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Abstract

African-1 and West African-2.

diverse collections of MTC strains (n = 175 in total).

another and from other MTC species.

clade in Western Africa is described.

Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis (TB) and a member
of the M. tuberculosis complex (MTC). Additional MTC species that cause TB in humans and other mammals include
Mycobacterium africanum and Mycobacterium bovis. One result of studies interrogating recently identified MTC
phylogenetic markers has been the recognition of at least two distinct lineages of M. africanum, known as West

Methods: We screened a blinded non-random set of MTC strains isolated from TB patients in Ghana (n = 47) for
known chromosomal region-of-difference (RD) loci and single nucleotide polymorphisms (SNPs). A MTC PCR-typing
panel, single-target standard PCR, multi-primer PCR, PCR-restriction fragment analysis, and sequence analysis of
amplified products were among the methods utilized for the comparative evaluation of targets and identification
systems. The MTC distributions of novel SNPs were characterized in the both the Ghana collection and two other

Results: The utility of various polymorphisms as species-, lineage-, and sublineage-defining phylogenetic markers
for M. africanum was determined. Novel SNPs were also identified and found to be specific to either M. africanum
West African-1 (Rv1332°?% n = 32) or M. africanum West African-2 (nat”>': n = 27). In the final analysis, a strain
identification approach that combined multi-primer PCR targeting of the RD loci RD9, RD10, and RD702 was the
most simple, straight-forward, and definitive means of distinguishing the two clades of M. africanum from one

Conclusion: With this study, we have organized a series of consistent phylogenetically-relevant markers for each of
the distinct MTC lineages that share the M. africanum designation. A differential distribution of each M. africanum

Background

Mycobacteria that cause human and/or animal tubercul-
sosis (TB) are grouped together within the Mycobacter-
ium tuberculosis complex (MTC). The MTC is
comprised of the classical species M. tuberculosis, Myco-
bacterium africanum, Mycobacterium microti, and
Mycobacterium bovis (along with the widely used vac-
cine strain M. bovis bacillus Calmette-Guérin [BCG])
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[1-3], as well as newly recognized additions Mycobacter-
ium caprae and Mycobacterium pinnipedii [4,5].
Although they are not presently officially described
microorganisms, “Mycobacterium canettii“ (proposed
name), the oryx bacillus, and the dassie bacillus are
additional widely-accepted members of the MTC [6-8].
M. tuberculosis is the predominant cause of human TB
worldwide but M. africanum and M. bovis remain
important agents of human disease in certain geographi-
cal regions. Of note, M. bovis is naturally resistant to
pyrazinamide, a first-line anti-TB drug [9], and so treat-
ment of human TB caused by M. bovis should not
include pyrazinamide. Therefore, the correct identifica-
tion of MTC isolates to the species level is important to
ensure appropriate patient treatment, as well as for the
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collection of epidemiological information and for imple-
menting necessary public health interventions.

Mycobacteriological laboratory methods have tradi-
tionally utilized a series of tests based upon growth,
microscopic, phenotypic, and biochemical properties in
order to segregate the classical members of the MTC
[10]. However, these tests can be slow-to-results, cum-
bersome, imprecise, non-reproducible, time-consuming,
may not give an unambiguous result in every case, and
may not be performed by every clinical microbiology
laboratory. The relatively recent identification of DNA
sequence level differences amongst the species of the
MTC has greatly improved our capacity for performing
molecular epidemiology, phlylogenetic structuring of the
MTC evolutionary tree, and MTC species determina-
tion. Molecular techniques, such as PCR, either alone or
followed by sequence analysis or restriction fragment
analysis (RFA), have proven particularly useful for the
characterization of single nucleotide polymorphisms
(SNPs) and/or chromosomal region-of-difference (RD)
loci (such as insertions, deletions, and rearrangements)
that are either lineage-, species-, or strain-specific [7].
Several groups have reported on the development of
molecular protocols for the definitive identification of
unknown MTC isolates to the species level by RD and/
or SNP analysis [2,7,11-13] and clinical laboratories are
now beginning to integrate such home-brew protocols
into their routine identification protocols for acid-fast
bacilli. The only currently available commercial protocol
for MTC species identification is the GenoType MTBC®
assay (Hain Lifescience, Nehren, Germany) that can dif-
ferentiate M. tuberculosis from M. africanum, M.
microti, M. caprae, M. bovis, and M. bovis BCG [14-16].
However, this test is limited in that it cannot differenti-
ate all species of the MTC and it is not commercially
available for diagnostic purposes in the USA.

In the past, M. africanum strains were generally iden-
tified by default, having first ruled-out both M. tubercu-
losis and M. bovis by the traditional battery of tests.
Two biovars of M. africanum were commonly described
that lay along the phenotypic continuum between M.
tuberculosis and M. bovis [17]. We now understand that
most strains formerly designated as M. africanum
subtype II strains were actually M. tuberculosis
[1,2,7,18-23], while strains formerly characterized as M.
africanum subtype I can be segregated into two distinct
genealogical clades on the basis of multiple genome
sequence-level differences [1,2,7,23]. Several names have
been given to each of the subtype I lineages in order to
distinguish them. In this report we refer to the subtype
I groupings as M. africanum West African-1 and M.
africanum West African-2 [24,25]. For reference, as first
described by Mostowy et al. [23], strains of M. africa-
num West African-1 (also known as clade 1 [26])
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uniquely possess the long sequence polymorphism (LSP)
RD713, while M. africanum West African-2 (also known
as clade 2 [26]) carries the defining LSPs RD701 and
RD702. Huard et al. [7], recently confirmed the clade
specificity of these RDs, identified and validated the first
SNPs restricted to either M. africanum West African-1
or M. africanum West African-2, and placed several
additional previously known and novel polymorphisms
into a unified phylogenetic context vis a vis M. africa-
num West African-1 and M. africanum West African-2.

In the present study, we characterized the content of
known phylogenetically relevant RDs and SNPs in a
blinded, and M. africanum-enriched, set of MTC strains
isolated from TB patients in Ghana. The results of this
evaluation established the utility of several consistent
RD and SNP markers for M. africanum identification
and clade differentiation and allowed us to settle upon a
focused approach for future evaluations. In addition,
novel SNPs were identified and validated against a large
and diverse collection of MTC species and found to be
specific to either M. africanum West African-1
(Rv1332°%%) or M. africanum West African-2 (nat’'),
thereby further expanding the limited number of genetic
markers that can be used to unambiguously differentiate
the two M. africanum lineages.

(This study contributed to the fulfillment of the Mas-
ter’s degree requirements by S.E.G.V.)

