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Abstract: Telomeres are tandem repeat DNA sequences present at the ends of each eukaryotic
chromosome to stabilize the genome structure integrity. Telomere lengths progressively shorten with
each cell division. Inflammation and oxidative stress, which are implicated as major mechanisms
underlying cardiovascular diseases, increase the rate of telomere shortening and lead to cellular
senescence. In clinical studies, cardiovascular risk factors such as smoking, obesity, sedentary
lifestyle, and hypertension have been associated with short leukocyte telomere length. In addition,
low telomerase activity and short leukocyte telomere length have been observed in atherosclerotic
plaque and associated with plaque instability, thus stroke or acute myocardial infarction. The aging
myocardium with telomere shortening and accumulation of senescent cells limits the tissue
regenerative capacity, contributing to systolic or diastolic heart failure. In addition, patients with
ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated
telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve
as a marker for the biological status of previous cell divisions and DNA damage with inflammation
and oxidative stress. It can be integrated into current risk prediction and stratification models for
cardiovascular diseases and can be used in precise personalized treatments. In this review, we
summarize the current understanding of telomeres and telomerase in the aging process and their
association with cardiovascular diseases. In addition, we discuss therapeutic interventions targeting
the telomere system in cardiovascular disease treatments.
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1. Introduction

Aging is a major risk factor for cardiovascular diseases (CVDs), including myocardial infarction
(MI), stroke, hypertension, and chronic heart failure (HF). The prevalence of CVDs significantly
increases with age, and CVDs are a major cause of chronic disability and the leading cause of death
worldwide. Although the prevention and treatment of CVDs have substantially progressed during
the previous two decades, morbidity and mortality rates associated with CVDs remain high and
impose a tremendous burden on the national healthcare system. According to heart disease and stroke
statistics, CVDs account for 30.8% of deaths [1]; that is, approximately one of every three deaths in
the United States is caused by CVDs. Moreover, only 20% of people who died of CVDs in 2011 were
aged less than 65 years and 34% were aged less than 75 years. As the global population is aging, the
number of older people (aged ≥60 years) will exceed that of younger people (aged <15 years), and the
proportion of older people will reach 21% by 2050 [2]. This indicates that CVDs in the older population
are a crucial healthcare challenge that must be addressed. A superior understanding of the complex
interaction between the aging process and CVDs is required to develop a novel therapeutic target for
older patients.
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Several epidemiologic surveys have reported an association of short telomere length (TL) with
CVD [3–6] and cardiovascular mortality [7,8]. For instance, the Cardiovascular Health Study reported
that each shortened kilobase pair of TL corresponded to a threefold increased risk of MI and stroke [3].
A recent systematic review and meta-analysis reported a constant positive association of decreased
leukocyte TL (LTL) with cardiometabolic outcomes, where one standard deviation (SD) decrease in
LTL was significantly associated with a 21%, 24%, and 37% increased risk of stroke, MI, and type 2
diabetes mellitus, respectively [5]. In this review, we discuss and review the current knowledge of the
role of telomeres in CVDs.

2. Telomeres and Telomerase

In humans, telomeres consist of hundreds to thousands of repetitive sequences of TTAGGG at
chromosomal ends for maintaining genomic integrity [9]. Because the DNA replication is asymmetric
along double strands, a sequence at the 3′-hydroxyl end would lose 30–200 nucleotides with each DNA
replication and cell division [10]. Telomeres provide a repetitive noncoding sequence at the 3′ end to
prevent the loss of critical genetically encoded information during replication. Moreover, telomeres
are coated with a complex of six capping proteins (telomere repeat-binding factor 1 (TRF1), telomere
repeat-binding factor 2 (TRF2), repressor activator protein 1 (Rap1), TRF1 and TRF2 interacting nuclear
protein 2 (TIN2), Tripeptidyl-peptidase 1 (TPP1), and protection of telomere 1 (POT1)), also known as
shelterin proteins [11], which are packed into a compact T-loop structure to prevent the DNA repair
machinery from mistaking telomeres for double-stranded DNA breaks. Therefore, TL have been
proposed as a mitotic clock that measures how many times a cell has divided.

