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M A T E R I A L S  S C I E N C E

Leverage electron properties to predict phonon 
properties via transfer learning for semiconductors
Zeyu Liu1, Meng Jiang2, Tengfei Luo1,3*

Electron properties are usually easier to obtain than phonon properties. The ability to leverage electron proper-
ties to help predict phonon properties can thus greatly benefit materials by design for applications like thermo-
electrics and electronics. Here, we demonstrate the ability of using transfer learning (TL), where knowledge learned 
from training machine learning models on electronic bandgaps of 1245 semiconductors is transferred to improve 
the models, trained using only 124 data, for predicting various phonon properties (phonon bandgap, group 
velocity, and heat capacity). Compared to directly trained models, TL reduces the mean absolute errors of predic-
tion by 65, 14, and 54% respectively, for the three phonon properties. The TL models are further validated using 
several semiconductors outside of the 1245 database. Results also indicate that TL can leverage not-so-accurate proxy 
properties, as long as they encode composition-property relation, to improve models for target properties, a no-
table feature to materials informatics in general.

INTRODUCTION
For metals, it is well known that electrical and thermal transport 
properties are directly connected in a linear relationship governed 
by the Wiedemann-Franz law (1). This is simply because free elec-
trons are the common carriers for both electrical conduction and 
heat transfer in metals. However, there is no such universal relation 
for semiconductors since these two types of transport are respectively 
dominated by electrons (or holes) and phonons (2). From the first- 
principles theory, we know that the electron states of semiconductors 
are determined by the ground state charge density and that the phonon 
states depend on both the ground state charge density and its linear 
response to the atomic displacement (3). In other words, electron 
and phonon properties are inherently connected, but the relation-
ship is much more complicated than that seen in metals, and no 
analytical formula currently exists. The ability to leverage electron 
properties to predict phonon properties will be enormously impactful 
because obtaining electron properties, either through calculation or 
measurement, is much easier than for phonons. For example, calcu-
lating electron band structure only needs one self-consistent field 
calculation of the primitive cell in the density functional theory (DFT) 
framework, taking merely a few seconds for materials like silicon. 
However, while proven to be accurate in predicting phonon properties 
(4, 5), first-principles calculation of the phonon band structure (i.e., 
dispersion relation) needs several much more time-consuming density 
functional perturbation theory (DFPT) calculations on discrete points 
in the first Brillouin zone (4) or many slow self-consistent field calcula-
tions for large supercells (5), taking at least two orders of magnitude 
longer than electron band structure calculations. On the experimental 
side, electron band structures can be measured by angle-resolved photo-
emission spectroscopy (6), while the much more sophisticated inelastic 
neutron scattering is needed to obtain phonon dispersion relations (7).

Multiobjective optimization simultaneously considering electron 
and phonon properties are critically important for eventually achieving 

materials by design in a variety of applications, such as thermoelectrics 
and wide-bandgap (WBG) semiconductors. In thermoelectrics, in-
creasing electron properties (e.g., electrical conductivity and Seebeck 
coefficient) and decreasing phonon thermal conductivity at the same 
time are needed to improve the figure of merit, ZT (8, 9). For power 
electronics, developed WBG semiconductors are always preferred 
to have superior phonon transport to ease the thermal management 
challenge. However, because of the substantial disparity in difficulties 
for quantifying electron and phonon properties, electrical design has 
usually taken the priority, while phonon properties come secondary. 
One such example is -Ga2O3, which has an optimal electronic 
bandgap of 4.7 eV (10), ideal for the WBG applications, but it has 
the lowest phonon thermal conductivity among its peers (<25 W/mK) 
(11, 12). In contrast, GaN, the state-of-the-art WBG material, has a 
value of around 230 W/mK (13, 14).

Data-driven machine learning (ML) techniques have emerged as 
powerful tools for materials design when simple analytical principles 
are not established between material compositions and properties 
(15). ML has been used to predict fundamental properties of mate-
rials such as electronic bandgap (16–20), formation energy (21–23), 
and thermodynamic properties (24, 25). However, since electron 
properties are easier to obtain and have usually received more atten-
tion than phonon properties, the volume of data for the former is 
much greater than the latter in well-established databases like 
the Open Quantum Materials Database (26), Automatic Flow for 
Materials Discovery Library (27), and the Materials Project (MP) 
(28). Petretto et al. (29) recently added phonon dispersion calculated 
from first-principles DFPT (3) for around 1500 semiconductors to the 
MP database, which has already included more than 50,000 electron 
band structure data. In addition, if we constrain the materials design 
space, like the problem studied in the present work, then the amount 
of available phonon data will further decrease, imposing a central 
challenge to constructing high-fidelity ML models (30).

