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Abstract
Objectives To determine and compare the diagnostic perfor-
mance of stress myocardial perfusion imaging (MPI) for the
diagnosis of obstructive coronary artery disease (CAD),
using conventional coronary angiography (CCA) as the
reference standard.
Methods We searched Medline and Embase for literature
that evaluated stress MPI for the diagnosis of obstructive
CAD using magnetic resonance imaging (MRI), contrast-
enhanced echocardiography (ECHO), single-photon

emission computed tomography (SPECT) and positron
emission tomography (PET).
Results All pooled analyses were based on random effects
models. Articles on MRI yielded a total of 2,970 patients from
28 studies, articles on ECHO yielded a sample size of 795 from
10 studies, articles on SPECT yielded 1,323 from 13 studies.
For CAD defined as either at least 50 %, at least 70 % or at
least 75 % lumen diameter reduction on CCA, the natural
logarithms of the diagnostic odds ratio (lnDOR) for MRI
(3.63; 95 % CI 3.26–4.00) was significantly higher compared
to that of SPECT (2.76; 95 % CI 2.28–3.25; P00.006) and
that of ECHO (2.83; 95 % CI 2.29–3.37; P00.02). There was
no significant difference between the lnDOR of SPECT and
ECHO (P00.52).
Conclusion Our results suggest that MRI is superior for the
diagnosis of obstructive CAD compared with ECHO and
SPECT. ECHO and SPECT demonstrated similar diagnostic
performance.
Key Points
• MRI can assess myocardial perfusion.
• MR perfusion diagnoses coronary artery disease better
than echocardiography or SPECT.
• Echocardiography and SPECT have similar diagnostic
performance.
• MRI can save coronary artery disease patients from more
invasive tests.
• MRI and SPECT show evidence of publication bias, im-
plying possible overestimation.

Keywords Myocardial perfusion imaging . Diagnostic
performance . Systematic review .Meta-analysis .

Coronary artery disease

Electronic supplementary material The online version of this article
(doi:10.1007/s00330-012-2434-1) contains supplementary material,
which is available to authorized users.

M. C. de Jong : T. S. S. Genders :M. G. M. Hunink (*)
Departments of Epidemiology and Radiology,
Erasmus MC – University Medical Center Rotterdam,
P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
e-mail: m.hunink@erasmusmc.nl

M. C. de Jong : T. S. S. Genders :R.-J. van Geuns :A. Moelker :
M. G. M. Hunink
Department of Radiology,
Erasmus University Medical Center,
Rotterdam, The Netherlands

R.-J. van Geuns
Department of Cardiology,
Erasmus University Medical Center,
Rotterdam, The Netherlands

M. G. M. Hunink
Department of Health Policy and Management,
Harvard School of Public Health, Harvard University,
Boston, USA

Eur Radiol (2012) 22:1881–1895
DOI 10.1007/s00330-012-2434-1

http://dx.doi.org/10.1007/s00330-012-2434-1


Introduction

Coronary artery disease (CAD) is one of the major causes of
mortality and morbidity throughout the world [1]. The initial
assessment of a patient with chest pain usually consists of a
stress ECG (electrocardiogram). However, its diagnostic
accuracy is low [2] compared to conventional coronary
angiography (CCA), which is the reference standard for
diagnosing CAD. On the other hand, CCA is an invasive
technique and carries a small risk of complications [3, 4].
Myocardial perfusion imaging (MPI) is a non-invasive tech-
nique that is used clinically as a gatekeeper test before CCA.

MPI can be conducted using stress magnetic resonance
imaging (MRI), contrast-enhanced echocardiography
(ECHO), single-photon emission computed tomography
(SPECT), positron emission tomography (PET) and, under
development, computed tomography (CT). The only available
extensive study directly comparing two techniques is the MR-
IMPACTstudy [5], a multicentre randomised trial which found
that MRI is superior to SPECT. Systematic reviews and meta-
analyses have been published for most of the techniques but
none of these reviews compare MPI techniques [6–10]. The
comparability between these different meta-analyses is ques-
tionable mainly because of differences in publication period,
searching the literature, selection of the evidence, and analysis
of the data. Furthermore, studies with verification bias are
often included in these reports which may have overestimated
the sensitivity and underestimated the specificity of the tests
considered. To overcome these problems a systematic review
of different MPI techniques is required using the same selec-
tion criteria and methods of analysis for all techniques and
excluding studies with (potential) verification bias, to make a
fair comparison between these imaging tests.