Methods

MTC strains analyzed

A total of 175 unique isolates that represent all of the
presently described members of the MTC were included
in the analysis and were derived from three strain col-
lections, maintained at different institutions. One set of
strains (#z = 47) came from the National Reference Cen-
ter for Mycobacteria in Forschungszentrum, Borstel,
Germany and was collected in 2001-2003 from patients
with pulmonary TB in Ghana. This set of Ghana strains
was provided in a non-random blinded fashion but was
known to contain both M. africanum and M. tuberculo-
sis (as controls). All strains were previously character-
ized using the GenoType MTBC" assay, as per the
manufacturer’s instructions, and these results were pro-
vided subsequent to the derivation of species identity
using RD markers. A complete listing of the Ghana col-
lection isolates by strain number accompanies a recent
article by Wirth ez al. [24] (excepting all M. bovis from
Ghana and the non-M. bovis strains 10514/01, 1473/02,
and 5357/02) and was recently made available as part of
the MIRU-VNTRplus database http://www.miru-
vntrplus.org/MIRU/index.faces[27]. Another 124 isolates
were of a well-described strain collection from the Weill
Medical College of Cornell University, New York. The
extensive molecular characterization of the Cornell
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collection, and a complete listing by MTC species,
unique identifier, and origin, was previously reported
[7]. Only one isolate from that collection (M. tuberculo-
sis strain W) was not included in the current evaluation.
This sampling was composed of “M. canettii“ (n = 5),
M. tuberculosis (n = 44), M. africanum West African-1
(n = 12) (note: given previously as M. africanum subtype
Ib), M. africanum West African-2 (n = 18) (note: given
previously as M. africanum subtype la), the dassie bacil-
lus (n = 4), the oryx bacillus (n = 2), M. microti (n =
10), M. pinnipedii (n = 7), M. caprae (n = 1), M. bovis
(n = 14), and M. bovis BCG (n = 8). Lastly, 15 DNA
samples were provided from the collection of the
National Institute for Public Health and the Environ-
ment (RIVM), Bilthoven, the Netherlands [28]. These
included strains of M. tuberculosis (strains 13 and 22),
“M. canettii* (strains 116 and 119), M. africanum West
African-1 (strain 92), M. africanum West African-2
(strains 6 and 85), M. microti (strains 25 and 62), M.
pinnipedii (stains 76 and 81), M. bovis (117 and 128),
and M. bovis BCG (2 and 71) (note: some strain identi-
ties are corrected as per [2,22]). The 4 strains under-
lined in the above were unique and the remaining 11
were also included in the Cornell collection [7]. All
strains from the Ghana collection were screened for
every marker of interest while strains of the Cornell and
RIVM collections were screened selectively, as described
in each respective section of the Results.

PGG Analysis

Frequently observed SNPs in the genes katG*®* and
gyrA®® are routinely assessed in order to broadly cate-
gorize isolates into defined MTC phylogenies, known as
principal genetic groups (PGG) [29]. The distribution of
SNPs in katG*®*® and gyrA®° suggests that PGG1 M.
tuberculosis strains more closely resemble the most
recent common ancestor of all M. tuberculosis strains
than PGG2 strains, and PPG2 strains more so than
PGG3 strains. MTC species along the M. africa-
num—M. bovis evolutionary track are also PGG1 [1,2].
SNP analysis of katG>*® was used to further segregate
PGGla isolates from PGG1b strains [7,30]. Representa-
tives of each PGG were included in the Cornell collec-
tion of MTC strains.

MTC PCR-typing Panel

In previous reports we described [2], and then expanded
upon [7], a PCR-based protocol for the differentiation of
the various MTC species on the basis of genomic dele-
tions. This MTC PCR-typing panel targets eight inde-
pendent loci for amplification (16S rRNA, cfp32
[Rv0577], MiD3 [IS15617], RD4 [RvI510], RD7 [Rv1970],
RD1 [Rv3877-Rv3878], RD9 [Rv2073c], and RD12
[Rv3120]), each of which either results in an amplicon
of an expected size or fails, depending upon the
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genomic content of the MTC strain being evaluated.
The resulting band-pattern that is observed following
agarose gel electrophoresis is indicative of MTC species
identity. Of note, the RD12 target region in M. bovis
and M. caprae overlaps a specific LSP in “M. canettii*
(RD12°*"), while the RD1 target region in M. bovis BCG
overlaps a specific LSP in the dassie bacillus (RD19%).
With this protocol, the pattern of bands for M. microti
and M. pinnipedii are identical, while the pattern of
bands for the orxy bacillus is the same as that of M.
africanum West African-2. The MTC PCR-typing panel
has been successfully applied to collections of MTC
strains from Rio de Janeiro, Brazil, and Kampala,
Uganda, in order to characterize the diversity of MTC
species within these locales [21,31].

PCR amplification primers and conditions

Purified DNA was prepared for PCR as previously
described [2]. For some strains, culture thermolysates
(80°C for 30 min) were used as the source of DNA in
PCR amplifications. The primers used for the MTC
PCR-typing panel, the RD® flank multiplex, RD174,
RD701, RD702, RD711, RD713, in addition to targets
containing the the pks15/1 micro-deletions and SNPs at
aroA®®®, 3¢fp32°", gyrA®®, gyrB'**°, hsp65°*°, katG**?,
katG*®®, PPE55*'*®, PPE55>"**, narGHJI ~*°', RD13'7*,
rpoB'®*, rpoB''®3, Rv1510"*°, and TbD1'®’, were the
same as described earlier [7,32,33]. For analysis of the
loci RD8, RD9, RD10, RD701, and TbD1 additional new
site-specific 3-primer combinations were designed for
each, similar to as previously detailed [32], and each
included two deletion flanking primers and one primer
internal to the deletion. The 3-primer PCRs were each
designed to amplify a product of one size when the tar-
get locus is intact or to produce a different band size
when a known LSP is present. New primers were also
designed to amplify a 1069-bp nat gene fragment and
the SNP-containing targets in nat’>' and Rv1332°%°,
New primers, along with expected band sizes and the
PCR program used to amplify, are listed in Table 1. The
general PCR protocol was identical to that used pre-
viously [2,7]. PCR amplification from purified DNA was
performed using the following cycling conditions: Pro-
gram la (with an initial denaturation step of 5 min at
94°C, followed by 45 cycles of 1 min at 94°C, 1 min at
60°C, and 1 min at 72°C, and ending with a final elonga-
tion step for 10 min at 72°C) or program 2a (similar to
program la but with an annealing temperature of 65°C).
PCR testing of DNA thermolysates was performed in a
similar manner using the following cycling conditions:
Program 1b (with an initial denaturation step of 5 min
at 94°C, followed by 45 cycles of 1 min at 94°C, 1 min
at 60°C, and 4 min at 72°C, and ending with a final
elongation step for 10 min at 72°C) or program 2b
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Table 1 New primers used in this study.