Transfer learning (TL) can be a useful ML technique to overcome 
the problem of small data (31), and it has been successfully applied 
in a few materials informatics studies (23, 32–34). It can leverage 
knowledge learned from training with a larger dataset of one or 
multiple proxy properties and transfer it to improve the ML model 
performance for a target property with a much smaller dataset. 
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Considering the fact that phonon modes are inherently linked to 
electron structure, transferring the knowledge from ML of electron 
structure data may help us better predict phonon properties using TL.

In this study, we demonstrate the possibility of leveraging electron 
properties to predict phonon properties in semiconductors using 
TL. We choose one of the most accessible electron properties, bandgap, 
as the proxy property, and transfer the knowledge learned to improve 
the prediction of an important phonon property, the frequency gap 
between the acoustic and optical phonon modes. For brevity, we 
call such a frequency gap the phonon bandgap. The existence of 
such a phonon bandgap can reduce the possibility of combining 
two low-frequency acoustic phonons into one higher-frequency op-
tical phonon in the three-phonon scattering process, the main scat-
tering mechanism for phonon scattering at room temperature, due 
to the conservation of energy (35). Since acoustic phonons usually 
dominate the thermal transport in semiconductors (36), this reduced 
scattering can lead to high phonon thermal conductivity, and this 
has been recently observed for materials like BAs (37–41) and hydro-
genated silicene (42).

For the semiconductors that are labeled with phonon band in-
formation in the MP database (1245 data), we first down-select those 
semiconductors that have a phonon bandgap, reducing the number 
of viable phonon data down to 124. We then build a classification 
model to determine whether a new semiconductor is going to have 
a phonon bandgap. A deep neural network (DNN) linking material 
composition to electronic bandgap is first trained against the whole 
1245 dataset, and then, TL is applied to transfer the electronic bandgap 
DNN to facilitate the construction of the DNN for phonon bandgap, 

which is trained on the small dataset of 124 points (see Fig. 1 for 
complete work flow). Our results show that, even with very limited 
number of viable phonon data, using the knowledge learned from 
electronic bandgap, the phonon bandgap can be predicted with very 
high accuracy. The mean absolute error (MAE) of the DNN is re-
duced substantially by TL from 23.847 to 8.458 cm−1 of the directly 
trained DNN. Last, this TL approach is extended to other phonon 
properties like phonon speed of sound and heat capacity. Improve-
ment in model prediction can also be achieved in these properties 
with TL reducing the MAE by 15 and 54%. While the DFT-calculated 
electronic bandgaps are known to be underestimated because of the 
limitations of DFT, such systematic error in the proxy label seems 
to have no impact on the prediction capability on phonon proper-
ties using our TL scheme. The demonstrated success of TL from 
electron property to phonon property may have notable impact to 
materials development for a wide range of applications.

RESULTS
Datasets
The data used in this work are from the MP database contributed by 
Petretto et al. (29), where phonon dispersion relations for ~1500 
semiconductors were calculated by diagonalizing the dynamical matrix 
in the whole first Brillouin zone based on the second-order force 
constants calculated from the first-principles DFPT method. The 
DFPT-calculated phonon dispersion is of relatively high accuracy 
(29), which can be directly used for in silico materials design. We 
have removed materials with imaginary phonon frequencies in this 

Fig. 1. Schematic of TL from electron property to phonon properties. A total of 1245 electronic bandgap data of semiconductors that have phonon information in the 
MP database are used as the proxy property in the source task, while the constrain on semiconductor to have a phonon bandgap [e.g., boron arsenide (BAs) dispersion in 
the inset] reduces the data for the target property down to 124. A DNN is pretrained on the electronic bandgap, and its architecture and parameters are transferred to the 
target task, where the DNN is further fine-tuned using the small phonon bandgap data.
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study because of their dynamical instability, leaving a total of 1245 
phonon data. Among these materials, we further extract those that 
have a phonon bandgap (i.e., target property), reducing the amount of 
viable data to 124, merely 10% of the proxy data. Electronic bandgap, 
which is the proxy property, calculated by the DFT is also collected 
from the MP database (28) for all the 1245 semiconductors. The 
semiconductor materials are represented with fixed length vectors 
(see Materials and Methods). The data distributions are included in 
section S1, which indicate that there are no linear correlations be-
tween the proxy and target properties and they also have their own 
unique distributions.

