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Abstract

Giant viruses contain large genomes, encode many proteins atypical for viruses,

replicate in large viral factories, and tend to infect protists. The giant virus

replication factories can in turn be infected by so called virophages, which are

smaller viruses that negatively impact giant virus replication. An example is

Mimiviruses that infect the protist Acanthamoeba and that are themselves

infected by the virophage Sputnik. This study examines the evolutionary

dynamics of this system, using mathematical models. While the models suggest

that the virophage population will evolve to increasing degrees of giant virus

inhibition, it further suggests that this renders the virophage population prone

to extinction due to dynamic instabilities over wide parameter ranges. Implica-

tions and conditions required to avoid extinction are discussed. Another inter-

esting result is that virophage presence can fundamentally alter the evolutionary

course of the giant virus. While the giant virus is predicted to evolve toward

increasing its basic reproductive ratio in the absence of the virophage, the

opposite is true in its presence. Therefore, virophages can not only benefit the

host population directly by inhibiting the giant viruses but also indirectly by

causing giant viruses to evolve toward weaker phenotypes. Experimental tests

for this model are suggested.

Introduction

Mimivirus (microbe mimicking virus) was first discovered

in the water of a cooling tower in the United Kingdom,

infecting the protist Acanthamoeba, and was shown to

have characteristics that are atypical for the majority of

viruses (La Scola et al. 2003; Raoult et al. 2004; Koonin

2005; Claverie et al. 2006; Suzan-Monti et al. 2006; Rao-

ult and Forterre 2008; Claverie and Abergel 2009, 2010;

Colson and Raoult 2010; Forterre 2010; Yamada 2011). It

was found to be a dsDNA virus and was the largest virus

known at the time. Its 1.2 Mb genome sequence con-

tained more than 900 proteins with functions that are not

normally associated with viruses, such as encoding crucial

components of the protein translation machinery (Raoult

et al. 2004). Unlike other viruses, it was visible with a

light microscope (Claverie and Abergel 2010; Sun et al.

2010). Mimivirus is thought to be phylogenetically close

to other large DNA viruses (Claverie and Abergel 2009).

They replicate in large viral factories that are reminiscent

of simple cell nuclei, resulting in the lysis of their Acan-

thamoeba host. A different strain of Mimivirus with a

slightly larger genome, called Mamavirus, was found in a

different cooling water in France (La Scola et al. 2008). In

this case, an interesting discovery was the association of

Mamavirus with a small satellite virus that was named

Sputnik (La Scola et al. 2008). Sputnik replicates within

the viral factories of Mimiviruses, using Mimivirus

resources and consequently impairing Mimivirus replica-

tion, leading to the generation of defective Mimivirus

particles (La Scola et al. 2008; Pearson 2008; Claverie and

Abergel 2009; Desnues and Raoult 2010; Ruiz-Saenz and

Rodas 2010; Sun et al. 2010; Desnues et al. 2012; Zhang

et al. 2012). This also reduces Mimivius-induced lysis of

amoebae. Therefore, Sputnik is a true “parasite” of Mimi-

virus rather than a regular satellite virus and has conse-

quently been termed a “virophage,” although this

distinction has been debated (Herrero-Uribe 2011;

Krupovic and Cvirkaite-Krupovic 2011; Desnues and

Raoult 2012; Fischer 2012).

Giant viruses and virophages are thought to be abun-

dant in aquatic environments, infecting a variety of

protists (Claverie et al. 2009; La Scola et al. 2010; Culley

2011; Yau et al. 2011). Consequently, virophages could
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play important roles in regulating the population dynam-

ics between protists and their viruses. This has been

examined in Antarctic lakes, where a relative of the Sput-

nik virophage was found to infect phycodnaviruses, which

in turn infect phototrophic algae (Yau et al. 2011). In this

system, data analysis and population models suggested

that virophages reduce the mortality of algal cells and that

they could have an important influence on the stability of

microbial food webs.

The impact of virophages on the dynamics between

giant viruses and their host cells is related to the effects

of hyperparasites on parasite–host dynamics. Hyperpara-

sites are defined as parasites that infect another parasite,

leading to a food chain of parasitism. The effect of hyper-

parasitism on population dynamics has been examined in

some detail with mathematical models (Beddington and

Hammond 1977; May and Hassell 1981; Hochberg et al.

1990; Holt and Hochberg 1998), and the analysis often

examined the impact on the biological control of insect

pests. For example, Beddington and Hammond (1977)

analyzed a scenario where a herbivore was infected by a

parasite that was itself subject to infection by a hyperpar-

asite. A recurrent result is that the introduction of a

hyperparasite can reduce the effectiveness of biological

control (Beddington and Hammond 1977; May and Has-

sell 1981). Because the primary parasite is attacked by the

hyperparasite, the host/pest population benefits and can

achieve higher equilibrium levels (Beddington and Ham-

mond 1977; May and Hassell 1981). In addition, hyper-

parasites can influence the stability of a parasite–host
system (Beddington and Hammond 1977). A detailed

analysis of the stability of the food chain dynamics has

been provided by Holt and Hochberg (1998), demonstrat-

ing both stabilizing and destabilizing effects. Related food

web systems have been studied, including interactions

among hosts, parasites, and predators, for example, Roy

and Holt (2008).