Target Locus Primer Name Nucleotide Sequence PCR Program Size (bp)1

New 3-primer combinations

RD8 RD8fInkF 5" CAT GCT AAG CAG ATC GTC AGT TTT GA 3’ 1a, 1b 289/485
RD8IiF 5" GCC GCA TTG TCG GGG TGC GAT TCC CAC ACC 3
RD8fInkR 5" CGG TTC CGG CGG GCT CCG GAT TGC TGT ACT 3’

RD9 RDOfInkF 5" ACT CCC AGC GCT CGG CGG TGA CGG TAT CGT 3 1a, 1b 293/499
RDIIR 5" ATT CCG TGG GCG CTG CGG CCA ATG TTT GIT 3
RDOfINkR 5" GTG GCT CGG CAC GCA CAA CTC GTT CAA CAG 3

RD10 RD10fInkF 5" GCG CCA CCT CGG CCG GAT TCC TGC AAC CAT 3’ 1a, 1b 291/478
RD10IR 5" TTC GGC CTT GCC GTC ATA GCG CAA TAG CGA 3’
RD10fInkR 5" CTC GGC GGC AAG TCG GCG GCC ATC ATT CTC 3’

RD701 RD701fInkF 5" ACT CGC CGG CTG TGC AGG TGG TCG TT 3 1a, 1b 350/487
RD701iR 5" CCA AAA TTG TCG CCC TTC AGT GCG GTA TCC 3’
RD701fInkR 5" GAG GGG CAG CGC GGG GAA GTC G 3

TbD1 ToD1fInkF 5" CTA CCT CAT CTT CCG GTC CA 3 1a, 1b 298/485
ThD1iF 5" AAG GAA CTG CGA GAT AGG ATC GCC AAT TTC 3
ToD1flnkR 5" CAT AGA TCC CGG ACATGG TG 3’

New primers for PCR-RFA

Rv1332°% Rv1332F 5" GCC CTG CGC AGC CTG CAC GAA CCT GAG ATT 3' Ta, 1b 344
Rv1332R 5" GGA TGC CCC CGA CGT CGG TGA TGG AGT TCA 3

nat”' nat751F 5" ACC CGG CAT CGA AGT TCG TCA CGG GAC TGA 3' 2a,2b 766
nat751R 5" TGG TGT ACC AGG GGG CAC CGC AAACCAG ¥

New amplification primers

nat natF 5" ATC GGT GCG ACA TAG TTG G 3 23, 2b 1069
natR 5" GCC TTC TGC TCA AAG TTG CT 3

Additional sequencing primers

nat natif 5" CAC CGA CCT CAC CGC TTC 3
natiR 5" GTC CTC GAG CCG ATA AGG TT 3
Corrected primer from ref. 7
katG** katG203R 5" CAA GAA GCT CTC ATG GGC GGA CCT GAT TGT 3

! for RD loci, expected band sizes given as intact/deletion present

(similar to program 1b but with an annealing tempera-
ture of 65°C). Programs 1b and 2b were also used to
amplify from purified DNA when potential target PCR
fragments were greater than 1,250 bp. PCR products
were visualized as previously described by agarose gel
electrophoresis [2]. Negative or unexpected positive
PCR results were repeated at least once for confirma-
tion. Importantly, all PCR tests included parallel samples
containing DNA of M. tuberculosis strain H37Rv (ATCC
27294") and either M. africanum West African-1 strain
Percyl6, M. africanum West African-2 strain ATCC
254207%, or M. bovis strain ATCC 19210F, where appro-
priate, as controls. All controls consistently provided the
expected results for each particular marker screened.
Negative control PCRs, lacking input DNA, were also
included to control for DNA contamination.

PCR of the nat gene (1069 bp) was performed by a
slightly different protocol. PCR Program 2a and a PCR
reaction mix in 50 pul, with 40 pmol of each primer, 5
mM MgCl,, 0.2 mM dNTPs, 1U Taq polymerase

(Invitrogen, Brazil), PCR-buffer (10 mM Tris-HCl, 1.5
mM MgCl,, 50 mM KCI, pH 8.3) (Invitrogen, Brazil),
10% glycerol, and 10 ng of target DNA were used in
this case.

It should be noted that the M. africanum West Afri-
can-1- and M. africanum West African-2-restricted
LSPs were amplified by RD flanking primers [23] and
analyzed as previously described [7] with the results
based upon a size estimation of the PCR products on
agarose gel. PCR amplification of RD713 in M. africa-
num clade 1 strains typically yields a 2,798 bp amplicon,
while amplification of this locus in other MTC strains
either results in a 4,248 bp product (PGG2 and PGG3
M. tuberculosis) or no PCR product (PGGla MTC spe-
cies with the partially overlapping RD7 deletion and
PGG1b M. tuberculosis which possess additional geno-
mic content at this locus [7]). In PCR amplification of
RD711, most, but not all, M. africanum clade 1 strains
are expected to yield a 944 bp amplicon while the
remaining M. africanum West African-1 strains and
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MTC species amplify a 2,885 bp product. With respect
to RD701, all M. africanum West African-2 strains are
expected to generate a 340 bp amplicon while strains
from the other MTC species amplify a 2,081 bp PCR
fragment. Likewise, for RD702, all M. africanum West
African-2 strains are expected to amplify a 732 bp pro-
duct while strains from the other MTC species produce
a 2,101 bp PCR fragment. For this study, RD9 (as part
of the MTC PCR typing panel), TbD1, and RD701 were
evaluated by both 2-primer and 3-primer PCR tests.

SNP analysis by PCR-RFA and sequencing
Characterization of the SNPs at gyrd”®, gyrB***°,
hsp65°*°, katG**?, katG*®*, narGHJI ~*°', rpoB*°*,
rpoB'®3, and Rv1510''*° was performed by PCR-RFA
[7,33]. For the analysis of the SNPs in aroA'”?,
3'cfp32°'!, mmpL6°>', nat’®', and TbD1'*” novel PCR-
RFA procedures were developed, similar to those pre-
viously detailed [2,7]. The restriction enzymes and
expected digest band sizes for each PCR-RFA are listed
in Table 2. Amplified products from M. tuberculosis
H37Rv and a second appropriate MTC species (see
above) were included in all digest reactions as controls.
All unexpected digestion results were repeated least
once for confirmation. For each PCR-RFA evaluation,
the PCR fragments from at least one strain of each
digest pattern were sequenced in order to confirm the
presence or absence of the target SNP.

Because it was not possible to develop a PCR-RFA
based approach for characterization of the SNPs at
PPE55*'*%, PPE55*'**, RD13'7%, and Rv1332°?%, SNP
analysis for these markers was performed by direct
sequencing of the PCR products. The same procedure
was used for verification of micro-deletions in the
pks15/1 locus [34]. In most cases, the primers for PCR
amplification primers were also used for sequencing, as
previously described [2,7], with the exception of the
1069 bp nat fragment which was also sequenced using
internal primers Table 1). Sequencing was performed
using the BigDye Terminator kit (PE Applied Biosys-
tems) on an ABI 3730 DNA Analyzer, either at the Cor-
nell University BioResource Center (Ithaca, NY) http://
www.brc.cornell.edu or at the Oswaldo Cruz Foundation
(PDTIS DNA Sequencing Platform/FIOCRUZ, Rio de
janeiro, RJ.); http://www.dbbm.fiocruz.br/PDTIS_Gen-
omica/) and the results were analysed as previously
described [2,7].