Classification model
Before predicting the phonon bandgap of a given compound, we 
first have to be able to tell whether it is going to have a phonon 
bandgap. We construct a classification model to achieve this capa-
bility. A random forest classifier (43) is trained to identify the 124 
semiconductors that have phonon bandgap from a total of 1245 com-
pounds using scikit-learn (44). The number of materials with phonon 
bandgap is much smaller than those without, imposing a fundamental 
obstacle for accurate classification. SMOTE (45), a systematic over-
sampling method, for the phonon bandgap materials (positive label) 
implemented in imblearn (46) is used to overcome the challenge in 
this highly imbalanced classification problem. More details of the 

model and definition of terminologies discussed below are included 
in Materials and Methods.

The overall classification accuracy is found to be 95.5% on the 
testing data, and the F1 score for the positive label is 0.800. The 
confusion matrix for the testing data is shown in Fig. 2A to visualize 
the model classification ability. Most of the testing data are correctly 
classified into their own group, as characterized by the diagonal 
components in the confusion matrix (true positive and true negative). 
The scenarios of materials with phonon bandgap misclassified as 
without phonon bandgap (false negative) and the materials without 
phonon bandgap misclassified as with phonon bandgap (false positive) 
are shown as the off-diagonal components in Fig. 2A. The receiver 
operating characteristic (ROC) curve for the testing data is presented 
in Fig. 2B, which shows the relation between the true-positive rate 
and the false-positive rate. The better the classification model is, the 
more the ROC curve will be concentrated on the upper left corner. 
The area under the ROC curve (AU-ROC) is 0.5 for a random 
guess, and AU-ROC is 1 for a perfect classification. Our ROC curve 
is close to the upper left corner, and the high AU-ROC score of 
0.943 indicates a relatively good classification performance. For an 
imbalanced classification like the one we have here, the precision- 
recall curve (PRC) shown in Fig. 2C is also of importance. This plots 
the relation between precision and recall. Similar to the ROC curve, 
the better the classification model is, the more the PRC will be 

Fig. 2. Classification model performance evaluated on the testing data. (A) The confusion matrix illustrating the number of true positive, false positive, false neg-
ative, and true negative. (B) The ROC curve. (C) The precision-recall curve (PRC). (D) The top four most important descriptors identified from the random forest model. 
HFsum, the sum of the heat of fusion of the compound elements; ENmax, the maximum value of electronegativity of the compound elements; Bandgapsum, the sum of the 
ground state bandgap of the compound elements; SVmin, the minimum value of the sound velocity of the compound elements.
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concentrated on the upper right corner. The area under the PRC 
(AU-PRC) is 0 for a random guess and 1 for a perfect classification 
model. Our AU-PRC is calculated to be 0.844, indicating that this 
model can separate materials with or without phonon bandgap rea-
sonably well even for this highly imbalanced classification problem.

One advantage of using decision tree–based models like random 
forest is their good model explainability (47). We use this model 
capability to visualize the descriptor importance in Fig. 2D. The 
four most important descriptors for this classification model of pho-
non bandgap are shown, and they are the sum of the heat of fusion 
of the compound elements, the maximum value of elemental elec-
tronegativity, the sum of the ground state electronic bandgap of the 
compound elements, and the minimum value of the sound velocity 
of the compound elements. Although the connection between a 
compound property (e.g., bandgap of Ga2O3) and the elemental prop-
erty (e.g., bandgaps of elemental Ga and O) is not straightforward, it is 
still interesting to see that a classification model on a phonon property 
is connected to not only elemental phonon properties (e.g., sound 
velocity, group velocity of low-frequency phonons) but also elemental 
electron properties (e.g., electronic bandgap). This indicates that from 
this data-driven result, some connection between electron and phonon 
properties is suggested. It is also understandable that the sum of the 
heat of fusion of the compound elements and the maximum value of 
elemental electronegativity turn out to be the most important descrip-
tors, as they can respectively be linked to bond strength and ionicity, 
both of which can directly influence phonon band structure.

