
machine (SVM) can reduce the 80-genes signature to a more practicable
15-genes signature (which can be assessed by real-time quantitative
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PCR - RT-qPCR) without losing sensitivity [5], but did not test whether
this reduced signature could be applied to define patients’ prognosis.

Combining the need for a better understanding of ECM roles in AML
with the necessity of having tests that can be performed in clinical la-
boratories without the need for sophisticated methods and high-end
mathematics, we have here addressed the question whether the re-
stricted set of ECM genes which we previously identified [5] could
provide relevant clinical information on AML patients, and found that
the expression of this ECM signature at levels twice as that of healthy
donors marked patients with a better response to therapy, reduced
minimal residual disease (MRD) and overall longer relapse-free sur-
vival. We also observe that these findings, obtained using the simplest
techniques currently in use in hematological laboratories worldwide,
can be largely recapitulated in previously-published AML cohorts in-
vestigated via microarrays, further suggesting the importance of this
signature in the biology and clinical features of AML.

2. Material and methods
2.1. Analysis of the Oulu AML retrospective cohort

The Oulu AML retrospective cohort was assembled with approval of
the Institutional Review Board and informed written consent of the
patients, in accordance with the declaration of Helsinki. Details about
the 73 patients studied (61 AML + 12 healthy controls), as well as
about the composition of the reduced ECM signature and the primers
used for RT-qPCR are reported in the Appendix. The expression values
of the 15 genes constituting the ECM signature (normalized to GAPDH)
were collapsed to a single value per AML patient or healthy donor by
calculating their geometric mean, using the formula:

1
n n
(l | ai] = a;ax---ay.
i=1

in which the geometrical mean is defined as the n root of the product
of n elements a (n being the number of elements, in this case the genes -
a). The arithmetic mean of all geometric mean values from the healthy
donors was then calculated and the standard deviation value multiplied
by 2 and then added to the average to obtain the upper and lower cutoff
thresholds. All AML patients whose gene expression (geometric mean)
fell within the thresholds were allocated to the ECM"*™ group, while
those whose expression was higher than the upper 2-SD threshold were
allocated into the ECM™2" group. In the Oulu cohort there were also 3
AML patients whose expression was lower than the bottom 2-SD
threshold. Upon analysis, we found that these patients had no differ-
ence with the ECM"*™ group, while showed exactly the same differ-
ences that the ECM"™ exhibited in respect to the ECM™8" group.
Hence, these patients were allocated back into the ECM™™ group.

For the analysis of outcome (post therapy)-specific results, patients
were assessed at the following time-points: end of the induction pro-
tocol (Ind1), end of the first consolidation protocol (Consl), and last
available follow-up (Last).

2.2. Analysis of ECM signature expression in hematopoietic precursors

Raw microarray data (Affymetrix Human Genome U133 Plus 2.0
Array) were downloaded for the samples reported by Gentles et al.
(GSE24006) [3] and by Novershtern et al., (GSE24759) [14], imported
into Chipster (http://chipster.csc.fi/), normalized using robust multi-
array average (RMA) protocol and the expression of the ECM signature
studied. To facilitate cross-comparison with GSE24006, data from the
GSE24759 were subset (post-normalization) to remove more mature
cells, finally including only hematopoietic precursors (CD133* and
CD34* HSC), committed progenitors (CMP, GMP and MEP), single-
colony forming unit (CFU) progenitors (monocytic, granulocytic and
megakaryocytic), and naive B and T lymphocytes
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2.3. Statistics

Fisher's Exact test (2-sided), Mann-Whitney U test, Analysis of
Variance (ANOVA) followed by Tukey's HSD or Dunnett's T3 post-hoc
tests, Kaplan-Meier (Log-Rank method, KM) and Cox proportional ha-
zards (Cox-PH) survival analyses were performed in IBM SPSS Statistics
21, and all tests were bootstrapped 1000 times unless otherwise spe-
cified. Gene network enrichment analysis was performed in String-DB
(http://string-db.org/) and the results imported into Cytoscape for ea-
sier visualization. The Linear Support Vector Machine (LSVM) algo-
rithm used to analyze the contribution of the ECM gene expression to
prognosis was trained and tested as reported in the Appendix, using
IBM SPSS Modeler 18. In all analyses, a value of P < 0.05 was con-
sidered significant.