The aim of this study was to determine and compare the
diagnostic performance of stress MPI tests for the diagnosis
of obstructive CAD, with conventional CCA as the refer-
ence standard. We performed the review according to the
PRISMA statement for such reviews [11, 12].

Materials and methods

Search strategy

We searched Medline and Embase for English-language
literature published between January 2000 and May 2011
evaluating the presence of obstructive CAD by stress perfu-
sion imaging tests, namely MRI, contrast-enhanced ECHO,
SPECT and PET. In this meta-analysis we focus on func-
tional imaging tests evaluating perfusion as a measure of
haemodynamically significant myocardial ischaemia as op-
posed to anatomical imaging tests, such as coronary CT
angiography, which evaluates structural abnormalities of

the coronary arteries. We limited the search to publications
from 2000 onwards to include only studies that evaluated
state-of-the-art MPI techniques. This may have introduced a
selection bias with respect to SPECT, because many SPECT
studies were published before 2000. To deal with this prob-
lem we compare our results with a review of meta-analyses
of SPECT studies by Heijenbrok-Kal et al. [13]. CT was
excluded because it is still being developed technically.
Review articles were checked for potential additional stud-
ies. The search included keywords corresponding to the four
index tests (MRI, ECHO, SPECT and PET), the reference
test (CCA), the target condition (CAD) and diagnostic per-
formance. We used numerous synonyms including both
‘text words’ and MeSH (Medical Subject Headings) terms
to maximise the sensitivity of our search. See Appendix A in
the Electronic Supplementary Material for a detailed de-
scription of the search strategy.

Study selection

Two authors reviewed article titles and abstracts for eligi-
bility. Discrepancies were resolved by consensus.

We included studies if they met all of the following criteria:
(1) the study assessed diagnostic performance of stress perfu-
sion MRI, stress perfusion contrast-enhanced ECHO, stress
perfusion SPECT, or stress perfusion PET as a diagnostic test
for CAD, (2) a prospective study designwas used, (3) the study
population consisted of known (previously diagnosed) or sus-
pected adult CAD patients, (4) CCAwas used as the reference
standard test in all patients irrespective of the non-invasive test
result, i.e. selective verification was not present, (5) obstructive
CADwas defined as at least 1 vessel with at least 50 %, at least
70 % or at least 75 % lumen diameter reduction and, (6)
absolute numbers of true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN) were available at
the patient level or could be derived adequately.

Studies were excluded if they met one of the following
criteria: (1) the article was a review or meta-analysis, (2)
patients had (suspected) acute coronary syndrome (ACS),
(3) normal healthy volunteers or asymptomatic patients were
included, (4) less than 30 patients were included (criterion to
avoid TPs, FPs, TNs or FNs of zero), (5) (potentially) over-
lapping study populations were reported, (6) a very specific
patient population (e.g. only patients with a heart transplant,
left bundle branch block or aortic stenosis) was studied, (7) the
study focused on in-stent or graft stenosis after percutaneous
coronary intervention (PCI) or coronary artery bypass grafting
(CABG).

Data extraction

Two authors independently extracted data on author, jour-
nal, year of publication, technique used, country, hospital

1882 Eur Radiol (2012) 22:1881–1895



type, number of patients, mean age, percentage male, patient
selection, brand of imaging device, magnetic field strength,
radiotracer, contrast agent used, type of assessment (quali-
tative or quantitative), stressor used, CAD definition and the
numbers of TP, FP, TN and FN. Discrepancies were re-
solved by consensus.