DNN model for proxy property
A total of 250 multilayer perceptron (MLP) DNN models with dif-
ferent numbers of nodes in three hidden layers are first trained on 
the source task of electronic bandgap (i.e., proxy property) prediction 
on the whole dataset for the 1245 semiconductors. The averaged 
MAE is 0.442 eV, and the averaged coefficient of determination (R2) 
is 0.860 for these 250 different pretrained models, which are compa-
rable to other ML models for electronic bandgap of inorganic semi-
conductors (20, 22). The SD of MAE and R2 for these 250 different 
pretrained models are 0.012 eV and 0.007, respectively. The trained 
model structure with the lowest MAE is visualized in Fig. 3A, and 
the comparison of ML-predicted electronic bandgap against the 

ground truth for this model is shown in Fig. 3B. Parameters (weight 
and bias for each hidden layer) in these 250 pretrained models are 
stored for further TL for phonon properties.

TL model for phonon properties
We then train 250 MLP models using the TL scheme for phonon 
bandgap with the help of the 250 pretrained models (see Materials 
and Methods). Accurate prediction of phonon bandgap for the 
124 compounds with phonon bandgap is achieved using this TL scheme, 
despite very limited available data. For the TL model with the best 
MAE performance, compared to the DNN model directly trained 
using the 124 phonon data (Fig. 4A) with the same architecture, the 
TL scheme significantly reduces the MAE by over 60% from 23.874 
to 8.458 cm−1, and R2 also sees a major improvement from 0.764 to 
0.960 (Fig. 4B). To ensure that the superior prediction of the TL 
model on phonon bandgap is not due to overfitting, we used an 
additional approach of performance evaluation, where we hide 40% 
of the data as the testing dataset and the model is only trained on the 
remaining 60% data. These random dataset splits are conducted 
15 times, and both the TL and non-TL models are trained and evaluated 
against the same dataset splits to make a fair comparison. With even 
smaller dataset available for training, high prediction accuracy with 
an averaged MAE of 13.217 cm−1 and an averaged R2 of 0.928 can 
still be achieved on the test set for the TL model, and it can outper-
form the non-TL model in every single case tested in both MAE and 
R2, as illustrated in Fig. 4 (C and D). This confirms that the high 
accuracy of the TL model is not a result of overfitting. In addition, 
as can be seen from Fig. 4D, there are some cases with very low R2, 
and one of them even has R2 < 0.2 from direct training (non-TL). 
The TL scheme is able to improve these cases markedly, so their R2 
are similar to those other cases. In another words, TL can eliminate 
low and nonpredictive models, which is especially useful and im-
portant when the given small data cannot yield a meaningful model.

To further ensure the validity of our TL models, we conducted 
two more experiments. We first take different levels of TL by evalu-
ating the cases where the pretrained parameters are only used for the 
first or the second hidden layer, leaving all other parameters initialized 
randomly, which are respectively denoted as the “1st layer TL” and 
“2nd layer TL” cases in Fig. 4E (see insets for illustration). It can be 

Fig. 3. DNN model for proxy property. (A) The MLP DNN architecture of the best-performing model for electronic bandgap. In the parentheses are the numbers of 
neurons in each layer. (B) DNN-predicted electronic bandgap versus DFT-calculated bandgap (ground truth) for this model.
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seen that the performance of transferring information of only the 
first hidden layer is just slightly inferior to the case where all hidden 
layers are transferred (denoted as “full TL” in Fig. 4E), indicating 
that majority of the useful knowledge comes from the first hidden 
layer. Considering the fact that the information of the second hidden 

layer is a complex nonlinear mixture of the first hidden layer, using only 
the pretrained parameters for the second hidden layer should have 
little overall impact and the final performance is expected to be sim-
ilar to fully randomizing the initial parameters of all layers. This indeed 
agrees with our observation where transferring only the second 

Fig. 4. TL model for phonon bandgap. Predicted phonon bandgap versus DFPT calculation using (A) the non-TL and (B) the TL model with the same DNN architecture. 
(C) MAE and (D) R2 on 15 different random testing datasets for non-TL and TL models. (E) Box plot comparison of MAE for the cases where no pretrained parameters on 
electronic bandgap are used for phonon bandgap model (“non-TL”), TL model takes pretrained parameters from all three hidden layers (full TL), TL model receiving only 
the first hidden layer parameters from pretrained model (1st layer TL), and TL model receiving pretrained parameters for the second layer only (2nd layer TL). Insets show 
transferred layers in blue and nontransferred in orange. (F) Box plot of MAE for different TL fine-tune experiments: “No fine-tune,” all parameters in the three hidden layers 
are imported from the pretrained model but are not allowed to be fine-tuned in retraining; “3rd layer,” the first two hidden layers are frozen, and only the third layer is 
fine-tuned; “2nd + 3rd layer,” only the second and third hidden layers are fine-tuned, while the first layer remains unchanged; and full TL, normal TL that all hidden layers 
are allowed to be fine-tuned. Insets show fine-tuned layers in blue and not fine-tuned layers in black.
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hidden layer parameters leads to similar MAE as the non-TL model 
(Fig. 4E).