3. Results
3.1. Features of the ECM signature

The ECM signature which we tested in this work was previously
reported [5] and comprises the following genes: ADAM17, COL24A1,
EMILIN2, CHI3L1, COL17A1, COL18A1, CRISP3, CRISPLD2, DEFAI,
ELANE, LGALS3, MMP8, MMP9, PRTN3 and SLPI. This specific ECM
signature is significantly enriched for protein-protein interactions (PPI)
and includes ECM regulators (proteinases, 45% of the total gene-set),
collagens (27%), glycoproteins (18%) and ECM-affiliated proteins (9%)
(Fig. 1A) and overlaps with human AML signatures and mouse models
of immunological and hematological phenotypes, which is an indica-
tion of the specific involvement of its constituents in the development
(either normal or neoplastic) and functions of white blood cells
(Fig. 1B,C and Appendix Table 1). Further ontological analyses of the
signature are reported in Appendix Table 1.

Notably, signature expression is overall low in early hematopoietic
stem and progenitor cells (CD133" and CD34" hematopoietic stem
cells -HSC- and multipotent precursors -MPP), while it significantly
increased with differentiation along the erythro-myeloid branch
(myelo-erythroid progenitors -MEP-, common myeloid progenitors
-CMP-, and granulocyte-monocyte progenitors -GMP-) and reached its
maximum at the monocytic stage (CFU-mono) (Appendix Fig. 1A,B). In
a similar way, the expression of the ECM signature in neoplastic clones
was at its lowest in leukemia stem cells (LSC), while it increased con-
stantly with more-differentiated cell states (leukemia precursor cells
-LPC- and AML blasts) (Appendix Fig. 1B). Altogether, these results
indicate that acquisition of this signature is globally associated with a
more mature phenotype and, accordingly, we observed a significant
negative association between signature expression and mRNA levels for
CD34, a typical HSC and LSC marker [15], and a positive association
with CD14, the phenotyping marker of monocytes [16].

3.2. Clinical significance of the ECM signature

Since this signature includes genes both up-and down-regulated in
respect to healthy donors (Appendix Fig. 2) [5], and since relative ex-
pression values could not be collapsed into a single “global” value
without using complicate approaches (such as principal component
analysis) [3,6] unsuitable for direct clinical use, we undertook a

different approach, which separated AML patients into those who
expressed the signature more than 2-times standard deviation (2-SD)
that of healthy donors’ expression and those whose expression was less
than 2-SD that of healthy donors (see Supplemental Material for further
details). All AML patients within the 2-SD limit were considered as
“normal-like ECM” (ECM"°™), while patients outside these borders
were considered significant outliers. Interestingly, we could not detect
AML patients below the lower 2-SD threshold, but we could identify
patients above the highest 2-SD thresholds, which we termed ECM"",
We found that ECMMs? patients (in total 24 out of the 61 patients) had
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Fig. 1. Features of the ECM signature. The 15-ECM gene signature (A) is significantly enriched for interacting proteins, spanning different categories in the Matrisome Database and types
of interaction. This signature also (B) hosts a significant amount of genes previously reported to produce altered hematopoietic or immune system phenotypes when altered in mice, and
(C) overlaps significantly with signatures of neoplastic hematopoiesis (reported in Appendix Table 1). PPI: protein-protein interaction value. Data in (A) are from String DB (https://string-
db.org/), in (B) from MGI (http://www.informatics.jax.org/) and in (C) from MSigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp).

significantly longer relapse-free survival (RFS) in respect to ECM"™
patients, both in KM and Cox-PH models (Fig. 2A). Particularly, in Cox-
PH, ECMMigh patients’ hazard was 0.381 (95% confidence interval:
0.15-0.97, Table 1), indicating an approximate 69% reduction in the
risk of an unfavorable event.

Table 1. The ECM patients’ groups (ECM™&" or ECM"®™), in red,
were inputted together with gender, age, and molecular and cytoge-
netic abnormalities into a multivariable (Cox proportional hazards)
model of relapse-free survival. Df: degrees of freedom; HR: hazard rate;
95% CI: 95% confidence interval.

Notably, the ECM™8® and ECM™™ groups did not differ in overall
survival (OS, Appendix Table 2), nor did they show association with
gender, age, cytogenetic or molecular abnormalities (Appendix
Table 3), suggesting a specific involvement of the ECM signature in the
mechanisms underlying patients’ chemosensitivity. Further analyses
evidenced that the ECM"8" group had lesser relapse event overall (41%
vs. 80% in the ECM"*™ group) (Fig. 2B) and significantly different
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outcomes at different steps of the therapy. We observed, in fact, similar
response to therapy (% of patient attaining CR) after the first induction
cycle, followed by a steady increase at later stages in the ECM™#" group.
Conversely, in the ECM"*™ group, the good response at consolidation
was followed by a sharp decrease at the last follow-up (Fig. 2C), a clear
indication of the rise of relapses during the post-first consolidation
stages (coinciding with discharge from hospital and follow-up periods)
in the ECM™™ group. Notably, the increase in CR in the ECM"™®" group
over time was linear (P:0.0124), indicating a trend towards gradual
amelioration over time in this group.

