
ARTICLE

Magnetic field induced quantum phases in a tensor
network study of Kitaev magnets
Hyun-Yong Lee 1,2, Ryui Kaneko 1, Li Ern Chern 3, Tsuyoshi Okubo 4, Youhei Yamaji5,

Naoki Kawashima1 & Yong Baek Kim3,6✉

Recent discovery of the half quantized thermal Hall conductivity in α-RuCl3, a candidate

material for the Kitaev spin liquid, suggests the presence of a highly entangled quantum state

in external magnetic fields. This field induced phase appears between the low field zig-zag

magnetic order and the high field polarized state. Motivated by this experiment, we study

possible field induced quantum phases in theoretical models of the Kitaev magnets, using the

two dimensional tensor network approach or infinite tensor product states. We find various

quantum ground states in addition to the chiral Kitaev spin liquid occupying a small area in

the phase diagram. They form a band of emergent quantum phases in an intermediate

window of external magnetic fields, somewhat reminiscent of the experiment. We discuss the

implications of these results in view of the experiment and previous theoretical studies.
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F inding an unambiguous experimental evidence for quantum
spin liquid has been a great challenge in the study of topo-
logical phases of matter1,2. Spin excitation spectra in quantum

spin liquids, for example, consist of multiple excitations of under-
lying quasiparticles, namely, spinons. Hence, such spectra form a
continuum and have no sharp excitations, which pose an inherent
difficulty in identifying quantum spin liquids. In this context, the
recent observation of half-quantized thermal Hall conductivity in
the material α-RuCl3 in an external magnetic field is a remarkable
discovery3. α-RuCl3 is a promising candidate for the gapless Kitaev
spin liquid (KSL)2,4–24, which is the ground state of an exactly
solvable spin model25. In the presence of magnetic field, it becomes
the gapped chiral KSL, which supports the chiral Majorana edge
mode25. The half-quantized thermal Hall conductivity can be
regarded as a unique signature of this Majorana edge state.

Without magnetic field, however, α-RuCl3 develops the zig-zag
(ZZ) magnetic order at low temperatures7–11. Clearly, this must be
due to the presence of spin interactions beyond the exactly solvable
Kitaev model. A number of theoretical models are proposed and
some minimal choices are the K-Γ-Γ0 and K-Γ-J3 models. Here K is
the ferromagnetic (FM) Kitaev interaction, and Γ is the bond-
dependent anisotropic interaction10. It is shown that a substantial Γ
is necessary to explain the large anisotropy of the magnetic sus-
ceptibility seen in experiments. The ZZ order arises due to another
anisotropic interaction Γ0, which is induced by the trigonal distor-
tion of Cl octahedra, or the third neighbor antiferromagnetic Hei-
senberg interaction J326. Hence, the central question is how the ZZ
order would give away to the chiral KSL in the presence of magnetic
field and whether this happens in these minimal models.

Previous results on the K-Γ-Γ0 model27 obtained from exact
diagonalization (ED) on the 24-site cluster (when the magnetic
field is tilted away from ½111� direction so that C3 rotation
symmetry is explicitly broken) and density matrix renormaliza-
tion group (DMRG) on the 2-leg ladder geometry suggest that the
chiral KSL is stabilized in a large window of magnetic field and
Γ=K between the ZZ and polarized phases. Another recent the-
oretical work on the classical model28, however, shows that there
exist a multitude of complex magnetic orders with large unit cells
in a similar window of intermediate magnetic fields. Many of
these phases cannot be accommodated in small systems used in
the ED and DMRG calculations mentioned above. In order to
resolve this issue, theoretical studies of the quantum model in the
thermodynamic limit are necessary.

In this article, we present the results of the infinite tensor
product state (iTPS) studies on the K-Γ-Γ0 and K-Γmodels, which
directly deal with the two-dimensional thermodynamic limit.
Here we can treat the KSL and the classical complex magnetically
ordered states on equal footing. Our study shows that the KSL
only occupies a small corner in the magnetic field phase diagram.
On the other hand, we find novel quantum phases, namely, the
nematic paramagnets, to be emergent in an intermediate window
of magnetic fields. Apart from providing a definite prediction for
α-RuCl3, our result also addresses the general question as to what
are the possible quantum phases around the KSL in other
spin–orbital entangled honeycomb magnets, which are described
by similar theoretical models containing substantial K and Γ
interactions. Below, we explain the phase diagram and discuss the
nature of magnetic field-induced quantum phases.