Nucleotide sequence accession numbers

Gene fragment sequences containing novel SNPs were
submitted to GenBank for M. africanum West African-1
(Rv1332°?3; accession number FJ617580) and M. africa-
num West African-2 (nat’®'; accession number

FJ617579). Previously identified polymorphic gene
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fragment sequences are now available for M. africanum
West African-1 (aroA*®® [FJ617581] and TbD1'%”
[F]617582]) and M. africanum West African-2 (hsp65°*°
[FJ617583]; Rvi510"%° [GU270931]; and rpoB variants
[FJ617584, F]617585, FJ617586]).

Results

Genetic characterization of MTC isolates by PCR deletion
analysis

For this study we applied the MTC PCR-typing panel to
a blinded, M. africanum-enriched, challenge collection
of MTC strains isolated from patients with TB in
Ghana (n = 47). As a result, 18 M. tuberculosis isolates,
20 strains of M. africanum West African-1, and 9 M.
africanum West African-2 strains were putatively differ-
entiated [7]. Strains were identified as M. tuberculosis
by the successful amplification of targets internal to the
RD9 and RD12/RD12%" loci. Strains were identified as
M. africanum West African-1 on the basis of failure of
amplification of the RD9 locus but the successful ampli-
fication of the RD7 target region, while M. africanum
West African-2 strains were putatively identified on the
basis of failure of amplification of the RD9 and RD7
loci but the successful amplification of regions within
the RD1”°¢/RD1%*, RD4, and RD12 loci. No M. bovis
strains (which would have shown a pattern lacking in
amplicons for RD4, RD7, RD9, and RD12) or other
MTC species were identified (see ref. 7 for the expected
MTC PCR typing panel patterns of “M. canettii*, M.
microti, M. pinnipedii, and the dassie bacillus). Of note,
all strains amplified for the ¢fp32 (Rv0577) gene, a tar-
get that has been previously proposed to be MTC-
restricted and may be necessary for pathogenesis
[2,7,35]. The segregation of M. tuberculosis from M.
africanum in this collection by the MTC PCR typing
panel paralleled the results derived from the GenoType
MTBC" assay, which assigned these isolates as either M.
tuberculosis (n = 18) or M. africanum subtype 1 (n =
29). These identifications were consistent with indepen-
dently derived data for this strain set [24]. Fig. 1 illus-
trates a typical MTC PCR-typing panel profile for M.
tuberculosis, M. africanum West African-1, M. africa-
num West African-2, and M. bovis. A summary of all
molecular test results derived in this study is provided
in Table 3 and illustrated schematically in Fig. 2. With
respect to the RD markers interrogated above, note
their phylogenetic positions in Fig. 2 at nodes 1, 6, 9,
14, and 16-19.

An exception to the common M. tuberculosis MTC
PCR-typing panel profile occurred with 9 M. tuberculo-
sis strains from Ghana, which failed to amplify the
IS1561 target (see Fig. 1B). Previously, strains with this
particular band pattern were found to share a clonal
deletion called RD®® that defines a major, newly
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Table 2 Summary of PCR-RFA protocols used in this study’
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Locus Restriction MTC species Predicted digest
enzyme pattern (bp)
katG*>3 BstNI PGG1 MTC 12,59, 106, 174
PGG2, PGG3 M. tuberculosis 12, 59, 280
gyrA%® Alel PGG1, PGG2 MTC 161, 193
PGG3 M. tuberculosis 354
narGHJI Sau3Al “modern” M. tuberculosis 155
-251
Remaining MTC 69, 86

gyrB"**° Tagla ‘M. canettii’, M. tuberculosis
Remaining MTC
katG*% BstNI ‘M. canettii’, M. tuberculosis, M. africanum WA-1
Remaining MTC (PGG1a)
3cfp32®’ BsiN M. tuberculosis, M. africanum WA-1
Remaining MTC (PGG1a)
aroA"’ BssHIl M. africanum WA-1
Remaining MTC
TbD1'¥” Tsel M. africanum WA-1
Remaining MTC
Rv1510"%° Nl M. africanum WA-2, dassie bacillus
Remaining MTC
hsp65>© Aflll M. africanum WA-2
Remaining MTC
nat’’ Bcgl M. africanum WA-2
Remaining MTC
rpoB'* Sau3Al M. africanum WA-2
Remaining MTC, M. africanum WA-2
rpoB''? BstUl M. africanum clade 2
Remaining MTC, M. africanum WA-2
mmplL6>®'  Hpy166lll ‘M. canettii’, M. tuberculosis, M. africanum WA-1, M. africanum WA-2, dassie

bacillus
Remaining MTC

6, 21, 74, 96, 129, 270, 444

6, 21, 74, 96, 129, 163, 107
444

140, 230
370

28, 34, 75, 235°
34, 75, 263

177, 254
104, 150, 177

46, 454
46, 193, 261°

192, 841
1033*

49, 392
441

111,177, 208, 270
111, 208, 447

11,12, 18, 69, 87, 163
11,12, 18, 69, 250

28,332
28,79, 253

155, 298°

453

WA, West African

! This table contains the correction of errors from ref. [7]
2 “M. canettii” fails to PCR amplify

3 'modern’ M. tuberculosis fails to PCR amplify

4 M. bovis fails to PCR amplify
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A. M. tuberculosis B. M. tuberculosis
12345678 12345678

600 = : -

C. m africanum WA-1 D. M africanumWwA-2
12345678 12345678

600 '600 -

E. M. bovis

12345678

600 -

Figure 1 The composite MTC PCR typing panel. lllustrated is the MTC PCR typing panel output pattern for A) a typical M. tuberculosis strain,
B) a secondary pattern seen in some Cameroon genotype M. tuberculosis strains from Ghana, C) a typical M. africanum West African-1 strain, D)
a typical M. africanum West African-2 strain, and E) a typical M. bovis strain [7]. PCR products and the 100-bp ladder (unlabelled lanes) were
visualized by agarose gel electrophoresis and ethidium bromide staining. Lanes: 1, 16S rRNA; 2, cfp32 (Rv0577); 3, MiD3 (IS1561%); 4, RD4 (Rv1510);
5, RD7 (Rv1970); 6, RD1 (Rv3877-Rv3878); 7, RD9 (Rv2073¢); 8, RD12 (Rv3120). WA - West African.