Here, I build on these concepts and analyze mathemati-

cal models that describe the dynamics between a host

protist, a virus infecting the protist, and a virophage

infecting the virus. While the virophage is also a virus,

for simplicity the term virus will be used to refer to the

primary virus of the protist host, in order to distinguish

it from the virophage. The model will be constructed with

the Acanthamoeba–Mimivirus–Sputnik system in mind,

although the model is quite general and also applicable to

other systems. No population dynamic data exist so far to

tailor the model to a specific system or to parameterize it.

Instead, the general properties of the dynamics are inves-

tigated, in particular concentrating on the evolutionary

dynamics of both the virus and the virophage. I will

examine the evolution of “virophage pathogenicity,” that

is, the degree to which the virophage inhibits replication

of the primary virus. The model suggests that while selec-

tion favors a higher virophage pathogenicity, the emergence

of more pathogenic virophages can also significantly desta-

bilize the dynamics, rendering the system prone to extinc-

tion. Furthermore, the evolution of the primary virus

population is investigated. It is found that the evolution-

ary trajectory of the primary virus can be changed by the

presence of the virophage. While in isolation, the primary

virus is expected to evolve toward higher basic reproduc-

tive ratios, the presence of the virophage can lead to the

evolution of the primary virus to a reduced basic repro-

ductive ratio. Experiments with the Acanthamoeba–Mimi-

virus–Sputnik system are suggested to test and refine the

model, as well as to estimate para-meters.

The Mathematical Models

We consider an ordinary differential equation model

(ODE) that describes the average development of popula-

tions over time. These include the host Acanthamoeba

population, x, amoebae infected with the Mimivirus, y1,

and amoebae infected with the Mimivirus which in turn

is infected with the Sputnik virophage, y12. Free virus is

not explicitly taken into account. As the life span of

viruses tends to be significantly shorter than that of cells,

the virus populations are assumed to be in quasi steady

state. The model is given by the following set of

equations.

dx

dt
¼ rx 1� x þ y1 þ y12

k

� �
� b1xðy1 þ fy12Þ

dy1
dt

¼ b1xðy1 þ fy12Þ � a1y1 � b2y1y12

dy12
dt

¼ b2y1y12 � a12y12

(1)

The amoeba population is characterized by logistic,

density-dependent growth, described by the term rx(1�
(x+y1+y12)/k). The intrinsic growth rate is given by r and

the total amoeba population (uninfected + infected indi-

viduals) cannot exceed the carrying capacity k. Contact

between the primary virus and uninfected amoeba cells

leads to infection with a rate b1. The primary virus can

be released from two sources. Obviously, one source is

cells infected with the primary virus alone, y1. An addi-

tional source is cells that contain both the primary virus

and the virophage, although they are likely to release the

primary virus at a reduced rate. This is expressed by the

parameter f, which describes the degree of primary virus

inhibition by the virophage (i.e., the virophage “pathoge-

nicity”) and can vary between zero and one. If f = 0, the

primary virus cannot replicate at all in the presence of

the virophage. If f = 1, the replication of the primary

virus is not inhibited by the virophage. Amoeba infected
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with the primary virus only, y1, die with a rate a1 and

become infected with virophage upon contact with a viro-

phage-containing cell with a rate b2. Amoebae infected

with both the primary virus and the virophage, y12, die

with a rate a12. This death rate is determined both by the

virophage and the primary virus. We assume that the pri-

mary virus contributes less to cell death in the presence

compared with the absence of the virophage, due to inhi-

bition of viral replication (parameter f). In addition, the

virophage itself can cause cell death with a rate aph. Thus,

the overall death rate of this cell population is given by

a12 = aph + fa1. Note that while the reduced replication

rate of the primary virus in virophage-infected cells is

likely to be reflected in a reduced death rate of these cells,

the death rate does not have to be decreased by the same

factor, f, as written here. However, if the death rate of the

infected cell is decreased by a different amount, expressed

by an additional factor g, the results presented here do

not change qualitatively. We do not track amoeba cells

that are infected with the virophage only, as the virophage

cannot replicate without the primary virus.

In order to address questions concerned with popula-

tion extinction, we also consider a stochastic version of

this model by applying the Gillespie algorithm to these

ODEs (Gillespie 1977).

Basic properties

The host amoeba population grows if r > 0 and reaches

carrying capacity k in the absence of infection. The

primary virus grows if its basic reproductive ratio is

greater than one. This is given by R
ð1Þ
0 ¼ b1k=a1. In this

case, the system converges to the following equilibrium in

the absence of the virophage:

xð0Þ ¼ a1
b1

y
ð0Þ
1 ¼ rðb1k� a1Þ

b1ðr þ b1kÞ
y
ð0Þ
12 ¼ 0

Note that the faster the replication rate of the primary

virus is, b1, the lower the equilibrium number of infected

cells. When a virophage is added to the system, it can

establish an infection if its basic reproductive ratio is

greater than one. It is given by R
ðphÞ
0 ¼ b2y

ð0Þ
1 =a12. It is

determined by the replication rate of the virophage and

the death rate of infected cells, and also by the equilib-

rium number of cells infected by the primary virus in the

absence of the virophage. As mentioned above, this is

inversely proportional to the replication rate of the

primary virus. Therefore, if the replication rate of the pri-

mary virus lies above a threshold, then R
ðphÞ
0 1 and the

virophage fail to establish an infection. If the virophage

does establish an infection, then the system converges to

an equilibrium that is given by a very lengthy second-

degree polynomial and hence not written out here.