Results
Model. We begin with the Hamiltonian of the K-Γ-Γ0 model27–29:
Ĥ ¼ P

hijiγĤ
γ
ij with

Ĥ
γ
ij ¼ � h

3
� ðSi þ SjÞ þ KSγi S

γ
j þ ΓðSμi Sνj þ Sνi S

μ
j Þ

þ Γ0ðSμi Sγj þ Sγi S
μ
j þ Sνi S

γ
j þ Sνi S

γ
j Þ;

ð1Þ

where hijiγ denotes the pair of the nearest neighbor sites, i and j,
on the γ-bond with γ ¼ x; y; z as depicted in the “Methods”
section. The K term is the isotropic Kitaev interaction. Here
ðγ; μ; νÞ forms a cyclic permutation of ðx; y; zÞ such that off-
diagonal spin exchanges are represented by Γ and Γ0 interactions.
In both classical28 and quantum27 limits, a small Γ0 interaction
induces the ZZ magnetic order at small magnetic fields, which
gives away to other competing phases at larger magnetic fields.
Throughout this article, we fix Γ0 ¼ �0:03 in units offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Γ2

p
¼ 1 and focus on the FM Kitaev and antiferromagnetic

Γ interactions, i.e., K < 0 and Γ> 0, which is relevant to the
material α-RuCl3. The magnetic field is applied along the ½111�
direction, i.e., h ¼ hð1; 1; 1Þ= ffiffiffi

3
p

. We also consider the effect of
tilting the magnetic field from the ½111� direction. The Hamil-
tonian is invariant under the transformation C6UC6

:
½C6UC6

;H� ¼ 0, where C6 denotes 60� lattice rotation about the
center of the plaquette while UC6

cyclically permutes the com-
ponents of the spin operator, i.e., Sx ! Sy ! Sz ! Sx. For sim-
plicity, we refer to this symmetry as the rotational symmetry.

Identification of each phase. To determine the phase bound-
aries and characterize each phase, we optimize the iTPS using
the imaginary time evolution (ITE)30 and measure the energy

density E ¼ hHi=Ns, magnetization M � N�1
s

PNs
i

ffiffiffiffiffiffiffiffiffiffi
hSii2

q
, and

flux W � N�1
p

PNp
p hŴpi. Here Ŵp ¼ σ̂x1σ̂

y
2σ̂

z
3σ̂

x
4σ̂

y
5σ̂

z
6 is the flux

operator25 on a plaquette p, the site indices 1� 6 are defined
in the “Methods” section, and NsðpÞ is the number of
sites (plaquettes) in the system. As shown in the phase diagram
Fig. 1, we identify five distinct phases, i.e., KSL, polarized (P),
nematic paramagnetic (NP1 and NP2), and ZZ phases in the
parameter region 0< Γ=jKj≤ 0:3 and 0≤ 0:2.

Small extent of KSL in field. First, the KSL ground state survives
only in a small corner of the phase diagram. In the KSL phase, the
magnetization and the fluctuation of vortices are suppressed, i.e.,
M � 1=2 andW � 1 as shown in Figs. 1 and 2a. It disagrees with
the largely extended KSL phase observed in the 24-site ED and
DMRG studies on the 2-leg ladder system in ref. 27. The dis-
crepancy may imply that taking the thermodynamic limit is
important. At zero field, there is a transition from KSL to a FM
phase where spins are aligned in the ½1�1�1� direction (red solid line
in Fig. 1). However, with a very weak magnetic field (h ¼ 0:005),
the FM phase disappears, and a direct phase transition from KSL
to ZZ occurs. With increasing h, the transition from KSL to the P
phase occurs at a finite h, where spins start aligning in the ½111�
direction. The fate of the FM states will be discussed in detail
later. We have found that the field-induced phase transition with
ðΓ; Γ0Þ ¼ ð0;�0:03Þ occurs at hKΓ0c � 0:011, which is smaller than
hKc � 0:0231–35 of the pure Kitaev model (see Supplementary
Note 5).