Vasconcellos et al. BMC Infectious Diseases 2010, 10:80
http://www.biomedcentral.com/1471-2334/10/80

Table 3 Summary of results targeting MTC polymorphic loci
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Target Locus

Node #(s) in Fig. 2 M. tuberculosis (n)

M. africanum WA-1 (n) M. africanum WA-2 (n) Other MTC (n)

RD12%"/RD12 ' 1,17 intact (18)
3'cfp32 1 intact (18)
TbD1 2 deleted (18)
pks15/1 3,9 7-bp deletion (18)
PPE55 2 4,16 intact (9)
fail (9)
MID3/RDR® 2 (1S1561" + PPE55) 4,16 intact (9)
fail (9)
RD9 6 intact (18)
RD713 3 7 fail (18)
RD711 8 intact (18)
RD7 3 9 intact (18)
RD8 9 intact (18)
RD10 9 intact (18)
RD701 11 intact (18)
RD702 1 intact (18)
RD19%5/RD1°9 # 14,19 intact (18)
RD13 17 intact (18)
RD4 18 intact (18)
SNP loci
narGHJI 2° 2 C—T (18)
katG*®® 3 CTG—CGG (18)
gyrA® 5 no A (18)
gyrB%O 6 no A (18)
TbD1'?” 7 fail (18)
aroA’® 7 no A (18)
Rv1332°% 7 no A (27)
katG** 9 no A (18)
3cfp323" 9 no A (18)
RD13'"* 9 no A (18)
PPE552'48 9 no A (9)
fail (9)
PPE5521%% 9 no A (9)
fail (9)
Rv1510"%° 10 no A (18)
hsp65°4° 11 no A (18)
nat”’ 11 no A (63)
rpoB''3 12 no A (18)
rpoB'*° 13 no A (18)
mmpl6>" 15 fail (18)
Other targets
cfp32 intact (18)

intact (20) intact (9)
intact (20) intact (9)
intact (20) intact (9)
intact (20) 6-bp deletion (9)
intact (20) intact (9)
intact (20) intact (9)
deleted (20) deleted (9)
deleted (20) fail (9)
deleted (20) intact (9)
intact (20) deleted (9)
intact (20) deleted (9)
intact (20) deleted (9)
intact (20) deleted (9)
intact (20) deleted (9)
intact (20) intact (9)
intact (20) intact (9)
intact (20) intact (9)
no A (20) no A (9
no A (20) noA (9
no A (20) no A (9)
G—T (20 G-T (9)
C—T (20) no A (9)
G—A (20) no A (9)
G—T (32) noA(11) no A (15)
no A (20) ACC—ACT (9)
no A (20) G—A (9)
no A (20) G—A (9
no A (20) A-G (9)
no A (20) A—>G (9)
no A (20) G—A (9)
no A (20) C->G 9
no A (32) G—A (27) no A (53)
no A (20) C>T ()
no A (20) no A (9
no A (20) no A (9)
intact (20) intact (9)

1234

pairs of partially overlapping LSPs
WA, West African; Fail, no PCR amplification; bp, base pair; A, change

recognized, lineage of M. tuberculosis that is the predo-
minant cause of TB in Rio de Janeiro, Brazil, and that
has disseminated to many countries around the world
[7,31,32]. However, multiplex PCRs for both the RDRi°
LSP and the coincident RD174 deletion [32] showed
that these Ghanaian strains were not RD® genotype M.
tuberculosis. Rather, data from the MIRU-VNTRplus

website identified these strains as being of the RD726-
harboring Cameroon genotype (ST61 and variants) and
lists the strains as lacking IS1561° [27]. The Cameroon
genotype therefore appears to possess an undefined LSP
of IS1561’ that overlaps RDRIC (Fig. 2; see node 4) and
the MiD3 locus in M. microti and M. pinnipedii (Fig. 2;
see node 16) [7,31].
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O

"M. canettii"

"ancient" M. tuberculosis

"modern" M. tuberculosis PGG1b

1
I C J "modern" M. tuberculosis PGG2

"modern" M. tuberculosis PGG3

M. africanum WA-1

M. africanum WA-2

dassie bacillus

oryx bacillus

M. microti

M. pinnipedii

®

M. caprae

M. bovis
M. bovis BCG

(19

Figure 2 Summary diagram and phylogenetic postitions of the genomic markers interrogated against the Ghana MTC strain
collection. Shown are the various major divisions of the MTC segregated according to the presence or absence of inter-species-, intra-species-,
and sublineage-specific polymorphisms. Circles are placed at points in evolutionary history beyond which each strain that was evaluated
possessed a consistent set of polymorphisms. The nodes are numbered in the figure as follows to denote: 1. RD12%", 3' ¢fp32 deletion; 2. TbD1,

narGHJI 2'%; 3. pks15/1 (7-bp deletion), katG*®; 4. undefined deletion at the RDF/MID3 locus; 5. gyrA®®; 6. RD9, gyrB'°; 7. RD713, TbD1'?’,
aroA’®, Rv1332°%% 8. RD711; 9. RD7, RD8, RD10, pks15/1 (6-bp deletion), katG*®, 3'cfp323'", RD13'74, PPE552'8, pPESS>T>%: 10, Rv15710"%%; 11.
RD701, RD702, hsp65°“°, nat”'; 12. rpoB"'%; 13. 1poB'®®; 14. RD19%; 15. mmpL6°"; 16. MiD3; 17. RD12, RD13; 18. RD4; 19. RD1°°. Lineages that
include strains from the Ghana collection are terminated with arrowheads. Note that distances are arbitrary and do not reflect the number of
phylogenetically relevant polymorphisms present at each juncture. ToD1-positive M. tuberculosis is also known as “ancient” M. tuberculosis and
TbD1-negative M. tuberculosis is also known as “modern” M. tuberculosis [1]. WA - West African.

In addition to the MTC PCR-typing panel, some PCR
targets used in SNP analysis, as will be described below,
amplify from genomic regions that are deleted is some
MTC species or lineages [7]. The successful amplifica-
tion of the 3’¢fp32 and RD13 loci in all the strains of
the Ghana collection confirmed the species distribution
obtained using the MTC PCR-typing panel, as these tar-
gets are deleted in either “M. canettii“ (Fig. 2; see node
1) or both M. caprae and M. bovis (Fig. 2; see node 17),
respectively [7]. Furthermore, PPESS is located proximal
to 1S1561” and so the failure to amplify PPESS from the

9 Cameroon genotype M. tuberculosis isolates is consis-
tent with a single genomic deletion in the region of
IS1561° (Fig. 2; see node 4). Lastly, TbD1 is an impor-
tant phylogenetic marker that categorically divides M.
tuberculosis into two major lineages [1]. All M. tubercu-
losis isolates in the Ghana collection failed to amplify
from targets internal to TbD1 (Fig. 2; see node 2), while
all M. africanum clades 1 and 2 strains yielded an
amplicon of the correct size, consistent with the pre-
vious finding that isolates from the M. africanum—M.
bovis evolutionary tract are all TbD1-positive and likely
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a branch off of a TbD1-positive M. tuberculosis lineage
[1,24].

We next evaluated the Ghana strain collection by PCR
(using LSP flanking primers) for RDs that have been
described previously as being either specific to M. afri-
canum West African-1 (RD713), restricted to a sub-
group of M. africanum West African-1 (RD711), or
specific to M. africanum West African-2 (RD701 and
RD702) [7,23]. All M. africanum West African-1 strains
(n = 20) yielded amplification products for RD711 and
RD713 of shorter band sizes that were consistent with
amplicons that bridge a deletion (Fig. 2; see nodes 7 and
8). All M. tuberculosis strains (n = 18) contained the
RD711 and RD713 regions, while each M. africanum
West African-2 strain (n = 9) yielded PCR fragments
suggestive of intact RD711. Each M. africanum West
African-2 strain (n = 9) also failed to produce any
amplification products from the RD713 locus region, as
expected, owing to the overlapping RD7 [7]. Likewise,
all M. africanum West African-2 strains produced shor-
tened RD701 and RD702 amplicons (Fig. 2; see node
11), while each M. tuberculosis and M. africanum West
African-1 strain exhibited PCR fragments representative
of intact sequences within these loci. The M. africanum
clade-specific bridge-deletion PCR results were therefore
congruent with the MTC PCR-typing panel data.