The dependence of the equilibrium population levels

on the model parameters is largely intuitive. The host

amoeba population is regulated by the primary virus, and

the primary virus population is regulated by the

virophage. Thus, a more effective virophage can downre-

gulate the primary virus population, and this can in turn

increase the equilibrium levels of the host amoebae, as

described in previous studies on hyperparasitism (Bedd-

ington and Hammond 1977; May and Hassell 1981).

However, because virophage-infected cells can also trans-

mit the primary virus to host amoeba, virophage infection

kinetics can at the same time lead to a reduction in the

amoeba population, giving rise to a trade-off (Fig. 1).

This is seen in the dependence of the equilibrium amoeba

host population size on the death rate of virophage-

infected cells. The lower the death rate of the cells, the

larger the amount of virus released from these cells

during their life span. The amount of successful primary

virus replication in virophage-infected cells is determined

by the parameter f. If the value of f is very low and close

to zero, then primary virus replication is negligible in

virophage-infected cells. In this case, a faster virophage

eq
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 x

f = 1

f = 0.5

f = 0.1

f = 10–4

virophage-induced death rate of cells, aph

Figure 1. Effect of virophage-induced cell death, aph, on the

equilibrium host population, according to model (1). Different curves

are shown, varying the virophage pathogenicity, f. Explanations are

given in the text. Parameters were chosen as follows. r = 0.01;

b1 = 2.5 9 10�7; a1 = 0.01; b2 = 2 9 10�5; k = 5 9 105.
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spread due to a lower death rate of these infected cells

impairs the primary virus, which in turn increases the

equilibrium level of the host amoeba. Thus, a lower

virophage-induced death rate of cells increases the host

population (Fig. 1). In contrast, when f >> 0, then a

significant amount of primary virus replication still

occurs in virophage-infected cells, and we see a one

humped relationship (Fig. 1). For higher virophage-

induced death rates of cells, aph, a reduction in aph leads

to larger host equilibrium levels as before. The inhibition

of the primary virus, which benefits the host, is the domi-

nant effect here. For lower levels of virophage-induced

death of cells, however, the trend reverses and lower val-

ues of aph lead to lower host amoeba equilibrium levels.

Now the higher yield of the primary virus, brought about

by the reduced rate of virophage-induced cell death, is

the dominant factor and negatively impacts the host

population.

As discussed above, if the basic reproductive ratios of

the primary virus and the virophage are greater than one,

and if r > 0, then the equilibrium describing the persis-

tence of the two viruses and the host is stable. The equilib-

rium is approached by damped oscillations, with the

damping time and the extent of the oscillations depending

on the model parameters. Previous work on hyperparasit-

ism has shown that the introduction of the hyperparasite

can both have a stabilizing and a destabilizing effect on

the dynamics. We examined how the degree of virophage-

mediated primary virus inhibition (i.e., the “virophage

pathogenicity”) influences the approach to equilibrium

(Fig. 2). The most pronounced oscillations and the longest

damping times are observed for maximal virophage patho-

genicity, that is, if the degree of primary virus inhibition is

maximal such that f = 0 (Fig. 2). Reducing the degree of

virophage pathogenicity (increasing f) greatly stabilizes the

dynamics, leading to significantly shorter damping times

(Fig. 2). Thus, higher degrees of virophage pathogenicity

correlate with less stable dynamics.

If oscillatory dynamics occur, population extinction

can be observed in a stochastic setting. This was shown

by performing stochastic, Gillespie simulations of the

ODEs (Fig. 3A). The details of this methodology are well

documented (Gillespie 1977). The parameters and cases

considered are equivalent to those in Figure 2. The

stochastic simulations were started at the integer popula-

tion levels that are closest to the equilibrium numbers

predicted by the ODEs, as this minimizes the extent of

oscillations. Nevertheless, we observe quick extinction of

the primary virus and the virophage for f = 0, that is, for

maximally pathogenic virophages (Fig. 3). Long-term

persistence was observed for higher values of f.