If a study reported pairs of sensitivities and specificities
at different cut-off points, we extracted the pair with the
highest sensitivity. When studies reported data for multiple
CAD definitions (e.g. at least 50 % and at least 70 %
stenosis), the highest sensitivity was used to calculate the
overall estimates. This also applied when studies reported
sensitivities and specificities for different observers.

Quality assessment

We used a modified QUADAS checklist (quality assessment
of studies of diagnostic performance included in systematic
reviews) [14] to assess the quality of included studies. Two
authors independently assessed the study quality of the in-
cluded articles. Discrepancies were resolved by consensus.

Statistical analysis and data synthesis

We analysed the data at the patient level using a bivariate
random effects regression model [15]. The model assumes a
binomial distribution of the within-study variability (variabil-
ity between sensitivity and specificity within a study). The
model furthermore assumes correlated normally distributed
random effects between studies. The degree of correlation
between the logit sensitivity and logit specificity corresponds
to the inverse relation between sensitivity and specificity
when the positivity criterion is varied. Additionally, meta-
regression was performed to explore the effect of differences
in patient selection and CAD disease definition, taking into
account the possible interaction between differences in CAD
disease definition and the techniques considered.

The data of each study were summarised in forest plots and
summary estimates with a 95 % confidence interval of sensi-
tivity and specificity for each imaging technique. Additionally,
we summarised these numbers in receiver operator character-
istic (ROC) spaces showing the summary estimates with a
95 % confidence region and a summary curve. To distinguish
SPECT studies that used different protocols, we highlighted
the studies that combined gated-SPECT with the use of
99mtechnetium as a radiotracer (Fig. 4). Similarly, MRI studies
that included the assessment of delayed contrast enhancement
were highlighted. Figures were created using Cochrane’s Re-
view Manager (version 5, Copenhagen, Denmark).

To estimate the clinical utility of each technique we calcu-
lated the positive and negative likelihood ratios (LR+andLR−).
The likelihood ratio is equivalent to the ratio of the likelihood of
a certain test result in patients with the disease and the

likelihood of the same test result in those without the dis-
ease. LR+ [0sensitivity/(1−specificity)] describes the likeli-
hood when the test is positive and LR− [0(1−sensitivity)/
specificity] describes the likelihood when the test is negative.
To illustrate the clinical utility, we used the LRs to calculate
post-test probabilities across the range of possible pre-test
probabilities (Fig. 5).

Finally, we calculated the natural logarithm of the diag-
nostic odds ratio (lnDOR). The lnDOR represents an overall
summary estimate of diagnostic performance. The diagnos-
tic odds ratio (DOR) is the odds of positive test results in
patients with disease compared to the odds of positive test
results in those without disease which equals the ratio of the
positive and negative likelihood ratios.

We also created funnel plots to assess the presence of
publication bias. The funnel plot shows the DOR horizon-
tally and the standard error of the log transformed DOR
vertically. Publication bias usually occurs when negative
publications (in our case studies with a low DOR) with a
small sample size are not published. An asymmetric funnel
plot, for example one with fewer studies in the lower left
part of the graph, suggests the presence of publication bias.

The statistical software package SAS (Proc NLMIXED,
SAS v9.2, Raleigh, NC, USA) was used for the analyses.

Results

Medline (PubMed) and Embase searches yielded 1,649
unique studies (Fig. 1). On the basis of title and abstract
we excluded 1,405 articles. On the basis of the full text, we
excluded 202 for various reasons detailed in Fig. 1. Review

Fig. 1 Flow chart of systematic literature search
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of the study characteristics shows considerable differences
between the included studies (Table 1).