A drawback, however, of the MTC PCR-typing assay
as it was designed is that overlapping polymorphisms
may occur in the target regions of the panel. Such
hypothetical LSPs would therefore have the potential to
cause a failure in amplification and to confuse the inter-
pretation of banding patterns which may, in turn, lead
to erroneous species determinations. To begin to
address this issue, with respect to loci relevant to the
species within the current Ghana collection, we devel-
oped new 3-primer combination sets for RD8, RD9,
RD10, RD701, and TbD1 (Table 1). As was expected
from previous phylogenetic evaluations [1,3,7], each of
the test loci were found to be intact in the Ghana col-
lection PGG2 M. tuberculosis strains, excepting TbD1.
Moreover, excepting RD9, each of the studied RDs were
intact in the M. africanum West African-1 strains, while
in the M. africanum West African-2 strains only TbD1
remained intact, i.e. the RDs 8-10 and RD701 were
deleted. Overall, no inconsistencies were observed with
respect to species identification within the Ghana MTC
strain collection across the different strategies for PCR
deletion analysis that were employed.

Genetic characterization of MTC isolates by SNP analysis

For the second stage of this study we screened the
Ghana MTC collection for known phylogenetically rele-
vant SNPs. With respect to the M. tuberculosis strains,
we determined that all were PGG2 (n = 19) (Fig. 2; see
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nodes 3 and 5). Consistent with this determination, the
7-bp pks15/1 micro-deletion was observed in all the M.
tuberculosis strains; this polymorphism is positioned at
the same point along the MTC evolutionary tree as the
katG**®* CTG—CGG SNP that marks PGG2 M. tubercu-
losis strains (Fig. 2; see node 3). Likewise, an SNP in the
narGHJI operon promoter (-215 C—T), that is phylo-
genetically coincident with TbD1 [33] was also present
in all of the Ghanaian M. tuberculosis isolates evaluated
(Fig. 2; see node 2). Lastly, the gyrB'**® G—>T poly-
morphism (also a target of the GenoType MTBC® assay
[14-16]) is known to coincide with the RD9 deletion
and likewise segregated the M. tuberculosis isolates
from the strains of the M. africanum strains (Fig. 2;
see node 6).

The following considers SNPs that inform the phylo-
genetic interrelationships among most of the non-M.
tuberculosis MTC species. First, all the M. africanum
strains (n = 28) were PGG1. Previously, an ACC—>ACT
SNP at katG>* has been used to segregate PGG1 strains
into PGG1la and PGG1b [30]. Huard et al. [7] reported
that this SNP is present in M. africanum West African-
2 and all downstream species in the MTC evolutionary
tree (Fig. 2; see node 9). As expected, the Ghana collec-
tion M. africanum West African-1 strains were deter-
mined to be PGG1b, while the M. africanum West
African-2 strains were PGGla by katG>* analysis. Addi-
tional inter-species-specific SNPs that colocalize with
the katG*®® SNP and segregate the M. africanum clades
(and are also notably coincident with RD7, RD8, and
RD10) have also been reported at 3'cfp32>'! (G—A),
PPE55%'® (A>G), PPE55%'%* (A—>G), and RD13"*
(G—>A), in addition to a 6-bp pksi5/1 micro-deletion
(Fig. 2; see node 9) [7,34]. These loci were interrogated
and indeed found to partition the M. africanum West
African-2 strains from the M. africanum West African-1
and M. tuberculosis strains of the Ghana collection, con-
sistent with previous reports [7,34]. Lastly, we also
screened for an inter-species-specific SNP in mmpL6°>*
(AAC—AAG) [1,7] that is not observed in M. africanum
West African-1, M. africanum West African-2, nor the
dassie bacillus, but is present in all of the remaining dis-
tal species along the oryx bacillus—>M. bovis evolution-
ary track of the MTC phylogenetic tree [1,7,26]. As was
expected, we found mmpL6>" to be unaltered in the M.
africanum West African-1 and West African-2 strains of
the Ghana MTC collection (Fig. 2; see node 15). The
mmpL6°>" SNP occurs within a TbD1 locus gene and
was thus deleted in the TbD1-negative M. tuberculosis
strains of the Ghana collection.

We then investigated SNPs that have been previously
described to be restricted to either M. africanum West
African-1 or M. africanum West African-2 within the
MTC [7]. SNPs at aroA®®® (G—A) and TbD1'*” (C—T)
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were found to be limited to the M. africanum West
African-1 strains of the Ghana MTC collection, thereby
coinciding with the M. africanum West African-1-speci-
fic LSP RD713 (Fig. 2; see node 7). Point mutations at
Rvi510"*° (G—A), hsp65°*° (C—G), and rpoB''®?
(C—T) were also screened and found to be restricted to
the M. africanum West African-2 strains (Fig. 2; see
nodes 10-12); a previously noted sublineage-specific
SNP at rpoB*®* (C—T) was not observed (Fig. 2; see
node 13). However, from previous data [7], only
hsp65°*° has been shown to be truly M. africanum West
African-2-specific and to associate pylogenetically with
RD701 and RD702. In fact, Rv1510"'** was previously
found to be an inter-species-specific SNP that M. africa-
num West African-2 shares with the dassie bacillus, and
is indicative of a common ancestor between these spe-
cies, while not all M. africanum West African-2 strains
possess the 7poB® and rpoB'®*° SNPs [7]. These latter
point mutations appear to have been acquired in a step-
wise sequential order and to define the branch points of
sublineages within the M. africanum West African-2
species. All Ghana M. africanum West African-2 strains
evaluated in this study therefore fell into the second of
three potential rpoB sequence-based sublineage
branches. Overall, each of the known MTC inter-spe-
cies-specific, species-specific, and sublineage-specific
SNPs for which the Ghana MTC collection was evalu-
ated were entirely consistent with the current RD ana-
lyses and showed a species distribution that paralleled
previous descriptions [7].