The model examined so far assumes that the free virus

population is in a quasi steady state and is not explicitly

taken into account. This assumption is often made in the

context of virus dynamics because the turnover of

the virus population tends to be much faster than that of

the target cell population. However, this assumption need

not always be true. For example, sediments appear to be

a long-term reservoir for infective viruses of the marine

alga Heterosigma akashiwo (Lawrence et al. 2002). It is

conceivable that such reservoirs also apply to mimivirus-

es. Hence, we consider a model that explicitly tracks the

free virus populations. While the equilibria and their

stability remain the same, the dynamics with which the

persistence equilibrium is approached can be different,

and this can have implications for the ability of the viro-

phage–primary virus–host system to persist. The model is

given by the following set of ODEs.

dx

dt
¼ rx 1� x þ y1 þ y12

k

� �
� b1xm1

dy1
dt

¼ b1xm1 � a1y1 � b2y1m12

dy12
dt

¼ b2y1m2 � a12y12

dm1
dt

¼ g1ðy1 þ fy12Þ � u1m1

dm2
dt

¼ g2y12 � u2m2

(1a)

The primary virus population is denoted by v1 and the

virophage population by v2. Primary viruses are produced

by cells infected with primary virus only with a rate g1,
and by cells containing both the primary virus and the

virophage with a reduced rate fg1. They decay with a rate

u1. Virophages are produced from virophage-infected

cells with a rate g2 and decay with a rate u2. The situa-

tion of maximum virophage pathogenicity, f = 0, will be

examined in the context of the stochastic Gillespie algo-

rithm. The same parameter combination as in Figure 3A

will be considered, and the turnover of the primary virus

will be varied (g1 and u1) while keeping the basic repro-

ductive ratio of the primary virus constant. If the pri-

mary virus turnover is much larger than the turnover of

infected cells (relatively large values of g1 and u1), the

dynamics are similar compared with the quasi–steady
state assumption, that is, pronounced oscillations are

observed and extinction occurs relatively fast (Fig. 3B, i).

However, if the turnover of free virus is lower and of the

same order of magnitude as the turnover of infected cells,

then more stable dynamics are observed that result in

long-term persistence (Fig. 3B, ii). On the other hand, if

the turnover of the virophage population is reduced such

that the life span of the virophage is of the same order as

that of infected cells, then population oscillations are

amplified, promoting early extinction of the populations

(Fig. 3B, iii).
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Evolution of Virophage Pathogenicity

Here, we examine the evolutionary dynamics of the viro-

phage and concentrate in particular on the evolution of

“virophage pathogenicity,” defined by the parameter f,

describing the degree to which the primary virus can rep-

licate when infected with the virophage. We introduce a

second virophage strain into model (1), returning to the

quasi–steady state assumption for the free virus popula-

tions. The model is now formulated as follows:

dx

dt
¼ rx 1� x þ y1 þ y12 þ z12

k

� �
� b1xðy1 þ fyy12 þ fzz12Þ

dy1
dt

¼ b1xðy1 þ fyy12 þ fzz12Þ � a1y1 � b2y1y12 � b2y1z12

dy12
dt

¼ b2y1y12 � a12y12

dz12
dt

¼ b2y1z12 � a12z12 ð2Þ

Cells containing the primary virus can become infected

by two virophage strains, and the respective virophage-

infected cells are denoted by y12 and z12. The two strains

only differ in their pathogenicity, which is denoted by fy
and fz. The death rate of these infected cells is thus given

by a12 = aph + fya1 and a12 = aph + fza1 (note that the

death rate of cells infected with the second strain is differ-

ent and given by a greek letter). The basic reproductive

ratio of virophage strain 1 is given by R
1ðphÞ
0 ¼ b2y

ð0Þ
1 =a12

or R
1ðphÞ
0 ¼ b2y

ð0Þ
1 =ðaph þ fya1Þ. The expressions for strain

2 is R
2ðphÞ
0 ¼ b2y

ð0Þ
1 =a2 or R

2ðphÞ
0 ¼ b2y

ð0Þ
1 =ðaph þ fza1Þ.

Because increased pathogenicity reduces the replication of

the primary virus, it also increases the life span of the

infected cell. This in turn leads to a higher total viral

output of the virophage and thus to a higher basic repro-

ductive ratio. In this model, the virophage strain with the

higher basic reproductive ratio wins the competition, as

demonstrated in Figure 4. Hence, the virophage popula-

tion is expected to evolve to maximum pathogenicity,

that is, to f = 0.

As shown in the previous section, an increase in viro-

phage pathogenicity can lead to more extensive population

oscillations and longer damping times, with f = 0 charac-

terized by the most unstable dynamics. This can render

populations prone to extinction, and these aspects were

explored with stochastic Gillespie simulations of the

ODEs. Figure 5 shows a scenario where a virophage strain

with increased pathogenicity invades the population, and

displaces the competing strain. The ensuing population

oscillations quickly drive the virophage population extinct,

and the primary virus can also be driven to extinction in

this process. Thus, while selection favors a virophage

strain with increased pathogenicity, the population can

evolve to a state in which it is very prone to extinction.

Whether extinction occurs for maximally pathogenic

virophages (f = 0) depends on the model parameters and

this is explored systematically in Figure 6. Obviously,

whether extinction occurs or not can depend on the

initial conditions, but is least likely if the simulation is

started around the equilibrium values. Hence, starting

from the equilibrium (at the nearest integer number, as

the simulation is stochastic), the simulation was run for a

defined period of time and it was recorded whether
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Figure 2. Dynamics predicted by model (1),

depending on the virophage pathogenicity, f.