Nematic paramagnetic phases. As Γ increases, the magnetic
field-induced phase is no longer the KSL. The ZZ order gives
away to interesting intermediate phases NP1 and NP2 (Fig. 1)
before the system enters the P phase at high field. Both phases are
nematic in the sense that the rotational symmetry is sponta-
neously broken down to the C2 rotational symmetry. More spe-
cifically, the local energy Eγ ¼ hĤγ

iji depends on the direction of
bond γ: Ex < Ey ¼ Ez in NP1 while Ex > Ey ¼ Ez in NP2. It also
leads to the anisotropic magnetization, i.e., Mx ≠My ¼ Mz etc., as
presented in Fig. 2b.
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In the classical limit, the 8-, 18-, and 32-site magnetic orders
are stabilized in a similar parameter regime28. Our result indicates
that strong quantum fluctuation melts the competing large unit-
cell orders, leading to the restoration of the translational
symmetry, while the rotational symmetry remains broken. We
have also found that the NP phases appear and survive down to
almost zero field limit in the K-Γ model as shown below. By
increasing the accuracy of the iTPS representation (see Supple-
mentary Note 7), we have confirmed that the NP states are
quantum paramagnet and develop finite magnetization only in
the presence of the field.

In the [111] magnetic field, the nature of the transition between
P and NP1 phases is not clear. Even though the local observables
show finite jumps at the transition, these are not very distinctive
compared to other transitions and may originate from the
inherently biased optimization in ITE, which is analyzed carefully
in Supplementary Note 2. The non-triviality of the NP phases is
revealed by tilting the magnetic field slightly toward the ½11�2�
direction. Figure 3a presents the optimized energy and its second
derivative with respect to Γ=jKj at the tilting angle θ ¼ 5�. Notice

that, owing to the tilted field, the model breaks the rotational
symmetry explicitly, and thus there is no remaining symmetry
discriminating the P and NP phases. Nevertheless, the second
derivative of the energy strongly suggests a continuous phase
transition between the P and NP2 phases (see Fig. 3b) at
Γ=jKj � 0:05. Note that the tilted field with θ > 0 leads to a
transition from the P phase directly to the NP2 phase. On the
other hand, tilting the field in the opposite direction (θ < 0) favors
the NP1 phase and therefore gives rise to a transition from the P
phase to the NP1 phase (see Supplementary Note 6). The
continuous nature of these transitions can be seen even more
clearly in the entanglement entropy (EE)36–38. The boundary
theory of TPS39 has been employed to measure the EE on the
cylinder geometry with the circumference Ly , and the result is
presented in Fig. 3c, d. The NP1 state is highly entangled and its
EE increases with Γ, while the P state has a low and constant EE.
The first derivative of the EE exhibits a peak at the same point as
that of the second derivative of the energy, and it becomes
sharper with increasing Ly and the accuracy of the variational
ansatz (see Supplementary Note 3). Therefore, we conclude that
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there is a continuous transition between the P and NP2 phases at
Γ=jKj � 0:05. As mentioned above, the P and NP phases cannot
be distinguished by conventional symmetries, thus the contin-
uous transition implies a topological phase transition from the
trivial phase (P) to a topological or non-trivial phase (NP2). It is
worth noting that the tilted field makes the numerical optimiza-
tion much more stable as analyzed in Supplementary Fig. 2.

K-Γ model. Finite Γ0 is responsible in stabilizing the ZZ order at
low fields. When Γ0 ¼ 0, we may expect a more significant
competition between various phases, including the complex
classical magnetic orders. We find that the NP phases are already
present in the K-Γmodel as shown in the phase diagram in Fig. 4.
On the other hand, the complex magnetic orders with large
magnetic unit cells appear for sufficiently large Γ (typically
Γ=jKj≳ 0:3). For example, the 6-site order phase appears at lower
field h≲ 0:15 while the 18-site order phase appears at higher field
h≳ 0:15 as presented in Fig. 4a, b. These are the same magnetic
orders reported in the classical phase diagram28. Quantum fluc-
tuations seem to favor NP1 and NP2 phases at small Γ and push
the classical orders to the parameter region with larger Γ. As in
the case of Γ0 ¼ �0:03, the FM phase appears between the KSL
and the 6-site order at h ¼ 0. This reminds us of a FM phase in a
tiny area of the phase diagram in the variational Monte Carlo
study in ref. 24. However, the NP2 state is almost degenerate with
FM phase in this region, i.e., the energy difference is only
ΔE 	 Oð10�4Þ. Moreover, even this tiny energy difference is
decreasing as the accuracy of the iTPS further increases (see
Supplementary Note 8). With these results and given that the FM
quickly loses to NP2 with a very small h, NP2 may become a
stable ground state or degenerate with the FM phase at h ¼ 0 as

the variational iTPS approaches to the exact ground state. The NP
phases are reminiscent of the KΓ spin liquid reported in the
previous iDMRG study20, where the rotational symmetry is
broken in similar manner.