The human telomerase is responsible for maintaining and elongating TL and consists of the
telomerase RNA component (TERC) and telomerase reverse transcriptase (TERT), the catalytic
component. The TERT uses the TERC as a template to synthesize new telomeric DNA repeats at
a single-stranded overhang to maintain TL. Some cells such as germ cells, stem cells, hematopoietic
progenitor cells, activated lymphocytes, and most cancer cells have a high level of telomerase activity
to overcome telomere shortening and maintain limitless cell division. However, somatic cells generally
have a low or undetectable level of telomerase activity with limited longevity. The TL and integrity are
regulated through the interplay between the telomerase and shelterin proteins [12]. Telomerase activity
decreases with age but increases markedly in response to injury [13]. In the mammalian heart,
telomerase expression is low but functionally significant. A substantial increase in telomerase
expression was detected in cardiomyocytes, endothelial cells and fibroblasts of cryoinjured adult
mice hearts, which implies that telomerase plays a role in regulating tissue repair and regenerative [14].

When a telomere is shortened to a critical length, the cell enters cellular senescence, which initiates
a series of changes in the gene expression of replicative cell-cycle inhibitors and inhibits proliferation
and then finally into apoptosis [15] as known as replicative senescence. By contrast, stress-induced
premature senescence (SIPS) is triggered by external stimuli, including oxidizing agents and radiation,
leads to the premature activation of the cellular senescence process not associated with telomere
shortening. The senescent cells alter their morphology and secretary phenotype in autocrine and
paracrine patterns. This active altered secretion pattern has been termed as the senescence-associated
secretory phenotype (SASP). They secrete IL-6 and IL-8, intercellular adhesion molecule 1 (ICAM-1),
metalloproteases, monocyte attractants, plasminogen activator inhibitor 1, and vascular endothelial
growth factor [16,17]. Senescent cells contribute to inflammation and promote apoptosis, tissue
remodeling, and repair through their SASP. Hence, chronic inflammation initiates a vicious cycle that
enhances telomere dysfunction and the accumulation of senescent cells. Cell senescence aggravates
chronic inflammation and accelerates aging and the development of aging-associated diseases [17].

3. Implication of Experimental Studies

Atherosclerosis is developed through a complex multifactorial process and contributes to major
CVDs [18]. Endothelial dysfunction and damage by stimuli are usually a starting point with
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an increased expression of adhesion molecules. It promotes circulating leukocyte attachment and
transendothelial migration. Then, activated monocytes transform into macrophages and uptake
oxidative lipoproteins to become foamy cells, which are the inner core of fatty streaks. Furthermore,
numerous inflammatory cytokines produced by activated leukocytes promote the proliferation and
migration of vascular smooth muscle cells (VSMCs). They synthesize collagen enclosing the growing
lipid core with the fibrous cap. The stability of the atherosclerotic plaque depends on the thickness of
the fibrous cap and the degree of inflammation. There is growing evidence about telomere biology and
cell senescence involving in the pathogenesis of cardiovascular diseases. For example, hemodynamic
shear wall stress in some anatomical areas, associated with increased cell turnover and a higher
telomere attrition rate, make the vascular tissue susceptible to atherosclerosis [19,20]. Shorter telomeres
have been observed in endothelial cells and VSMCs of the atherosclerotic arterial wall, which is
consistent with various regions of the human vasculature [19–21]. We review current understanding
of the role of telomeres and telomerase in the functional regulation of vascular cells afterwards.

3.1. Endothelial Cells

The functional integrity of endothelial cells is essential for vascular health and preventing the
development of atherosclerosis. Substantial evidence indicated that a biological relationship is present
among shortened TL, cellular senescence, and atherosclerosis [22]. Molecular mechanisms, such
as an increases in reactive oxygen species (ROS), deceased nitric oxide bioavailability, and reduced
TERT activity, have been found to be associated with the process of aging and atherogenesis [23–25].
Dysregulation of the redox balance and TERT appear to accelerate the process of the senescence of
vascular endothelial cells, which are found in the atherosclerotic regions of human coronary arteries [24].

Telomerase activity is repressed in endothelial cells freshly isolated from intact endothelia, as in
most somatic cells with low proliferative activity. However, telomerase activity is present in cultured
endothelial cells and has been shown to be reversibly upregulated by fibroblast growth factor-2
(FGF-2) [26] and nitric oxide [27]. In additional, the serine/threonine kinase Akt have been implicated
in the activation of TERT by posttranscriptional modification (phosphorylation) [28,29]. This suggests
Akt is a potential therapeutic target for induction of telomerase activity in injured endothelia by
mitogens, which enhance tissue repair and regenerative processes after vascular events.

