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ABSTRACT A Neisseria gonorrhoeae multilocus sequence type (MLST) ST7363 strain
was isolated from a patient at the Faculty of Medicine Siriraj Hospital, Mahidol
University, Bangkok, Thailand, in 2010 and completely sequenced. This strain is sus-
ceptible to ceftriaxone and cefixime. A complete circular chromosome and circular
plasmids were assembled from combined Oxford Nanopore Technologies (ONT) and
Illumina sequencing.

Gonorrhea, caused by Neisseria gonorrhoeae, is among the most common sexu-
ally transmitted infections worldwide (1). Antimicrobial-resistant (AMR) N. gon-

orrhoeae is considered a high priority by the World Health Organization and an
urgent threat by the U.S. Centers for Disease Control and Prevention (CDC) (2–5).
Genomic analysis has been used to address the evolution and transmission of cef-
triaxone-resistant genes (6, 7). We report here the complete genome sequence of a
multilocus sequence type (MLST) ST7363 N. gonorrhoeae strain. This study was
approved by the institutional review boards (IRBs) of the Faculty of Medicine Siriraj
Hospital (certificate of approval number Si479/2015). The National Center for HIV/
AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), CDC, also reviewed and
approved this study protocol and determined it to be research that did not involve
identifiable human subjects, using unlinked or anonymous data or specimens, and
therefore, CDC IRB approval was not required.

Based on our published data (8, 9), we selected the MLST ST7363 isolate
from all frozen N. gonorrhoeae stock that was resistant to fluoroquinolone, penicil-
lin, and tetracycline by disk diffusion (10) and harbored the blaTEM gene for b-lac-
tam resistance. The frozen isolates were cultured on chocolate agar in 5% CO2

at 35°C and confirmed using Gram staining, oxidase and superoxol assays, and
the API-NH (bioMérieux) biochemical test kit. An Etest (bioMérieux) was used to
determine the MICs for ceftriaxone, cefixime, azithromycin, tetracycline, and
gentamicin.

Genomic DNA was extracted from the colonies scraped from a chocolate agar
plate using the Gentra Puregene yeast/bacteria kit (Qiagen). The extracted DNA
was used for the Oxford Nanopore Technologies (ONT) and Illumina sequencing.
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The ONT library preparation followed the rapid barcoding sequencing protocol
(SQK-RBK004; ONT), and sequencing was performed using an R9.4.1/FLO-MIN106
flow cell on a MinION device. We used Guppy v3.0.3 for base calling and demulti-
plexing of the reads. Quality control of the ONT reads followed the workflow from
Jenjaroenpun et al. (11). The ONT adapters were trimmed using Porechop v0.2.3
(https://github.com/rrwick/Porechop). Reads with a mean quality score of 8 and a
minimum read length of 1,000 bases were retained using NanoFilt v2.5.0 (12) for de
novo assembly.

The Illumina library was prepared using a TruSeq DNA PCR-free library to gener-
ate 100-bp paired-end reads using the Illumina HiSeq platform. Quality control of
the reads was performed using Fastp v0.19.5 (13). Hybrid assembly (ONT and
Illumina data) was performed using Unicycler v0.4.4 (14) for genome error correction,
circularization, and rotation. The genome sequence quality was determined using
QUAST v5.0.2 (15) and submitted to the NCBI Prokaryotic Genome Annotation
Pipeline v4.9 for genome annotation (16). Default parameters were used for all
software.

The genome size was 2,218,399 bp. The assembly statistics and GenBank acces-
sion numbers are provided in Table 1. The N50 value/total read length (bp) of the
ONT and Illumina reads were 4,248/182,670 and 100/13,878,684, respectively. A
complete circular chromosome and plasmids, constructed using Unicycler software
to check for overlapping sequences at the contig ends, demonstrated that the
ST7363 isolate contained 3 circular plasmids, namely, conjugative, blaTEM, and cryptic
plasmids. In silico analysis confirmed sequence types of blaTEM-135, MLST ST7363, and
N. gonorrhoeae multiantigen sequence typing (NG-MAST) ST5225 (por90/tbpB1106).
A novel sequence type, ST2209 (penA2.002, mtrR19, porB11, ponA100, gyrA1, parC18,
and 23s100), was uploaded to the NG-STAR database (17). The AMR determinants
were defined using PubMLST (http://www.pubmlst.org/neisseria) (18). Type II non-
mosaic penA possessed F504L, A511V, and A517G mutations, while gyrA had S91F
and D95G mutations and parC had a D86N mutation. In contrast to the reported
cephalosporin-resistant ST7363-penA10.001/37.001/64.001, our MLST ST7363-penA2.002
was susceptible (Fig. 1) (19–21).

Data availability. The genome sequence has been submitted to GenBank under
BioProject accession number PRJNA609415 and BioSample accession number SAMN13151449.
The Illumina and ONT raw reads have been deposited in the SRA database under accession
numbers SRR10362752 and SRR10388020.

TABLE 1 Assembly metrics and accession numbers of an MLST ST7363 Neisseria gonorrhoeae
strain isolated from clinical specimens, Siriraj Hospital, Bangkok, Thailand, 2010

GenBank
accession
no. Type of contig

Total
length
(bp)

Sequencing depth
(×) GC

content
(%)

No. of
ORFsaONT Illumina

CP045707.1 Circular
chromosome

2,166,131 143 559 52.6 2,298

CP045708.1 Conjugative
plasmid

42,907 658 1,912 47.6 51

CP045709.1 blaTEM plasmid 5,154 34,644 10,363 38.4 5
CP045710.1 Cryptic plasmid 4,207 32,101 11,384 51.6 10
aORFs, open reading frames.
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