Conclusion
We have used iTPS optimization to investigate the field-induced
quantum phases in the K-Γ-Γ0 model. Apart from the well-
established chiral KSL, we discover the stabilization of the
nematic paramagnets NP1 and NP2 at intermediate magnetic
fields. The NP phases break lattice rotational symmetry sponta-
neously and take place between the low-field ZZ magnetic order
and the high-field polarized state. In contrast to the previous 24-
site ED and 2-leg ladder DMRG study27, the KSL is found to
survive only in a small corner of the phase diagram. Instead, the
NP phases occupy a large portion of the phase diagram and hence
are more likely to be observed. We propose that, to probe the
nematic paramagnets experimentally, one could measure long-
itudinal thermal conductivity and magnetic susceptibility over the
in-plane directions, which would display the breaking of C3
symmetry. We also find that the NP phases are already present in
the K-Γ model in zero and finite magnetic field. The NP phases in
the K-Γ model give away to the complex magnetic orders with
large unit cells when Γ=jKj becomes large, making contact with
the classical phase diagram reported earlier.

In order to clarify the nature of the NP phases, we examine the
effect of tilting the magnetic field (θ ¼ 5� from the [111] direc-
tion). Here the transition between the polarized (P) and NP2
phases is continuous, judging from the singular behaviors in the
second derivative of the energy and the first derivative of the EE.
Since C3 is broken in both of the P and NP2 phases in the tilted
field, the continuous transition would imply that NP2 is not a
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trivial product state. This leaves the interesting possibility that the
NP phases are non-trivial topological states. The precise nature
and thermal Hall response of these states would be interesting
subjects of future study.

Methods
iTPS and ITE. In order to carve out the ground-state phase diagram, we employ the
iTPS representation40 on the honeycomb lattice and optimize it with respect to the
Hamiltonian in Eq. (1). The iTPS wavefunction ψfsig ¼ tTr

Q
i½Ti�siαiβiγi is illustrated

in Fig. 5a, where si denotes the spin state at site i, and tTr represents the trace over
the virtual indices ðαi; βi; γiÞ of the local tensor Ti . The accuracy of the iTPS
representation becomes better as the dimension of the virtual indices, or the bond
dimension D, increases. The ITE is adopted for optimization, i.e., the two-site gate

e�τĤ
γ
ij is applied on every bond with fixed τ ¼ 0:01. Then the local tensors are

updated by the singular value decomposition30. Iterating this two-step proce-
dure (Fig. 5b) drives the initial state into the ground state.

Since the ITE with such a simple update can be easily biased by the initial choice
of Ti , we optimize various trial states and choose the lowest energy state as the
ground state. We consider the string gas (SG) represetation of the KSL in ref. 41 and
the classical magnetic orders found in ref. 28. Note that the ITE starting from the

SG state, i.e., ψj i � ðe�τĤÞN SGj i, provides the lowest energy states near the pure

Kitaev limit, which allows us to determine the KSL phase. We also include the
FM [111] state (FM[111]), where all spins are aligned in the ½111� direction, ZZ,
and 6- and 18-site magnetic orders found in ref. 28. In addition, we use the
FM[100], FM[011], and FM[1�1�1] states as other possible initial states. Details of the
initial states are provided in Supplementary Note 1. Owing to the complexity, we
did not take into account the 32- and 50-site magnetic order discovered in the
classical phase diagram28, which might be relevant for larger Γ and h than the
parameter region considered in this work. To measure the physical quantities
after the optimization, we employ the corner transfer matrix renormalization
group (CTMRG) method42–44. The parallel C++ library mptensor45 is utilized to
perform CTMRG and ITE. The main results in this article are obtained with the
bond dimension D ¼ 6. It turns out that the phase diagram and physical quantities
do not change much by increasing D as discussed in Supplementary Information.

Data availability
All relevant data in this paper are available from the authors upon reasonable request.

Code availability
All numerical codes in this paper are available from the authors upon reasonable request.
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