These data are also in agreement with the % of patients having
minimal residual disease, MRD (< 5% detectable AML blasts in the
blood) [1], at the same cycles: while, in fact, both the groups showed
similar levels after the first induction and consolidation, the % of MRD
patients decreased significantly at last follow-up in the ECM™8® group
only, indicating a favorable resolution of the disease (Fig. 2D). Notably,
as already observed for microarray data, CD34 and CD14 mRNA levels
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Fig. 2. High ECM gene expression marks favorable
outcome in AML. Patients with high expression of
the ECM gene-set in respect to healthy donors
(ECM"M8" > 2 times the standard deviation of the
healthy donors) had significantly longer relapse-free
survival (RFS) than patients with ECM gene-set ex-
pression comparable to the healthy donors
(ECM"™) in both univariable and multivariable
analyses (A). ECM"" patients had also quantita-
tively less relapses overall (B), and exhibited higher
complete remission (CR, C) and lower minimal re-
sidual disease (MRD, D) frequencies at last follow-up.
(E) Incorporating the ECM gene-set information into
a linear support vector machine (LSVM) classifier
increases the accuracy of a model based on age,
gender, molecular and cytogenetic abnormalities. P
values are from (A) Log-rank and Cox proportional
hazards, (B,D) Fisher's Exact, (C) linear regression,
and (E) Mann-Whitney U test.
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in the Oulu cohort regressed negatively and positively, respectively,
with that of the ECM signature (Appendix Figure 3), further suggesting
that acquisition of the ECM signature is a sign of cell maturation.
Furthermore, data show that the overall accuracy of different
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automated algorithms (including linear support vector machine - LSVM,
k-nearest neighbors - KNN, and naive Bayes network -NBN) in pre-
dicting patients’ relapse was largely improved if the ECM signature
status was added to the age, gender, cytogenetic and molecular
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information about the patients (Fig. 2E), further supporting the po-
tential relevance of the ECM signature expression in driving clinical
decisions.

Finally, since the signature wraps all expression data into a single
value, we further investigated on the different expression of each gene
in the groups as described in the Supplemental Material, and found that
only 3 genes were differentially expressed (up-regulated) in ECM"€"
patients vs. both ECM"™ and healthy donors (COL24A1, ELANE and
MMP9) (Appendix Figure 4 and Appendix Table 4), suggestive of their
central role in establishing the ECM™#" phenotype.

4. Discussion

Our study shows, for the first time, the direct prognostic value of a
specific set of ECM genes’ expression in predicting relapse-free survival
in adult AML. Furthermore, our results come from a context (the 2-SD
cutoff in respect to healthy donors) and a methodology (the RT-qPCR)
that suits clinical hematology laboratories, thus directly translating our
previous biomarker discovery work [5] into practice.

Owing to the scarcity of data about ECM and AML, it is difficult to
discuss the individual roles of the ECM genes in the specific signature. It
seems, nevertheless, notable that two of the three up-regulated genes
characterizing the ECM™®" phenotype have been already implicated in
AML: MMP?9, in fact, has been already recently described as generally
down-regulated in AML [13], and its higher expression postulated to be
a positive factor in patients’ prognosis [17], thus completely matching
our observation. Intriguingly, we also observe significant up-regulation
of ELANE, the neutrophils’ elastase, in these patients. ELANE has not
only been reported to directly interact with MMP9 [18], but also to be
linked to a higher risk of neutropenic patients to develop AML when its
content is lower than normal [19]. Notably, COL24A1 has also been
recently found to have a prognostic value in cancer [20], though this is
the first time it is associated to AML.

It is, furthermore, important to notice the inverse correlation be-
tween the ECM signature and CD34, which is a bona fide marker of LSC
[15]. It has been already reported, in fact, that ECM gene expression is
generally down-regulated in AML [5,13], and so it is conceivable that
higher ECM associates with a more differentiated phenotype. Further
sustain to this hypothesis comes from the observed down-regulation of
COL18A1, which has been conversely associated with normal hemato-
poietic precursors in both mice and humans [21], and the fact that its
down-regulation might trigger proliferation of myeloid clones [22].

In conclusion, the correlation of the ECM signature with AML out-
come and survival suggests once more a crucial role for specific ECM
regulation in AML biology and encourages further studies into the
translation of these knowledge into the clinical practice.
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