Forty-four studies met the inclusion criteria. Articles on
MRI yielded a total of 2,970 patients from 28 studies, articles
on ECHO yielded a sample size of 795 from 10 studies,
articles on SPECT yielded 1,323 from 13 studies. We could
not include any PET studies, which is why PETwas excluded
from the analysis. The overview of the QUADAS checklist for
all studies demonstrates some differences in terms of study
quality (see Appendix B in the Electronic Supplementary
Material). The funnel plots of MRI and SPECT suggest evi-
dence for publication bias, whereas the funnel plot of ECHO
shows no obvious evidence for publication bias (Fig. 2). The
sensitivities and specificities of each study vary across studies
with sample sizes ranging from 30 to 823 (Tables 2 and 3).
The forest plots show the sensitivities and specificities of each
study with their 95 % confidence intervals depicted as hori-
zontal lines (Fig. 3), grouped by CAD definition and study
population and then sorted by sensitivity.

Compared with coronary angiography the meta-analysis
of the sensitivities and specificities of the different techni-
ques (Table 3; Fig. 3) resulted for MRI in a sensitivity of
0.91 (95 % CI 0.88–0.93) and a specificity of 0.80 (95 % CI
0.76–0.83). Perfusion ECHO showed a sensitivity of 0.87
(95 % CI 0.81–0.91) and a specificity of 0.72 (95 % CI
0.56–0.83). SPECT demonstrated a sensitivity of 0.83
(95 % CI 0.73–0.89) and a specificity of 0.77 (95 % CI
0.64–0.86). The ROC spaces show the summary estimates
for sensitivity and specificity of each technique two-
dimensionally surrounded by its 95 % confidence area
(Fig. 4). The sensitivity of MRI and SPECT differed signif-
icantly (P00.03). In terms of specificity, no significant
differences were found.

We found no effect of CAD definition on the sensitivities
(Table 3; P00.55). The disease definition greater than/at
least 70 % stenosis compared to greater than/at least 50 %
stenosis resulted in significantly lower specificities for
SPECT (Table 3; P00.045), but no significant differences
for ECHO (P00.39) and MRI (P00.51). Furthermore, we
found no effect of CAD definition on the lnDORs of
MRI (P00.24), ECHO (P00.96) and SPECT (P00.34)
(Table 3).

Furthermore, MRI, ECHO and SPECT showed no sig-
nificant differences in terms of sensitivity, specificity and
lnDOR when comparing patients with suspected CAD with-
out a prior history of CAD to patients with known or
suspected CAD (all P values >0.05; Table 3).

We did not observe an association between the use of
gated-SPECT in combination with 99mtechnetium as radio-
tracer and the diagnostic performance of SPECT (Fig. 4).
MRI studies that assessed delayed contrast enhancement
were associated with high sensitivities albeit with a wide
range of specificities (Fig. 4).T
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The positive likelihood ratios (LR+) of MRI, ECHO and
SPECTwere 4.43 (95 % CI 3.64–5.23), 3.08 (95 % CI 1.65–
4.50) and 3.56 (95 % CI 2.07–5.04) respectively (Table 3).
The negative likelihood ratios (LR-) for MRI, ECHO, and
SPECTwere 0.12 (95 % CI 0.08–0.15), 0.18 (95 % CI 0.13–
0.24) and 0.22 (95 % CI 0.14–0.31), respectively. Figure 5
illustrates the revised probability of CAD after a positive and
negative test. The lnDORs of MRI, ECHO and SPECTwere
3.63 (95 % CI 3.26–4.00), 2.83 (95 % CI 2.29–3.37) and
2.76 (95 % CI 2.28–3.25), respectively (Table 3). We found
significantly higher lnDORs for MRI in comparison with
SPECT (P00.006) and ECHO (P00.02). There was no
significant difference between the lnDOR of SPECT and
ECHO (P00.52).

Discussion

In this systematic review and meta-analysis we compared the
diagnostic performance of different stress MPI techniques.
MRI showed the best diagnostic performance with the nar-
rowest confidence intervals; the latter is explained by the large
number of patients studied with MRI. We found a signif-
icantly higher sensitivity for MRI compared to SPECT and
a significantly higher lnDOR for MRI compared to both
ECHO and SPECT. In contrast to previous meta-analyses
[9], we compared the different imaging techniques using
the same search strategy and methods of analysing the
data. Furthermore, we only included studies without veri-
fication bias.