3.2. Vascular Smooth Muscle Cells

In human atherosclerosis study [22], VSMCs in plaque exhibit oxidative DNA damage
and increased expression of senescence markers such as senescence-associated β-galactosidase,
cyclin-dependent kinase inhibitors p16 and p21, decreased expression of cyclin D and cyclin E, and
hypophosphorylation of the retinoblastoma protein. VSMCs in plaques demonstrated markedly
shorter telomeres, which closely are correlated with severity of atherosclerosis. The senescent VSMCs
in atherosclerotic plaque also exhibit limited capacity of proliferation with increased activity of
matrix-degrading enzymes as well as promote the thinning of fibrous caps and plaque rupture,
which may lead to subsequent thrombosis, MI, or stroke [30]. These observations indicate that telomere
attrition and premature cellular senescence by oxidant stress play an important role in pathogenesis of
human atherosclerosis.

Regarding the role of telomerase in the proliferation of VSMCs, Minamino et al. demonstrated that
VSMC proliferation is closely correlated with increased telomerase activity and that the protein kinase
inhibitor H7 suppresses the activation of telomerase in the cytoplasm and nucleus, as well as reducing
the growth of VSMCs [31]. They propose a mechanistic model to link the activation of telomerase and
proliferation of VSMCs, in which TERT is activated by phosphorylation in the cytoplasm, followed
by nuclear translocation during cell growth. As implied by the evidence derived from endothelial
cells, the activation of TERT by posttranslational modification can extend cell lifespan and proliferative
capacity, offering a regulatory mechanism through which to manipulate telomere attrition and cellular
senescence in aging-associated diseases.
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3.3. Immune Cells

Inflammation is believed to play a crucial role in atherosclerosis. The presence of short LTL
in human atherosclerosis can be mainly attributed to the increased leukocyte consumption in
inflammatory processes and accelerated telomere loss per replication in enhanced oxidative stress.
Similarity, short TL in T lymphocytes are also exhibited in patients with chronic infection [32]
and inflammatory disease [33] in conjunction with accelerated leukocyte turnover. Despite this,
lymphocytes can transiently express telomerase during development and clonal proliferation to
maintain TL. A progressive reduction in transiently enhanced telomerase activity was observed during
successive stimulations and was accompanied by telomere loss [34].

For example, chronic cytomegalovirus (CMV) infection was reported to be associated with
atherosclerosis in humans [35], which might be explained by an accumulation of senescent CMV
specific CD8+ T cells and associated immune responses to acute inflammation. Spyridopoulos et al.
reported TL in granulocytes, monocytes, peripheral blood stem cells and progenitor cells was
consistently 500 bases shorter in leukocytes from patients with CAD than in control subjects. However,
only cytotoxic CD8+ T cells in CMV-seropositive CAD patients were found to have increased TL
loss of 1000 bases than in control subjects [36]. In their further prospective investigation, they
confirmed acute and persistent depletion of terminally differentiated CD8+ T cells in CMV-seropositive
patients through programmed cell death-1-dependent apoptosis processes during acute myocardial
infarction [37]. Furthermore, an intensified immune response after myocardial ischemia and perfusion
was observed in CMV-seropositive patients, which might augment cytotoxic damage in the ischemic
myocardium and result in larger infarct area and ventricular dysfunction [38]. Different responses to
acute myocardial infarction in CMV-seropositive and seronegative subjects were found in the studies,
which the authors hypothesized that a higher portion of activated late differentiated CD8+ T cells left
blood circulation and migrated into the target organ during acute inflammation in CMV-seropositive
patients. The activated CD8+ T cells exhibit cytotoxic damage in the target organ and then were
depleted spontaneously via an apoptosis mechanism. Homeostatic proliferation of T cells after
acute stage accelerated TL shortening of CD8+ T cells and immunosenescence in CMV-seropositive
patients. It could serve as a model of further investigations about the regulatory mechanisms of
leukocytes telomere shortening in circumstances of acute inflammation.Telomere loss is a marker of
leukocyte senescence. Immunosenescence is generally used to described the age-associated functional
decline of immune system [39], which is associated with increased susceptibility to infectious diseases,
reduced immunity from vaccination, increased autoimmunity, and tissue damage from dysregulated
inflammation. This process is characterized by the presence of high proportions of CD8+ CD28−

T cells with features of replicative senescence, such as shortened telomeres, loss of telomerase
activity, and enhanced secretion of inflammatory cytokines [40]. Accumulation of these cells restricts
the development of new functional cells that are specific for other antigens, thus compromising
overall immunity. Moreover, low-grade systemic inflammation through secretion of TNFα and
IL-6 by these CD8+ T cells is believed to be a causative factor in numerous age-related conditions,
including atherosclerosis, cardiovascular diseases, metabolic syndrome, obesity, type 2 diabetes,
osteoporosis, and osteoarthritis [41]. In animal models, chronic progressive low-grade inflammation
through ROS-mediated DNA damage in nfkb1−/− mice, which entails loss of repressive regulation
of proinflammatory gene transcription, results in premature aging with telomere dysfunction, cell
senescence, and impaired tissue regeneration in multiple organ systems. This phenomenon can be
reversed by anti-inflammatory or antioxidant treatment [42].