The host population is shown in black, cells

infected with the primary virus in blue, and

cells infected with the virophage in red. The

more the virophage inhibits the primary virus

(lower f), the more unstable the dynamics

become, leading to more extensive oscillations

and longer damping times. Parameters were

chosen as follows. r = 0.01; b1 = 2.5 9 10�7;

a1 = 0.01; b2 = 2 9 10�5; aph = 0.05;

k = 5 9 105.
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virophage extinction occurred during this time frame.

This was done for different parameter combinations and

the outcome is color coded in Figure 6. Persistence

requires that the equilibrium population levels are suffi-

ciently high such that the oscillatory dynamics do not

lead to extinction. In this respect, the equilibrium number
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Figure 3. (A) Dynamics predicted by the stochastic, Gillespie simulation of ODE system (1), depending on the virophage pathogenicity, f. The

host population is shown in black, cells infected with the primary virus in blue, and cells infected with the virophage in red. Figure 2 showed that

dynamics become more unstable for lower f. Here, simulations were started at the equilibrium levels predicted by the ODEs (the nearest integer

number) and typical outcomes were plotted. Starting around the equilibrium minimizes the chances of extinction due to oscillatory dynamics. For

f = 0, the dynamics are the most unstable and the system crashes to extinction. Higher values of f stabilize the dynamics, resulting in long-term

persistence. Parameters were chosen as follows: r = 0.01; b1 = 2.5 9 10�7; a1 = 0.01; b2 = 2 9 10�5; aph = 0.05; k = 5 9 105. (B) Gillespie

simulation of the ODE system (1a), which takes free virus populations into account explicitly. All simulations assume maximal virophage

pathogenicity, f = 0. The turnover of the free virus populations is varied, while keeping their basic reproductive ratios identical. (i) Baseline

scenario, where g1 = 10; u1 = 10; g2 = 10; u2 = 10. Extinction occurs relatively quickly, similar to model (1) which assumed free virus to be in a

quasi steady state. (ii) The turnover of the primary virus was reduced such that the death rate of free viruses is on the same order of magnitude

as that of infected cells, that is, g1 = 0.01; u1 = 0.01; g2 = 10; u2 = 10. More stable dynamics and long-term persistence are observed. (ii) The

turnover of the virophage population is reduced such that the death rate of virophages is of the same order of magnitude as that of infected

cells, that is, g1 = 10; u1 = 10; g2 = 0.01; u2 = 0.01. This destabilizes the dynamics, accelerating extinction.

2108 ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Virophage Dynamics D. Wodarz



of primary virus–infected cells, y1, is of particular impor-

tance. If the virophage drives this population extinct, then

it depletes its own targets for replication. High population

levels of primary virus–infected cells, and thus persistence,

are promoted by slow spread of the virophage, that is, by

a slow virophage replication rate, b2, and a fast viro-

phage-induced cell death, aph (Fig. 6). In addition, persis-

tence is promoted by a fast growth rate of the host

amoeba population, r (Fig. 6). The replication rate of the

primary virus, b1, and the rate of cell death induced by

the primary virus, a1, only have relatively small effects on

the outcome (Fig. 6). Because the virophage will likely

evolve toward faster replication kinetics, this suggests that

evolutionary trajectories will bring the system into a

parameter regime that renders the populations prone to

extinction.

Evolution of the Primary Virus

Here, the evolutionary dynamics of the primary virus are

investigated, concentrating on the viral replication rate,

b1, and the rate of virus-induced cell killing, a1. A model

with two primary virus strains is considered that compete

for the same host population. Cells infected with the

second strain of the virus are denoted by equivalent capi-

tal letters, that is, cells infected with the second strain of

the primary virus only are denoted by Y1, and cells that

also contain the virophage by Y12.

dx

dt
¼ rx 1� x þ y1 þ y12 þ Y1 þ Y12

k

� �

�b1xðy1 þ fy12Þ � c1xðY1 þ fY12Þ
dy1
dt

¼ b1xðy1 þ fyy12Þ � a1y1 � b2y1ðy12 þ Y12Þ
dy12
dt

¼ b2y1ðy12 þ Y12Þ � a12y12

dY1

dt
¼ c1xðY1 þ fY12Þ � b1Y1 � b2Y1ðy12 þ Y12Þ

dY12

dt
¼ b2Y1ðy12 � Y12Þ � b12Y12

(3)
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Figure 4. Virophage competition, according to model (2). The red

line depicts the virophage population with a higher pathogenicity

(lower f), whereas the blue line depicts the virophage population with

a lower pathogenicity. The virophage with the higher pathogenicity

(lower f) wins the competition. Parameters were chosen as follows:

r = 0.01; b1 = 2.5 9 10�7; a1 = 0.01; b2 = 2 9 10�5; aph = 0.05;

fy = 0.05; fz = 0; k = 5 9 105.
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Figure 5. Evolution of the virophage to a higher degree of

pathogenicity can lead to population extinction, according to Gillespie

simulations of model (2). The simulation is started with the first

virophage strain (blue) around equilibrium. The second virophage

strain with increased pathogenicity (red) is subsequently introduced,

invades, and excludes its competitor. Now the dynamics start to

oscillate (due to the higher level of virophage pathogenicity), and the

population crashes to extinction. Parameters were chosen as follows:

r = 0.01; b1 = 2.5 9 10�7; a1 = 0.01; b2 = 2 9 10�5; aph = 0.1;

fy = 0.05; fz = 0; k = 5 9 105.
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The infection rate of the second strain primary virus is

given by c1, and the death rate of cells infected with the

second strain primary virus is given by b1 in the absence

of the virophage and b12 in the presence of the virophage

(where b12 = aph + fb1). The basic reproductive ratio of

the first strain is the same as before, that is,

R
ðyÞ
0 ¼ b1k=a1, and that of the second strain is given by

R
ðYÞ
0 ¼ c1k=b1.
In the absence of the virophage, the primary virus

strain with the larger basic reproductive ratio wins the

competition, and thus evolution will maximize the basic

reproductive ratio (subject to constraints that are not

included in this model).

The situation is more complex in the presence of the

virophage. If a strain is characterized only by a higher

replication rate (b1 or c1) it always wins the competition.

The most obvious reason is that a faster replication rate

increases the basic replicative fitness of the virus. In

addition, however, a faster replication rate of the primary

virus indirectly conveys a benefit by weakening the

virophage. As shown in equilibrium expression y
ð0Þ
1 , a

faster replication rate of the primary virus reduces its

equilibrium level in the absence of the virophage, and

thus reduces the basic reproductive ratio of the virophage.

In fact, weakening the virophage can be more important

than increasing the basic replication kinetics of the pri-

mary virus. This is illustrated as follows. Assume that the

second primary virus strain replicates faster (c1 > b1) and
that it is also characterized by a higher death rate of

infected cells (b1 > a1). Further assume that the increase

in the death rate of infected cells is greater than the

increase in the viral replication rate. In this case, the basic

reproductive ratio of the second primary virus strain,

R
ð2Þ
0 , is lower than that of the first strain, R

ð1Þ
0 ; this also

lowers the spread rate of the virophage. Under these

β1

r r

a1

β2 aph

r

β1

β2

r

Figure 6. Extinction versus persistence of a

virophage with maximal pathogenicity (f = 0)

in dependence of model parameters. The

graphs are based on Gillespie simulations of

model (2). Simulations were started at the

equilibrium (nearest integer number) according

to ODE model (1). The simulations were run

until a time threshold of 50,000 time units,

and it was recorded whether the populations

were extinct (red) or persisted (blue). The

parameters indicated in the plots were

randomly varied 100,000 times. Note that the

borders between extinction and persistence

can be fuzzy due to randomness in the

outcomes. The exact picture depends on the

time threshold when the simulation is stopped.

Obviously, any stochastic simulation will end in

extinction if it is run for long enough,

irrespective of the parameters. However, in the

blue parameter region, persistence lasts for a

significantly longer time than in the red region.

Base parameters were chosen as follows:

r = 0.01; b1 = 2.5 9 10�7; a1 = 0.01;

b2 = 2 9 10�5; aph = 0.05; k = 5 9 105.
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assumptions, three outcomes are possible (Fig. 7). As

expected, the strain with the larger R0 can win the

competition. Interestingly, the strain with the smaller R0

can also win and exclude its competitor. Alternatively,

coexistence of the two strains can be observed. The

dependence of the outcomes on parameters is explored in

Figure 8A. Coexistence occurs only if c1 >> b1. If R
ð2Þ
0 lies

below a threshold, the second strain fails to invade and

goes extinct. If R
ð2Þ
0 is higher but still below the value of

R
ð1Þ
0 , then the second strain can invade and exclude the

first strain. The more effective the virophage is, the larger

the parameter space in which the primary virus with the

lower R0 excludes the strain with the higher R0. This is

shown in Figure 8B–D by exploring the parameter space

for different scenarios that vary in the effectiveness of the

virophage. Therefore, if the virophage has a significant

negative impact on the primary virus population, selec-

tion can favor primary viruses with a reduced R0 because

it lessens the impact of the virophage. In other words, the

presence of the virophage can lead to evolution toward

reduced replicative fitness of the primary virus.

Discussion and Conclusion

This study used mathematical models to study the dynam-

ics between a host population, its primary virus, and a

virophage infecting the primary virus. In particular, the

model was built with the Acanthamoeba–mimivirus–sput-
nik system in mind, although population dynamic mea-