In our review we paid special attention to the issue of
verification bias. Sensitivity may be overestimated and spec-
ificity underestimated if patients with a positive test result are

more likely to be verified with the reference standard test.
Diagnostic odds ratios are generally not, or only minimally,
affected by verification bias [16]. Underwood et al. [9]
reviewed the diagnostic performance of SPECTand explained
the overall low specificity (0.70–0.75 for high quality studies)
of SPECT studies by verification bias. In their review of
SPECT studies, Heijenbrok-Kal et al. [13] did not exclude
studies with verification bias and demonstrated a sensitivity of
0.88 (95 % CI 0.87–0.90) and a specificity of 0.73 (95 % CI
0.69–0.74). By excluding studies with verification bias, we
found a lower sensitivity of 0.83 (95 % CI 0.73–0.89), but a
higher specificity of 0.77 (95 % CI 0.64–0.86). As pointed
out above, the diagnostic odds ratios are less affected by
verification bias and were the same for the previous and
current review.

Nandalur et al. [7] and Hamon et al. [10] previously
studied the diagnostic performance of myocardial perfu-
sion MRI and found sensitivities of 91 % and 89 %
respectively and specificities of 81 % and 80 % respec-
tively, which is very similar to what we found. Unfortu-
nately we could not include PET in the analysis, because
no PET studies met our inclusion and exclusion criteria.
Nandalur et al. [6] performed a meta-analysis of PET
perfusion studies and they found a sensitivity of 0.92
and a specificity of 0.85. However, their analysis included
studies with potential verification bias. Stress perfusion CT is
an upcoming MPI technique, but we did not include this
technique because of the low number of available studies
and because perfusion CT is still in the technical development
phase.

Other promising alternatives to CCA are non-invasive CT
and MR coronary angiography. Schuetz et al. [17] compared
CTandMR coronary angiography to CCA in a meta-analysis

Fig. 2 Funnel plots. The diagnostic odds ratio (DOR) on the x-axis is
plotted against the standard error (SE) of the log(DOR) on the y-axis. A
symmetrical distribution of studies indicates the absence of publication
bias. An asymmetrical distribution with, for example, relatively more
smaller studies with a positive result (in the lower right part of the plot)

would suggest the presence of publication bias. In the ECHO funnel
plot Peltier et al. [56], in the SPECT funnel plot Astarita et al. [58] and
in the MRI funnel plot Donati et al. [25] are not included, because their
respective DORs could not be calculated (0 false negatives or false
positives). a MRI, b ECHO, c SPECT
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Table 2 Source data for MRI, ECHO and SPECT

Author Year Technique TP FN TN FP Sensitivity (%) Specificity (%) CAD definition

Arnold et al. [21] 2010 MRI 37 4 17 4 90.2 81.0 ≥50 %

Bernhardt et al. [22] 2009 MRI 274 39 421 89 87.5 82.5 ≥70 %

Cheng et al. [23] 2007 MRI 39 1 16 5 97.5 76.2 ≥50 %

Cury et al. [24] 2006 MRI 29 1 12 4 96.7 75.0 ≥70 %

Donati et al. [25] 2010 MRI 30 3 14 0 90.9 100 >50 %

Doyle et al. [26] 2003 MRI 15 11 123 35 57.7 77.8 ≥70 %

Gebker et al. [27] 2007 MRI 19 3 14 4 86.4 77.8 ≥50 %

Gebker et al. [28] 2008 MRI 63 7 22 9 90.0 71.0 ≥50 %

Gebker et al. [29] 2011 MRI 48 4 19 4 92.3 82.6 ≥70 %

Giang et al. [30] 2004 MRI 26 2 12 4 92.9 75.0 ≥50 %

Kawase et al. [31] 2004 MRI 31 2 16 1 93.9 94.1 ≥70 %

Kitagawa et al. [32] 2008 MRI 33 3 8 6 91.7 57.1 ≥50 %

Klein et al. [33] 2008 MRI 22 3 23 3 88.0 88.5 >50 %

Klein et al. [34] 2009 MRI 36 18 21 3 66.7 87.5 >50 %

Klem et al. [35] 2006 MRI 34 10 42 6 77.3 87.5 ≥50 %

33 4 48 7 89.2 87.3 ≥70 % (≥50 LM)