However, in TERC−/− mice model, generation four TERC−/− ApoE−/− mice developed fewer
atherosclerotic lesions compared with generation four TERC+/+ ApoE−/− mice, which implies that
the absence of telomerase activity is protective for atherosclerotic disease. This conflicting result might
be explained by replicative senescence in immune cells. In this study, the proliferative capacity of
macrophages and lymphocytes was decreased in generation four TERC−/− ApoE−/− mice compared
with generation four TERC+/+ ApoE−/− [43]. In addition, later generation TERC−/− mice have been
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observed to have more severe structural defects than earlier generation TERC−/− mice, including
spleen atrophy and bone marrow proliferative defects, which limits differentiation and proliferation
of functional immunocompetent cells and thus restricts atheroma progression. Therefore, telomere
attrition might consistently cause cellular senescence, and apoptosis in difference cell types, but have
variable effects on complex disease processes, such as atherogenesis or tumorigenesis in tissues or
species and disease-specific patterns.

3.4. Cardiomyocytes

An experimental study reported that telomerase knockout mice (TERC−/−) have progressively
shortened telomeres in the later generation along with attenuation in myocyte proliferation and
an increase in apoptosis [44]. In addition, these mice exhibit ventricular dilation, thinning of
the wall, and cardiac dysfunction, mimicking the end-stage dilated cardiomyopathy in humans.
By contrary, forced expression of TERT in the cardiac muscle of mice promotes cell proliferation,
hypertrophy, and survival [45]. Furthermore, enhanced telomerase activity in insulin-like growth
factor-1 transgenic mice has been shown to delay cellular aging and promote cell growth, thus
preventing ventricular dysfunction [46]. In humans, endomyocardial biopsies from patients with HF
reveal shortened telomeres, increased cellular senescence, and cell death [47]. Telomere dysfunction
and increased susceptibility to apoptosis in cardiac myocytes is thought to be underlying mechanism
of HF. The hypothesis has tested in cultured human cardiomyocytes, which defective expression of
TRF2, a telomere end-capping protein, triggered telomere erosion, activation of the DNA damage
checkpoint kinase, Chk2 and apoptosis [48].

Several studies have indicated that the heart undergoes the regeneration of some cardiac myocytes
throughout life [49,50]. However, the proliferative and regenerative potential of cardiac progenitor
cells partially depend on the integrity of telomeres and activity of telomerase. Stem cells in young
cardiac myocytes have active telomerase and stable TL, whereas stem cells in the aging heart exhibit
telomere attrition and express cell senescence markers. Hence, the decrease in the cardiac myocyte
regeneration potential and accumulation of old dying cells finally lead to cardiac pumping failure.
These findings indicate that telomere biology play an important role in regulation of regenerative
capacity in myocardium and involved in the pathophysiology of HF.

3.5. Endothelial Progenitor Cells

The repair mechanisms for vascular atherosclerosis are dependent on endothelial progenitor cells
(EPCs), which originate from hematopoietic stem cells (HSCs) in the bone marrow [51]. The shortening
of the TL of HSCs caused by inflammation or oxidative stress limits the number and function of EPCs
and impairs the replicative potential in the injured part of the vasculature [52,53]. However, EPCs
with human TERT transduction have enhanced mitogenic and migratory activity in cell cultures and
improved neovascularization in murine model of hindlimb ischemia. These findings demonstrate that
EPCs with enhanced telomerase activity could be a novel therapeutic strategy for patients with severe
ischemia heart disease and post infarct cardiomyopathy [54].

Furthermore, we observed mutations in circadian gene Per2 caused vascular senescence and
impaired impairs ischemia-induced revascularization through the alteration of EPC function [55],
which may explained the clinical observation of the link of alteration of the circadian and
cardiovascular diseases.