The second experiment is conducted by different fine-tuning ap-
proaches, where we first import pretrained parameters for all three 
hidden layers, but some of the hidden layers are not allowed to 
update (i.e., frozen) in the fine-tuning process on the small phonon 
bandgap data. When all hidden layers are frozen during retraining, 
large prediction errors are obtained (Fig. 4F). We then lift the re-
strictions gradually for the cases where the first two hidden layers 
are frozen and then only the first hidden layer is frozen (insets in 
Fig. 4F). When all three hidden layers are free to update, then it is 
just our normal TL model. From Fig. 4F, we can observe that with 
more transferred hidden layers allowed to be fine-tuned, the TL 
models progressively perform better and the MAE approaches the 
normal TL case. The reasonable and expected results from both 
experiments further ensure that our implementation of TL from 
electronic bandgap to phonon bandgap is robust.

With the success on phonon bandgap, we further test the general-
izability of TL by extending it to another two phonon-relevant prop-
erties, including the speed of sound (i.e., low-frequency phonon 
group velocity) and the heat capacity at 300 K, of the 124 semicon-
ductors that have phonon bandgap. They are both of great impor-
tance for phonon thermal transport, as lattice thermal conductivity 
is also proportional to heat capacity and the square of phonon 
group velocity (2), besides phonon relaxation time, which is related 
to scattering and, thus, the phonon bandgap (35). The speed of sound 
(unit: km/s) is calculated by averaging the phonon group velocities 
of the three acoustic modes, which are calculated from the phonon 
dispersion relation at the Brillouin zone center. The heat capacity 
(unit: J mol−1 K−1) is calculated from the Bose-Einstein distribution 
based on the phonon density of states. The calculated properties are 
validated with available experimental data, and good agreement has 
been achieved. For instance, the calculated longitudinal and trans-
verse speed of sound along the [100] direction in diamond are 12.735 
and 17.392 km/s, respectively; the measured values are 12.82 and 
17.52 km/s (48), and the calculated heat capacity of diamond is 
6.297 J mol−1 K−1, compared with the reference value of 6.109 J mol−1 
K−1 (49). Some more comparison of calculated properties and reference 
data are included in section S2. Both TL models and non-TL models 
are trained and evaluated in the same way as the case for phonon 
bandgap using the 124 semiconductors with phonon bandgap. The 
model performance for the speed of sound and heat capacity on the 
124 semiconductors with phonon bandgap is summarized in Table 1, 
and the box plots of MAE and R2 are shown in Fig. 5. By using TL, 
the model prediction accuracy for speed of sound has been improved 
from 0.501 to 0.433 km/s in MAE, a 13.6% decrease, and R2 is im-
proved from 0.763 to 0.838. The MAE of heat capacity is decreased 
from 6.002 to 2.793 J mol−1 K−1, reduced by 53.4% using TL, and R2 
is increased from 0.883 to 0.985. The detailed parity plot of these 
two properties is included in section S3. Even compared to the DNN 
model for these two properties trained using the complete 1245 available 
data, the prediction accuracy of the TL models is similar (Table 1), 
despite the fact that the TL models used only 10% of the data for training.

DISCUSSION
With the robust TL model for phonon properties, we further test it 
with several III-V semiconductors, which have been the focus of 
materials research for electronics applications where phonon properties 