Identification of a novel Mycobacterium africanum West
African-1-specific Rv1332°2% SNP

In the process of sequencing the RD711 bridge ampli-
con to confirm its correct amplification in an M. africa-
num West African-1 strain, we noted a nonsynonomous
G—T SNP in the region 5’ of the RD711 deletion break-
point and within the Rv1332 gene, affecting nucleotide
523 (Rv1332°%3; V175L). To investigate the distribution
of this Rv1332°** SNP amongst the MTC species, we
generated a new primer pair to amplify the SNP-con-
taining region upstream of RD711. We then performed
PCR and sequence analysis of the amplified products
upon samples from select MTC strains of the Cornell
collection representing each of the MTC species and
major M. tuberculosis lineages, i.e., “M. canettii“ (n = 2),
TbD1-positive M. tuberculosis PGG1 (n = 2), TbD1-
negative M. tuberculosis PGG1 (n = 2), M. tuberculosis
PGG2 (n = 2), M. tuberculosis PGG3 (n = 3), M. africa-
num West African-1 (n = 12), M. africanum West Afri-
can-2 (n = 2), the dassie bacillus (n = 2), the oryx
bacillus (n = 2), M. microti (n = 2), M. pinnipedii (n =
2), M. caprae (n = 1), M. bovis (n = 2), and M. bovis
BCG (n = 2). Only the 12 M. africanum West African-1
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strains possessed the Rv1332°% substitution. When the

Ghana collection was subsequently evaluated (n = 47),
the Rv1332°%3 SNP was likewise restricted to the 20 M.
africanum West African-1 strains. In total, 85 MTC iso-
lates were screened, 32 of which were M. africanum
West African-1. The data thus supported that the
Rv1332°%% SNP is a specific marker for M. africanum
West African-1 and is only the third such polymorph-
ism reported to date (Fig. 2; see node 7) [7].

Identification of a novel Mycobacterium africanum West
African-2-specific nat’>' SNP

Previously, the nat (Rv3566¢) gene product arylamine N-
acetyltransferase has been investigated as a potential
contributor to reduced isoniazid susceptibility in M.
tuberculosis [36]. In the course of those investigations,
SNPs were identified in the nat gene that were
restricted to different M. tuberculosis lineages. We
found a novel nonsynonomous G—A SNP in two M.
africanum West African-2 strains at nat nucleotide 751
(nat”'; E251K) upon amplification and sequencing of a
1069-bp nat fragment using samples from a subset of
MTC representative strains (RIVM collection; n = 15).
Test sequencing of the 1069-bp nat amplicon from 16
MTC strains from the Cornell collection supported the
limited distribution of the nat’>' SNP. We then devel-
oped a PCR-RFA protocol for the nat’>' SNP, amplify-
ing a shorter product using new primers and employing
the restriction enzyme Bcgl, and applied the protocol to
all strains of both the Cornell (# = 124) and Ghana col-
lections (n = 47). Consistent with the preliminary test
results, all MTC isolates amplified nat successfully.
However, only the 27 M. africanum West African-2
strains possessed the nat’®' polymorphism, as deter-
mined by PCR-RFA. The West African-2 strains showed
a 4-band digest pattern on agarose gel electrophoresis as
opposed to the remaining MTC strains that showed a 3-
band digest pattern (see Table 2). Thus, this SNP
appears to be a specific marker for M. africanum West
African-2 (n = 175 unique MTC strains evaluated in
total) and is only the second SNP reported to be
restricted to this clade (Fig. 2; see node 11) [7]. Of note,
both the nat’" and hsp65°*° M. africanum West Afri-
can-2-specific SNPs are present in the genomic sequen-
cing project of M. africanum strain GM041182 that is
currently nearing assembly completion http://www.san-
ger.ac.uk/sequencing/Mycobacterium/africanum/.

Discussion

M. africanum has been reported to be an important
cause of TB in the West African countries of Guinea-
Bissau (52%) [37], The Gambia (38%) [38], Sierra Leone
(24%) [39], Senegal (20%) [17], Burkina Faso (18.4%)
[40], Cameroon (9%) [41], Nigeria (8%) [42], and Cbte
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D’Ivoire (5% of cases) [22]. M. africanum has also been
identified in the West African countries of Benin, Maur-
itania, and Niger [7,43]. Many of the previous M. africa-
num reports appeared, however, before molecular
markers distinguished two different clades within this
species [1,7,23,25,26]. Therefore, this study is one of the
few to use clade-specific molecular markers to investi-
gate the diversity of M. africanum strains causing TB
within a specific African locale. Previous MTC species
surveys that characterized strains using truly informative
phylogenetic markers identified M. africanum West
African-1, but not West African-2, in Cameroon and
Nigeria [41,42] or M. africanum West African-2, but
not West African-1, in The Gambia [38,44] and Guinea-
Bissau [23,45]. In contrast, with this study, we highlight
the fact that both clades of M. africanum are contribut-
ing to the TB burden in Ghana [24]. However, because
the Ghana MTC collection was not representative, the
current study does not allow us to estimate the propor-
tion of TB caused by the various MTC clades in this
country. Such a systematic survey of MTC population
structure in Ghana is currently in progress.

In actuality, few reports have definitively shown an
overlap in the geographic ranges of M. africanum West
African-1 and M. africanum West African-2. Previously,
Huard et al. [7] studied isolates derived from patients in
Niger that constituted both M. africanum clades; both
lineages were likewise found to coexist in Sierra Leone
[39]. In the absence of a molecular analysis similar to
that presented herein, it is not known for certain which
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M. africanum clade predominates in many of the other
M. africanum-endemic West African countries or if their
ranges coincide elsewhere. However, a cross-comparison
of molecular epidemiologic evidence presented in some
earlier reports [17,46] and more recent data [7,41,43]
does suggest that M. africanum clades 1 and 2 may both
occur in at least Cote D’Ivoire, a country that borders
Ghana. The picture that emerges from the combined stu-
dies [7,17,22-24,30,37-48] is of a differential geographic
distribution of the M. africanum lineages, with West
African-1 predominating in Eastern-West Africa (Camer-
oon, Nigeria), West African-2 in Western-West Africa
(the Gambia, Guinea-Bissau, Senegal), and the two clades
overlapping in Central-West Africa (Cote D’Ivoire,
Ghana, Niger, Sierra Leone) (Fig. 3). A conceptually simi-
lar gradient of M. africanum prevalence across Western
Africa was recently hypothesized by de Jong et al., but
their analysis did not make a distinction between the two
M. africanum clades [48]. Lastly, although TB caused by
M. africanum is concentrated in sub-Saharan West Afri-
can countries, with immigration and international travel,
sporadic cases have also been reported in the USA, the
Caribbean, and Europe [28,43,49], including one out-
break of multi-drug resistant M. africanum at a Parisian
hospital [17,50]. With improved molecular methods of
identification, we expect that further cases of infection
will be identified outside of the traditional endemic areas
of M. africanum.