4. Implications for Cardiovascular Diseases

4.1. Measurement of Telomere Length

Peripheral leukocyte DNA has been most commonly used in epidemiological studies to measure
TL because a blood sample can be easily obtained. A consistent synchrony exists between LTL
and somatic cells, including vascular cells, within people [56]. The two methods most commonly
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used in clinical studies are Southern blotting and quantitative polymerase chain reaction (qPCR).
Southern blotting has an advantage of measuring the absolute LTL, including the proportion of very
short telomeres. Cells with very short TL are closely associated with cellular senescence, regardless of
mean TL, because only one critically short telomere can force a cell to enter senescence [57,58]. However,
Southern blotting requires numerous DNA samples (2–3 µg per assay) and is time-consuming and
expensive. Thus, qPCR is used in most epidemiological studies. The fundamental difference in
laboratory methods among individual studies might contribute to controversial results. Recently,
a study compared these laboratory methods performed in two independent laboratories to measure
the same samples. Both the q-PCR and Southern blotting provided highly reproducible and correlated
results [59]. The overview of TL and associated cardiovascular diseases is depicted in Figure 1.
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Figure 1. Schematic overview of telomere length and cardiovascular diseases. Individual variations of
telomere length are affected by genetic and non-genetic factors. Critically short telomeres lead to cellular
senescence and dysfunction, which contribute to atherogenesis and reduce repair and regenerative
capacity in cardiovascular system. Disease promoting factors, such as smoking and hypertension,
accelerate telomere shortening through inflammation or increased oxidant stress. However, disease
protective factors, such as exercise and statin use, can activate telomerase activity and maintain
telomere length.

4.2. Genetic Factors

TL is largely inherited [60,61] and is modulated by several intrinsic and environmental factors
throughout life [62]. Rare mutations in genes that maintain and regulate TL have been identified in
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monogenic catastrophic diseases with premature tissue degeneration and organ dysfunction, such as
dyskeratosis congenita, idiopathic pulmonary fibrosis, and aplastic anemia. Extensive inter-individual
variations in LTL in the general population may attributed to single-nucleotide polymorphisms
(SNPs), which have been identified in genomewide association studies (GWASs). In a meta-analysis of
37,684 people, seven loci were identified to be associated with mean LTL. Five of these loci on genes
are involved in telomere biology, including chromosomes 3q26.2 (TERC), −5p15.33 (TERT), 4q32.2
(nuclear assembly factor 1), 10q24.33 (oligonucleotide/oligosaccharide-binding fold containing 1), 18,
and 20q13.3 (regulator of telomere elongation helicase 1) [63]. In another meta-analysis of 9190 people,
two novel genomic regions that were identified to be associated with LTL variation are near a conserved
telomere maintenance complex component 1 (CTC1) on chromosome17p13.1 and zinc finger protein
676 on 19p12 [64].

4.3. Cardiovascular Risk Factors

The amount of telomere lost during each cell division varies among people. Previous evidence
indicated that increased oxidative stress and chronic inflammation are associated with a higher
telomere loss and accelerated telomere shortening [65]. Several common risk factors for CVD [66]
such as smoking [67], diabetes mellitus [68], hypercholesterolemia [69], hypertension [70], obesity [71],
physical inactivity [72], alcohol consumption [73] and psychosocial problems [74] have been associated
with short TL. However, the mechanism underlying the association of telomere shortening with these
risk factors remains hypothetical. Most studies have reported that telomere shortening is associated
with these risk factors through increased tissue inflammation and oxidative stress [75–77]. For example,
animal studies demonstrated that hyperglycemia attenuates nitric oxide production in endothelial
cells [78], promotes inflammation and oxidative stress [79], and accelerates LTL shortening and vascular
atherosclerotic processes [80]. In additional, we found disrupted circadian rhythm results in loss of
rhythmic telomerase activities with shortened TL and premature aging in mice. Similar observations
also showed in the emergency physicians working in rotating shifts [81].

However, some dietary and lifestyle factors such as marine omega-3 fatty acid [82],
antioxidants [23], vitamin intake [83], physical activity [72], and healthy lifestyle [84] were reported
to decrease rates of LTL shortening. These factors might contribute to reduced reactive oxygen
species, inhibit inflammation, increase endothelial nitric oxide synthase (eNOS) activity, and increased
telomerase activity. In an experimental study, voluntary wheel running in mice for three weeks
upregulated the activity of telomerase, increased the expression of TRF2, and reduced the expression
of vascular apoptosis regulators [85]. However, these exercise-induced changes were absent in both
TERT−/− and endothelial nitric oxide synthase (eNOS)−/− mice, indicating the beneficial effects are
medicated by TERT and eNOS [29]. A human study also reported that comprehensive lifestyle changes
significantly increased telomerase activity and consequently telomere maintenance capacity in human
immune system cells [84].