surements or parameter measurements that would allow a

closer application are currently not available. Ecological

studies point to the importance of virophages in regulating

primary viruses and thus impacting protist populations

(Yau et al. 2011). In the context of one specific study, a

Lotka–Volterra-type mathematical model was used to

underline this point (Yau et al. 2011) in the context of

Antarctic lake protists. However, a more general explora-

tion of the dynamics has not been provided. This was done

here, with an emphasis on the evolutionary dynamics. Not

surprisingly, some of the basic properties of the model are

very similar to those observed in models of hyperparasit-

ism (Beddington and Hammond 1977; May and Hassell

1981; Hochberg et al. 1990; Holt and Hochberg 1998). For

example, by regulating the primary virus population, the

virophage can have a positive effect on the host amoeba

population. However, as in the current model the

virophage-infected cells can still allow transmission of the

primary virus to host cells, a reduction in the virophage-

induced death rate of cells, and thus a faster spread of the

virophage, can also negatively impact the amoeba host

population. A lower virophage-induced death rate of cells

not only allows release of more virophages but also of

more primary virus. In general, while the models consid-

ered here are closely related to previously studied hyper-

parasitism models, they do differ in aspects that

specifically apply to the infection of primary viruses by

virophages. Thus, as mentioned above, the presence of

both viruses in the same host cell can lead to interactions

that simultaneously influence the total number of each

virus released from the host cell during its life span. In

addition, the virophage can only parasitize the primary

virus in the intracellular stage during replication and not

at the free virus stage, a distinction that does not necessar-

ily apply to general models of hyperparasitism.
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Figure 7. Competition between two primary

virus strains in the presence of the virophage,

according to model (3). The population of the

second strain shown in red has a lower basic

reproductive ratio, R0, than the first strain

shown in blue. As can be seen from the

graphs, the strain with the lower basic

reproductive ratio can win the competition (A),

lose the competition (B), or coexistence can be

observed (C), depending on the parameters.

Parameters were chosen as follows: r = 0.01;

b1 = 2.5 9 10�7; a1 = 0.01; b2 = 2 9 10�5;

aph = 0.05; f = 0.1; k = 5 9 105; (A)

c1 = 2 9 b1; b1 = 5 9 a1; (B) c1 = 2 9 b1;

b1 = 15 9 a1; (C) c1 = 10�6; b1 = 0.3.
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Beyond the basic dynamics, some interesting evolution-

ary insights emerged. While the virophage is expected to

evolve toward higher levels of primary virus inhibition,

this can lead to more oscillatory dynamics which can

result in extinction of the virophage and also the primary

virus. For pathogenic virophages, persistence is only

possible for relatively slow virophage replication kinetics,

which is again not favored by evolution. This theoretical

result brings up the question whether the presence of a

virophage in food chains is transient and eventually

destined to go extinct as a result of virophage evolution

itself. Data, however, argue against this notion. Sputnik

appears to have a long evolutionary history with Mimi-

virus (Claverie and Abergel 2009; Sun et al. 2010), which

is thought to be as ancient as Eucarya (Iyer et al. 2006).

Also, virophages have persisted in other giant viruses of

the mimivirus lineage (Fischer and Suttle 2011; Yau et al.

2011). This suggests a stable evolutionary association

between virophage, virus, and host. In the light of the

theory presented here, this could be achieved by a variety

of mechanisms. The extended model (1a), which explicitly

took into account free virus populations, suggests that

different viral turnover strategies can have an important

influence on the stability of the system, which in turn

influences how prone the system is to extinction. If the

primary virus achieves reproductive success by having a

long-lived infectious-free virus stage (e.g., through reser-

voirs in sediments (Lawrence et al. 2002)) rather than

investing in a high rate of reproduction in cells, the

dynamics become significantly more stable which could

ensure evolutionary persistence in the presence of the

virophage. Another important aspect that was not
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Figure 8. Outcome of competition between two primary virus strains in the presence of the virophage, depending on the parameter values,

according to model (3). Strain 2 is assumed to have a lower basic reproductive ratio, R0, than strain 1. Strain 2 with the lower R0 wins in the red

parameter region. Strain 1 wins in the blue parameter region. Coexistence is observed in the cyan parameter region. The gray lines indicate the

ratio of R0 for strain 2 over that of strain 1. The lower this ratio, the lower the relative R0 of strain 2. The gray lines show that the ratio of

R
ð2Þ
0 =R

ð1Þ
0 per se does not determine the outcome of competition (on the lines, the ratio is identical). Different outcomes can be observed for the

same ratio R
ð2Þ
0 =R

ð1Þ
0 . The different graphs show the parameter exploration for different parameter values. Panel (A) is the base scenario. Panel (B)

assumes a stronger virophage due to a faster virophage replication rate. Because the virophage is stronger, the parameter region in which the

primary virus with the lower R0 wins is larger. Panel (D) also shows a stronger virophage, this time indirectly due to a faster replication rate of the

host population, demonstrating a similar effect. Panel (C) is done for a relatively low virophage pathogenicity, that is, a high value of f. This

reduces the life span of infected cells because of less inhibition of primary virus replication, thus lowering the virophage burst size. Consequently,

the parameter region in which strain 2 with the lower R0 wins is reduced. Base parameters were chosen as follows: (A) r = 0.01;

b1 = 2.5 9 10�7; a1 = 0.01; b2 = 2 9 10�5; aph = 0.1; f = 0.1; k = 5 9 105. (B) Same as (A) except b2 = 2 9 10�4. (C) Same as in (A) except

f = 1. (D) Same as in (A) except r = 0.1.
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considered in this study is spatially structured popula-