Molecular systems are preferred for the differentiation
of M. africanum from M. tuberculosis and M. bovis

Senegal

The
Gambia

Guinea-Bissau

Sierra Leone
Cote d'lvoire

Ghana

Cameroon

Current evidence suggests that only M. africanum West African-1 is found

Figure 3 Map of sub-Saharan West Africa illustrating the differential geographic distribution by country of the M. africanum clades.

africanum West African-2 alone is found in Western-West Africa (the Gambia, Guinea-Bissau, and Senegal; speckled), but that the two clades
overlap in Central-West Africa (Cote D'lvoire, Ghana, Niger, and Sierra Leone; grey).

in Eastern-West Africa (Cameroon, and Nigeria; black) and M.
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given the heterogeneous phenotypic patterns among M.
africanum strains, and the prolonged time-to-results
and subjectivity inherent to the interpretation of some
tests. Importantly, previous data indicate that there are
no definitive phenotypic characteristics that can be
exploited to differentiate the individual M. africanum
clades [17,22,45]. In this study, we identified novel M.
africanum clade-defining SNPs and confirmed the MTC
distribution of several other phylogenetically relevant
markers among the MTC. Multiple validated intra-spe-
cies-specific molecular markers are important because
they cross-corroborate each other and increase confi-
dence in a given MTC species identification. By the
markers described herein, M. africanum West African-1
would be defined genotypically as possessing RD713 and
SNPs at aroA®®, Rv1332°%%, and TbD1'®, while M. afri-
canum West African-2 would be defined genotypically
by RD701 and RD702, as well as the intra-species-speci-
fic SNPs at hsp65°*° and nat”’. Other SNPs and RDs
that mark particular branches of the MTC phylogenetic
tree, such as gyrB1450, Rv1510'%°, RDY, and RD10 are
also informative of M. africanum clade identity and pro-
vide further cross-referencing options. However, a
streamlined protocol that employs 3-primer PCRs for
RD9, RD10, and RD701 was the most rapid, simple,
straight-forward and definitive means of differentiating
the two clades of M. africanum from one another and
from other MTC species. This approach limits the num-
ber of individual PCR reactions required for identifica-
tion and eliminates the need for secondary procedures,
such as restriction digestion, sequence analysis, or hybri-
dization. Of note, some methods cannot distinguish the
two clades of M. africanum, such as the GenoType
MTBC line-probe assay [14-16]. Because PCR-RFA for
SNPs specific to one of the M. africanum clades, as
described herein, is a relatively simple approach, it may
be of benefit for confirmation of species identification in
laboratories with limited access to more advanced mole-
cular methods. Other methods for M. africanum identi-
fication, such as by real-time PCR, microarray analysis,
and spoligotyping (a DNA typing method) may also pre-
sent advantages to laboratories with these capabilities,
but these modalities were not evaluated in the current
study.

Indeed, all strains of M. africanum are also known to
lack spacers 9 and 39 in their spoligotype profile, similar
to M. bovis, but possess one or more spacers that are
consistently absent in certain other MTC species [7,25].
Previous data [17,23,37,46] suggest that many, but not
all, M. africanum West African-1 strains demonstrate
an absence of spacer 8 in addition to 9 and 39 (known
as spoligotype signature AFRI 2) [43], while M. africa-
num West African-2 strains may further uniformly lack
spacers 7-9 and 39 (known as spoligotype signature
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AFRI_1). As provided on the MIRU-VNTRplus website,
all M. africanum West African-1 strains from the
Ghana collection lacked spacers 8, 9, and 39, while each
M. africanum West African-2 strain from the Ghana
collection lacked spacers 7- 9, and 39 [27]. Spoligotyping
may therefore provide a preliminary indicator for each
M. africanum clade [51,52], however, the validity of
these associations remains to be conclusively determined
using a sample set of isolates with diverse geographical
origins.

In addition to identification, MTC species and sub-
lineage specific markers are of importance for genealogi-
cal purposes, as they allow the construction of more
accurate phylogenetic trees. In recent years, SNP typing
has been used to group strains of M. tuberculosis
[53,54], while LSP analyses and DNA sequencing
approaches have been used to establish congruent phy-
logenies for the M. tuberculosis complex [25,51,55]. The
species- and sublineage-specific polymorphisms exam-
ined in this study for the M. africanum clades may
therefore be of benefit when characterizing the evolu-
tionary history of MTC strain sets in the future. SNPs
in rpoB, for instance, demarcate the sequential diver-
gence of sublineages within M. africanum West African-
2 [7]. Similarly, we previously highlighted that RD711 is
deleted in most, but not all of the RD713-harboring M.
africanum West African-1 strains that were evaluated
[7], and so defines a major sublineage within this spe-
cies. (Studies that would use deletion of RD711 as the
single marker to define M. africanum West Aftican-1
strains may therefore risk mis-categorizing some iso-
lates.) Nonetheless, all the M. africanum West African-1
strains in the Ghana strain collection had RD711 deleted
and, as part of another study [24], could be further sub-
divided phylogenetically based upon differences in
mycobacterial tandem repeats numbers. Although not
evaluated in this study, Mostowy et al. [23] recently
reported that RD742 was also variably distributed
among M. africanum West African-2 strains and a set
of phylogenetically informative SNPs for M. africanum,
different from those screened herein, has been published
[51]. Overall, the combined data illustrate the continued
evolutionary diversification of the M. africanum clades
and advance the process of organizing a set of variable
markers that may be used to construct meaningful phy-
logenetic trees for M. africanum. To this end, RD715
and RD743 were identified within M. africanum West
African-1 strains [23] and single nucleotide changes
located within the RD1 locus of M. africanum West
African-2 strains were recently noted in select strains
[38], but the utility of these polymorphisms as phyloge-
netic markers remains to be determined. It should also
be mentioned that at least one M. africanum-like strain
has been described with RD9 deleted, but RD7, RD10,
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RD702, RD711, and RD713 intact [56]. Combined, these
data indicate that there is greater M. africanum/MTC
diversity yet to be characterized.

Our understanding of the nature of M. africanum as a
species and its position within the MTC has evolved
considerably in recent years. Based upon hard genome
level sequence evidence, the name M. africanum sub-
type II is no longer applied [2,7,20,22,23], while strains
denoted as M. africanum subtype I are now, ironically,
recognized to constitute two relatively genetically dis-
tinct lineages emerging from separate nodes along the
MTC evolutionary tree [1,7,25,26]. This opinion is rein-
forced by the data provided in the current report. Inter-
estingly, the above mentioned unique M. africanum-like
strain was isolated from a patient originating from the
Democratic Republic of Congo, a central African coun-
try [56]. As it has been postulated that the MTC origi-
nated near the horn of Africa [57], this strain may
therefore be a remnant M. africanum precursor that
evolved from M. tuberculosis as humans migrated from
Eastern to Western Africa [55]. Indeed, the M. africa-
num clades possess the phenotypic and genotypic char-
acteristics of sequential intermediary genotypes in the
evolution of M. bovis from M. tuberculosis [1,7,24,26].
In so being, there have been suggestions that an M. afri-
canum transmission cycle may exist between humans
and an unknown animal reservoir [23]. Reports of M.
africanum isolation from a bovine source in Nigeria and
from a goat in Guinea Bissau support this hypothesis
[37,42]. Therefore, a study of animal MTC isolates
employing genetic markers, such as those we have orga-
nized herein, should be made a priority effort to rule
out M. africanum as an important source of zoonotic
and/or anthropozoonotic TB in Western Africa.

Conclusions

With this study, we have organized a series of consistent
phylogenetically-relevant markers for each of the distinct
MTC lineages that share the M. africanum designation,
highlighting those polymorphisms that can be used for
specific clade identification. A review of molecular stu-
dies of M. africanum reveals a differential distribution
of each M. africanum clade in Western Africa. Because
M. africanum continues to be an important agent of dis-
ease, more M. africanum-focused studies are needed to
increase our understanding of MTC pathobiology, epi-
demiology, and evolutionary history, all of which could
lead to new strategies for TB prevention.
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