are also important. There are four important III-V semiconductors—
InN, GaSb, InAs, and InSb—that are absent from the 1245 semicon-
ductors database since their DFT-calculated electronic bandgaps in 
the MP database are zero (i.e., metal) because of the systematic un-
derestimation of electronic bandgap by the DFT method (50). We 
note that the classification and the TL models for phonon proper-
ties take the elemental descriptors of compounds as input with no 
explicit constraints on the electronic bandgap of the compounds. 
For instance, for InN, an important semiconductor with promising 
applications in high-speed electronics and solar cells (51), the ex-
perimental bandgap is around 0.7 eV (52), but the DFT data in the 
MP database indicates it as a metal (53). Our classification model, 
on the other hand, can successfully classify it to have a phonon 
bandgap, and the phonon bandgap is predicted to be 208.382 cm−1 
using the TL model, which compares favorably with 215.0 cm−1 
from DFPT (54). The TL-predicted speed of sound and heat capacity 
are 37.483 J mol−1 K−1 and 4.029 km/s, respectively, which are also 
close to the reference data of 41.73 J mol−1 K−1 (55) and 3.80 km/s (56). 
The other three semiconductors—GaSb, InAs, and InSb—miscalculated 
by the DFT to be metals also have wide applications (57–59). Results 
from our classification and TL models are again very reasonable for 
these compounds, as summarized in Table 2. Note that this TL 
model relies on the phonon properties of the semiconductors with 
phonon bandgap, making the model applicability inevitably biased 
toward those materials with phonon bandgap, which likely only 
make up a small portion of the large chemical space. It is advised to 
first identify whether the semiconductor is with or without a phonon 
bandgap and then apply the TL model to predict the phonon prop-
erties when studying an unseen material.

These results not only demonstrate the generalizability of our 
models but also imply a very important feature of TL. Although DFT 
underestimates electronic bandgap (50), the DFT theory still cap-
tures some true relationship between the material composition and 
their electronic bandgap, and the calculated data inherently encode 
such information. Thus, even if the proxy property (i.e., electronic 
bandgap) contains errors, the knowledge that connects the material 
composition to the proxy property can still be transferred to benefit 
the model for the target property, and the TL model can have high 
fidelity as long as the training data for the target property are accu-
rate. In the present study, DFPT-calculated phonon properties are 
known to be accurate (29). This feature can be important to materials 
informatics in general since one may use simple calculations to 
massively produce proxy labels, although they might not be very 

Table 1. Model performance for phonon bandgap, speed of sound, 
and heat capacity.  

Phonon 
bandgap 

(cm−1)
Speed of 

sound (km/s)
Heat capacity 
(J mol−1 K−1)

Non-TL model
MAE: 23.847 MAE: 0.501 MAE: 6.002

R2: 0.764 R2: 0.763 R2: 0.883

TL model
MAE: 8.458 MAE: 0.433 MAE: 2.739

R2: 0.960 R2: 0.838 R2: 0.985

Learning from 
full data

MAE: 0.455 MAE: 2.390

R2: 0.870 R2: 0.989
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accurate, for further TL applications on small available target labels. 
For example, for developing materials for a new application where 
experimental data are sparse and difficult to collect, one may 
perceivably use computer simulations (e.g., coarse-grain molecular 
simulations) to quickly generate large volumes of data as the 
proxy labels and then leverage the TL scheme to build a predictive 
model using both the small experimental data and large available 
proxy labels.

In summary, we have demonstrated the ability to leverage the 
more readily accessible electron properties to help predict phonon 
properties using a TL strategy. By only using element-level compo-
sitional descriptors, a classification model using the SMOTE scheme 

can accurately classify whether a compound has a phonon bandgap. 
We then train DNN MLP models on the proxy property of electronic 
bandgap (1245 data) and use the same model architectures and 
parameters as initial values in training the target property of phonon 
bandgap, which only has 10% of the proxy property in data volume. 
The obtained TL model is found to have high accuracy and notably 
outperforms the directly trained model (i.e., non-TL model) on the 
small data. The TL scheme is also extended to construct models 
for other phonon properties including low-frequency phonon group 
velocity (i.e., speed of sound) and heat capacity, and improvements 
over non-TL models are also achieved. Our work indicates a 
strong underlying connection between the electron and phonon 

Fig. 5. TL model performance for speed of sound and heat capacity. Box plots of MAE and R2 for (A and B) speed of sound and (C and D) heat capacity with and 
without TL.

Table 2. TL-predicted phonon properties and reference values for some III-V semiconductors not included in the original database.  