tions. The model presented here, given by ODEs, assumes

perfect mixing of all populations. While this is an

assumption often made in the context of virus dynamics

(Nowak and May 2000), it might apply best to in vitro

situations and perhaps less so to natural populations,

where spatial interactions often play important roles

(Briggs and Hoopes 2004). This argument is similar to

that in the context of the more straightforward predator–
prey dynamics, which can be unstable and prone to

extinction in a perfectly mixed setting, but more stable

and persisting in the long term in the presence of spatial

structure. The interactions explored here are based on

Lotka–Volterra-type predation dynamics, where the stabi-

lizing effect of space has been extensively demonstrated

(Briggs and Hoopes 2004). Another aspect of the model

presented here that might be unrealistic is the assumption

that the virophage can indeed evolve toward sufficiently

high levels of pathogenesis (low values of f) such that the

dynamics become unstable enough to cause extinction in

stochastic settings. It is possible that there are constraints

that limit the degree to which the virophage can inhibit

primary virus replication, thus preventing the virophage

to evolve to a state that would leave the system prone to

extinction. It is currently not known whether such

constraints exist, but it is feasible from a biological point

of view, for example, if there is a trade-off between the

ability of the virophage to inhibit the primary virus and

its ability to reproduce in the viral factories maintained

by the primary virus.

With respect to the evolution of the primary virus, the

model suggests that the presence of virophages can

fundamentally alter the evolutionary course, selecting for

primary viruses with a reduced basic reproductive ratio.

This in turn could allow the ecosystem to evolve to a

state that is beneficial for the host amoeba population.

Thus, the virophage may not only benefit the host

amoebae directly by attacking the primary virus, but it

may also do so indirectly by influencing the course of

primary virus evolution.

While our model was constructed specifically with viro-

phages in mind, it could potentially also apply to satellite

viruses in general. There is a debate in the literature

whether virophages represent a new class of viruses or

whether they are part of the larger group of satellite

viruses that require the help of another virus for replica-

tion (Herrero-Uribe 2011; Krupovic and Cvirkaite-Krupo-

vic 2011; Desnues and Raoult 2012; Fischer 2012). It has

been argued that some satellite viruses can also negatively

impact the helper virus (Krupovic and Cvirkaite-Krupovic

2011). However, the model discussed here examines the

role of virophage “pathogenicity” where the virophage

can have a substantial impact on the fitness of the

primary virus. Unless this assumption applies to satellite

viruses, the applicability of the model presented here is

limited.

It is important to also point out uncertainties and limi-

tations of this analysis. Relatively simple equations were

used to study the dynamics and evolution of the viro-

phage–primary virus–host system. As with all models, the

conclusions can depend on the exact assumptions and

model formulation. In the context of natural populations,

the most striking simplifying assumption is that all popu-

lations mix perfectly, which is inherent in the ODE

formulation that is also used in a large portion of the

literature on virus dynamics. This is probably an accurate

description of in vitro experiments, but might be less

realistic for natural populations where spatial restrictions

can play important roles. The effect of spatial structure

on the evolutionary dynamics should be investigated in

future work. However, describing a simplified scenario

that is more likely to apply to in vitro experiments is still

a very important step in the investigation because it is

possible to test the model by experiments and because

this also forms the basis for more complex models that

take into account spatial structure (e.g., through meta-

population models). Even within the perfect mixing

assumption, uncertainties remain in the model because

the same process can be formulated in different ways. For

example, consider the infection term, which is generally

given by rate constant x number of target cells x number of

infected cells. While this is the most widely used term in

the context of virus dynamics and also epidemiological

models (Anderson and May 1991; Nowak and May 2000),

different mathematical descriptions can be used, for

example, terms that saturate in the number of target cells

and/or infected cells (McCallum et al. 2001; Wodarz and

Komarova 2009). This could change certain model proper-

ties. Therefore, it is important to perform in vitro experi-

ments to test whether the model used here can successfully

describe experimental data that document the time evolu-

tion of an appropriate system, such as the amoeba–mimivi-

rus–sputnik system. If the model presented here is able to

successfully describe such data, it is at least consistent with

data and can be used for further developments, introducing

more complex biological assumptions. Often, however, the

value of a model lies in the disagreement with experimental

data. In this case, it is possible to reject particular assump-

tions with certainty and to narrow the search for the

correct description.

The basic model validity can be tested by very simple

in vitro experiments where a host Acanthamoeba popula-

tion is infected with both the mimivirus and the viro-

phage at different initial concentrations. Nonlinear least

squares fitting procedures can be used to see how well the

system can describe the data, and to estimate parameters
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in the context of one set of initial conditions. By changing

the initial concentrations of cells and viruses, the parame-

terized model should then successfully predict subsequent

experiments. Once the model has been validated/revised,

more complex experiments can be performed to address

specific model predictions discussed in this study. For

example, conditions can be altered such that growth and

death parameters are changed, or the cells and viruses could

be manipulated to have the same effect. The influence of

these parameter manipulations on the stability of the

dynamics should be observed. This would provide an

important piece of information to advance our under-

standing of the evolutionary dynamics discussed here.

This in turn will be important for a better understanding

of the microbial ecology and the evolutionary dynamics

of aquatic and marine systems.
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