Consequently, telomere shortening is a reflection of cellular aging and a marker of the health
status of the aging population [86]. Absolute TL at birth is determined by genetic materials from
both parents. During aging, the mean TL declines with cell replication and turnover. The process of
telomere shortening is accelerated by exposure to disease-promoting factors such as smoking, obesity,
and psychosocial stress. Furthermore, telomerase activation has been considered a possible target for
reversing the telomere shortening.

4.4. Coronary Artery Diseases

Several studies in diverse populations have reported an association of shorter telomeres in
circulating leukocytes with CAD [3–5,87–92]. The precise mechanisms connecting short telomeres
and CAD are yet to be established. Current evidence from epidemiologic and experimental studies
supports the role of telomeres in CAD development. First, cardiovascular risk factors such as smoking,
hypertension, insulin resistance, and hyperlipidemia, are associated with short LTL. Second, the
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progression of atherosclerotic plaques in vasculature have been shown to be associated with short TL
and cell senescence in vascular cells such as endothelial and vascular smooth muscle cells. Furthermore,
short mean LTL represents a greater degree of telomere attrition and senescence in immune cells.
Low grade systemic inflammation, which is thought to be mediated by immunosenescence, has
been shown to be associated with numerous age-related conditions, including atherosclerosis and
cardiovascular diseases.

However, many studies are cross-sectional design and because most cardiovascular risk factors
also affect LTL, the causal or consequential relationship between shorter TL and CAD remains
controversial. Recently, some prospective longitudinal studies may support the hypothesis that
telomere shortening causes CAD, rather than telomere shortening is a consequence of CAD. In a large
prospective WOSCOPS study [88], compared with people in the highest tertiles of LTL, those in the
lowest tertiles of LTL had a 44% increased risk of coronary artery events in a mean follow-up period of
5.5 years after adjustment for risk factors for CAD. In addition, a recent meta-analysis of prospective
studies [91] reported that the estimated relative risk of the shortest versus the longest third of LTL
was 1.4 (95% confidence interval: 1.15–1.70). LTL was measured in these prospective trials before the
diagnosis of a CVD, thus avoiding the concern of the confounding of reverse causality. Furthermore,
reports about the association of genetic variants affecting TL with the risk of CAD also provide
evidence for the causal association. The genotypes are randomly determined during conception and
thus their associations could be not susceptible to bias and confounding. A meta-analysis of 14 GWASs
including up to 22,233 patients with CAD and 64,762 controls revealed that seven SNPs have been
identified for the variation in mean LTL. For example, a mean TL decrease of 117 base pairs per TERC
telomere-shortening allele accounts for approximately 10% drop in functional telomere reserves in
a typical middle-aged adult, and thus increases susceptibility to telomere dysfunction and replicative
senescence [93]. The effect of inter-individual variations in LTL is also illustrated in this meta-analysis,
which found that the allele associated with shorter LTL increases the risk of CAD; one SD decrease in
LTL was estimated to increase the CAD risk by 21% [63].

LTL in patients with CAD has prognostic value. A prospective cohort study of 780 patients
conducted for a follow-up period of 4.4 years reported an association of decreased LTL with all-cause
mortality, with an adjusted hazard ratio of 1.8 in the lowest TL quartile compared with the highest TL
quartile [89]. Moreover, LTL has been observed to be shorter in patients with premature acute MI (aged
<50 years) than in healthy, age-matched controls [4]. According analysis in previous studies, patients
with MI have TL that is equivalent to that in controls older than 8–12 years [4,91,94]. This might partially
explain some young patients with MI without traditional cardiovascular risk factors. Biological aging
can reflect the effects of cumulative oxidative stress and inflammatory burden on the aging vasculature.
Compared with chronological aging, biological aging may provide superior risk stratification for CVDs.
Accurate risk assessment is essential to provide appropriate therapeutic interventions and to further
reduce the occurrence of morbid cardiovascular events. New network analysis systems, including
genetic traits, imaging characters, and biological risk factors, should be developed for determining the
risk of atherosclerosis [95]. We thick LTL could be a sensitive score in the risk prediction system, and
additional clinical trials are required to validate the observation and hypothesis.