Does it have phonon bandgap? Phonon bandgap (cm−1) Heat capacity (J mol−1 K−1) Speed of sound (km/s)

Predicted Reference Predicted Reference Predicted Reference Predicted Reference

InN (mp-22205) Yes Yes (54) 208.382 ± 3.524 215.0 (54) 37.483 ± 1.733 41.73 (55) 4.029 ± 0.155 3.80 (55)

GaSb (mp-1156) Yes Yes (61) 9.129 ± 4.262 23.3 (61) 45.67 ± 2.775 47.87 (62) 3.141 ± 0.146 3.17 (62)

InAs (mp-20305) Yes Yes (61) 12.405 ± 4.509 15.8 (61) 45.886 ± 2.208 47.43 (55) 3.127 ± 0.102 3.03 (55)

InSb (mp-20012) No No (61) 45.663 ± 3.090 47.32 (62) 2.667 ± 0.131 2.66 (62)
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properties, and this connection can be leveraged by the data-driven 
TL approach without the need for complex analytical expressions. 
For semiconductors like InN, which are mistakenly calculated to be 
metals in the proxy property database, they can still be correctly 
classified, and their phonon properties are predicted using TL models 
with accuracy. This suggests that TL can leverage not-so-accurate 
proxy labels, as long as they have encoded some true composition- 
property relation, for improving models for target labels, a feature that 
can have notable implications to materials informatics in general.

MATERIALS AND METHODS
Materials representation
The phonon bandgap is extracted from the phonon dispersion rela-
tion in the database studied, where materials where the frequency of 
the lowest-energy optical phonon mode is higher than that of the 
highest- energy acoustic phonon mode are considered as semicon-
ductors with a phonon bandgap and the frequency difference is 
defined as the phonon bandgap. To represent these materials in a 
fixed-length vector for ML algorithms, element-level compositional 
descriptors implemented by the XenonPy project (32) are used, 
where a total of 290 elemental property descriptors, such as the 
atomic number, atomic radius, etc., are included. For example, 
given a compound Ga2O3, the elemental properties like the atomic 
number and radius for elements Ga and O are extracted from 
the XenonPy element property database, and then, operations like 
summation, weighted average, weighted variance (e.g., weights of 
0.4 for Ga and 0.6 for O), and the maximum or minimum of the 
elemental properties are performed to produce the 290-dimension 
descriptors for Ga2O3. Besides elemental descriptors, we have 
also tested descriptors with some crystal structural information 
but found no improvement in model accuracy, and the details 
are included in section S4. We thus do not include crystal infor-
mation as part of the descriptors, which speeds up the featuriza-
tion process.

Classification model
Seventy percent of the whole dataset is randomly chosen as the 
training data, and the remaining 30% is for testing for constructing 
the random forest model. We perform a fivefold cross-validation 
grid search with F1 score as the criterion for the optimized number 
of trees and the maximum depth of the tree in the random forest 
classifier on the SMOTE oversampled training data. Here, the F1 
score is defined as the harmonic mean of the precision and recall. 
The precision is defined as the ratio between correctly classified 
phonon bandgap materials (true positive) and all materials classi-
fied to have phonon bandgap (true positive + false positive), de-
scribing how precise our model is given a classification result. The 
recall is the ratio between correctly classified phonon bandgap ma-
terials (true positive) and all materials that actually have a phonon 
bandgap (true positive + false negative), describing how sensitive 
our model can capture the real positive cases. The model with 
the best cross-validation F1 score is chosen for the testing dataset. 
For ROC, the true-positive rate is the ratio between correctly classi-
fied phonon bandgap materials and all materials that actually 
have phonon bandgap, and the false-positive rate is the ratio 
between materials without phonon bandgap incorrectly classified 
as materials with phonon bandgap and all materials with no 
phonon bandgap.

DNN model for proxy property
The MLP model is trained using PyTorch (60). For the electronic 
bandgap (proxy property), there are three hidden layers in our MLP 
models, and the number of nodes in each hidden layer is randomly 
selected. A total of 250 models with different numbers of nodes in 
each hidden layer are pretrained, and the model performance metrics 
are calculated using the ground truth and the properties averaged 
by 15 independent fivefold cross-validation predictions. The MAE 
and R2 of the 250 models are then averaged.

Transfer learning
In TL, we build MLP models with exactly the same architecture as the 
pretrained models for the proxy property, and the parameters from 
these pretrained models, except those for the output layer, are used 
as the initial parameters. These transferred models are then retrained 
using the small phonon bandgap data, the fine-tuning process. Different 
TL experiments by only transferring the parameters of some hidden 
layers or fine-tuning the parameters of selected layers are also performed 
to test the robustness of the TL scheme. The model performance is eval-
uated using the same method as that used for the proxy electron property.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/45/eabd1356/DC1
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