In the coronary intervention field, researchers observed shorter LTL and increased proinflammatory
activity in high-risk unstable plaque (calcified thin-capped fibroatheroma) on virtual histology
intravascular ultrasound in patients with acute coronary syndrome also [96]. Furthermore, delayed
re-endothelialization after drug-eluting stent (DES) implantation with uncovered stent struts can
increase the risk of stent thrombosis. A small clinical trial reported an inverse association of LTL
with the percentage of uncovered stent struts, as assessed through optical coherence tomography [97].
Shorter LTL may indicate functional exhaustion and impaired proliferative capacity of EPCs, which
are responsible for re-endothelialization after a vascular injury. Additional large-scale prospective
studies should be conducted to investigate the clinical application of LTL as a predictive marker for
stent thrombosis and target vessel outcomes after DES implantation.
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4.5. Heart Failure

In a clinical study of 803 patients, LTL was decreased by approximately 40% in patients with
HF, and TL in the patients with HF was related to the disease severity [98]. A study investigating the
association of a lower left ventricular ejection fraction with decreased TL reported an association of one
SD decrease in TL with a 5% lower ejection fraction [99]. Moreover, LTL was significantly associated
with cardiovascular outcomes in patients with ischemic HF [100].

HF with a normal ejection fraction was not well recognized until the two previous decades.
Approximately half of patients hospitalized for HF have a normal ejection fraction, and outcomes
in these patients are equivalent to those in patients with a lower ejection fraction [101]. Aging leads
to an increase in the deposition of extracellular matrix components, principally collagen, with
an increase in the ratio of type I to type III collagen and a decrease in the elastin content,
contributing to impaired ventricular relaxation [102,103]. Furthermore, blunted beta-adrenergic
responsiveness, excitation–contraction coupling, and altered calcium-handling proteins contribute
to diastolic dysfunction [104]. Studies have reported that the left ventricular relaxation function
deteriorates with normal aging and is positively associated with LTL. Older people with shorter LTL
have a significantly lower E/A ratio [105].

5. Association with Other CVDs

The association of stroke and peripheral artery disease (PAD) [6,21,90–92,106–112] with telomeres
has been reported in numerous epidemiological studies. However, the results of these studies are
inconsistent and controversial. A prospective survey in a general population of 768 patients for
a follow-up period of six years revealed an association of telomere shortening with increased carotid
artery intima-media thickness and an increased incidence of cardiovascular events after adjustment for
CVD risk factors [111]. However, in a prospective cohort study that included 14,916 healthy American
men, no association of relative LTL with ischemic stroke risk was observed [107]. The current available
data about PAD are limited and more evidence is required to clarify the association. A cross-sectional
study reported an association of LTL with PAD, wherein one SD decrease in LTL significantly increased
the risk of PAD by 44% [108]. However, in a prospective longitudinal study, shorter LTL was not
associated with an increased incidence of claudication or PAD [92].

Sudden cardiac death (SCD) has been attributed to some genetic variations in the DNA sequence
of ion channels. However, it is hypothesized that changes in the gene copy number of potassium
(KCNAB1, KCNH2, and KCNA4) and calcium (RyR2, and ATP2A2) channels cause genetic instability
and SCD. Moreover, a case-control study reported that patients who experienced SCD had shorter
telomeres and changes in the gene copy number of ion channels [113]. This may have been attributed
to excessive cellular proliferation caused by oxidative stress stimuli leading to genetic instability in
these susceptible people. These findings can provide a new direction to identify a practical marker
for predicting SCD risk and making decisions regarding the use of the implantable cardioverter
defibrillator device.

In idiopathic pulmonary arterial hypertension, an increase in the proliferation of pulmonary
artery smooth muscle cells contributes to the fundamental disease mechanism. A study reported that
telomeres in pulmonary arterial smooth muscle cells are longer in patients with idiopathic pulmonary
arterial hypertension than in controls and that TL is positively correlated with pulmonary vascular
resistance [114]. However, a similar correlation has not been observed in the pulmonary hypertension
of other etiologies such as chronic obstructive pulmonary disease.

In patients with degenerative aortic valve stenosis, decreased regenerative capacity and
a decreased number of EPCs, caused by cellular senescence, were associated with the progression of
degenerative aortic valve stenosis [115].



Genes 2016, 7, 58 10 of 18

Therapeutic Consideration

From the implications of current understanding of telomere biology, potential therapeutic
interventions such as the maintenance of TL and modulation of telomerase activity to reverse telomere
attrition and cellular senescence, is emerging as a novel strategy for treating atherosclerosis and
CVD [50]. Experimental studies have reported that the manipulation of telomerase activity and
TL enhances or reverses senescence and aging-associated phenotypes [24,116,117]. For example,
telomerase activation therapy after MI successfully prevented ischemic HF in mice. The treatment
of adeno-associated viruses with the cardiac-specific telomerase expression resulted in elongated
telomeres, attenuated cardiac dilation, improved ventricular function, and smaller infarct scars as well
as improved the survival by 17% compared with that of controls [118]. Similar beneficial effects of
lifespan expansion with 24% and 13% at one-year and at one-year old mice, respectively and reduction
in aging related diseases, without increased cancer susceptibility also reported [119]. However,
constitutive expression of telomerase in K5-mTERT transgenic mice revealed an anti-aging effect,
accompanying with increased incidence of cancer [120,121]. Furthermore, activation telomerase
activity prevent replicative senescence of cardiac fibroblasts results excess extracellularmatrix, fibrosis
tissue formation, and pathological remolding after myocardial infarction. Recently published study
showed genetic inactivation of premature senescence system resulted in aggravated myocardial
fibrosis after transverse aortic constriction in murine model. Conversely, an inducer of premature
senescence resulted in 50% reduction of fibrosis [122]. Although the gene transfer therapy targeting
telomerase activity has been successful in experimental mice [106,107], several practical limitations
must be addressed before its clinical application, especially the concern that the indiscriminate
proliferation of telomerized cells might increase the risk of cancer, promotion of myocardial fibrosis, and
accelerated atheroma formation due to neointimal VSMC proliferation. However, studies of targeting
telomerase therapy in humans are still scarce. A small chemical compound TA-65, extracted from
Astragalus membranaceus, is the first described telomere activator. One human study demonstrated
dietary supplementation of TA-65 increasing several indicators of health in cardiovascular system and
metabolism [123]. Further longitudinal study is mandatory to investigate the anti-aging effects and
potential long-term adverse effects.

Several studies demonstrated the effects of TL maintenance and senescence prevention in certain
drugs, which have been used for decades exert clinically beneficial on CVD. For example, statins,
3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, exert various pleiotropic effects to
prevent the development of atherosclerotic plaque. They mitigate the genomic damage through
potentiation of the DNA repair capacity [124] and upregulation of glutathione synthesis to fight
oxidative stress [125]. Furthermore, they can enhance telomerase activity [126] and protect telomere
through upregulating TRF2 in endothelial cells and EPCs [127]. A more specific analysis of human
T-lymphocytes showed that atorvastatin in pharmacologically relevant doses led to a transient increase
in telomerase activity in T-cells. This effect, which could be blocked by inhibitors of Akt and
Phosphatidylinositol-4,5-Bisphosphate 3 (PI3)-Kinase, was more pronounced in the CD4-positive
(CD4+) than in the CD8-positive (CD8+) T-cell subset

Angiotensin II has been reported to induce oxidative DNA damage and accelerate cellular
senescence in cultured human VSMCs [128]. Therefore, angiotensin-converting enzyme inhibitor or
angiotensin II inhibitor can be used to reduce oxidative stress and subsequent DNA damage and
senescence. Additionally, pioglitazone, a peroxisome proliferator-activated receptor agonist, can
increase the activity of telomerase and expression of TRF-2 as well as reduce the expression of the
senescence markers p16, cell-cycle checkpoint kinase 2, and p53 [129].

6. Conclusions

Telomere shortening and dysfunction play a crucial role in the pathogenesis of aging-associated
CVDs. Critically short telomeres can lead to cellular senescence and apoptosis, which contribute to
the development of atherosclerosis and predispose people to plaque instability. Both genetic and
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environmental factors have been associated with individual variations in TL. Cardiovascular risk
factors such as smoking, diabetes mellitus, hypertension, obesity, sedentary lifestyle, and stress have
been considered to increase oxidative stress or inflammation, consequently accelerating TL shortening.
However, healthy lifestyle and physical activity are protective factors and maintain TL. In clinical
practice, shorter LTL reflects the burden of oxidative stress and inflammation, and might be an effective
biomarker for risk stratification for atherosclerosis and CVDs. The association of LTL with CAD
has been reported in several prospective epidemiological studies, although conclusive evidence of
causal relationship is still lacing. However, for subclinical atherosclerosis, ischemic stroke, and PAD,
available data are controversial. The role of telomeres in disease pathogenesis should be explored
according to some crucial clinical implications of pilot studies, such as coronary artery stenting,
SCD, idiopathic pulmonary hypertension, and degenerative aortic stenosis. Furthermore, targeting
telomerase or additional telomere-associated proteins may provide a novel therapeutic strategy for
neovascularization in patients with ischemic heart diseases and for restoring replicative capacity
in those with HF. Additional basic and well-designed clinical studies are required to validate these
observations and further expand our knowledge the complexities of telomere dynamics in humans.
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qPCR quantitative polymerase chain reaction
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