Klumpp et al. [36] 2010 MRI 40 1 14 2 97.6 87.5 >70 %

Krittayaphong et al. [37] 2009 MRI 34 4 22 6 89.5 78.6 ≥50 %

Merkle et al. [38] 2007 MRI 160 12 48 8 93.0 85.7 >50 %

147 6 54 21 96.1 72.0 >70 %

Meyer et al. [39] 2008 MRI 32 4 19 5 88.9 79.2 ≥70 %

Nagel et al. [40] 2003 MRI 38 5 37 4 88.4 90.2 ≥75 %

Paetsch et al. [41] 2004 MRI 48 5 16 10 90.6 61.5 >50 %

Pilz et al. [42] 2006 MRI 109 4 48 10 96.5 82.8 >70 %

Pingitore et al. [43] 2008 MRI 61 5 18 9 92.4 66.7 >50 %

Plein et al. [44] 2005 MRI 52 7 17 6 88.1 73.9 >70 %

Plein et al. [45] 2008 MRI 31 4 7 9 88.6 43.8 >50 %

Plein et al. [46] 2008 MRI 12 1 16 4 92.3 80.0 >50 %

Stolzmann et al. [47] 2010 MRI 28 8 21 3 77.8 87.5 >50 %

Takase et al. [48] 2004 MRI 71 5 22 4 93.4 84.6 >50 %

Aggeli et al. [49] 2007 ECHO 28 4 16 2 87.5 88.9 ≥50 %

Arnold et al. [21] 2010 ECHO 35 6 16 5 85.4 76.2 ≥50 %

Chiou et al. [50] 2004 ECHO 69 16 36 11 81.2 76.6 ≥50 % (≥40 % LM)

Jeetley et al. [51] 2006 ECHO 74 11 19 19 87.1 50.0 ≥70 %

Kowatsch et al. [52] 2007 ECHO 22 3 21 8 88.0 72.4 >50 %

Lipiec et al. [53] 2008 ECHO 69 10 18 6 87.3 75.0 ≥70 %

Miszalski-Jamka et al. [54] 2009 ECHO 65 9 25 4 87.8 86.2 ≥50 %

Moir et al. [55] 2005 ECHO 35 5 20 19 87.5 51.3 ≥50 %

Peltier et al. [56] 2004 ECHO 22 0 10 3 100.0 76.9 >70 %

Senior et al. [57] 2004 ECHO 35 7 7 5 83.3 58.3 >50 %

Aggeli et al. [49] 2007 SPECT 24 6 17 1 80.0 94.4 ≥50 %

Astarita et al. [58] 2001 SPECT 23 0 14 16 100.0 46.7 ≥50 %

Budoff et al. [59] 2007 SPECT 17 4 7 2 81.0 77.8 >70 % (>50 % LM)

Doyle et al. [26] 2003 SPECT 16 10 130 28 61.5 82.3 ≥70 %

Gonzalez et al. [60] 2005 SPECT 102 15 16 12 87.2 57.1 ≥50 %

91 7 24 23 92.9 51.1 ≥75 %

Jeetley et al. [51] 2006 SPECT 73 12 19 19 85.9 50.0 ≥70 %

Johansen et al. [61] 2005 SPECT 94 32 183 48 74.6 79.2 ≥50 %

Lipiec et al. [53] 2008 SPECT 73 6 13 11 92.4 54.2 ≥70 %
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resulting in a sensitivity and specificity of respectively 0.97
and 0.87 for CT, and 0.87 and 0.70 for MR, suggesting that
CT angiography has a better diagnostic performance com-
pared to the MPI techniques analysed in this article. How-
ever, drawbacks of CT angiography are the use of iodinated
contrast material which poses a small risk of idiosyncratic
reactions and nephrotoxicity and the lack of functional in-
formation [18].

Limitations

We focused on the diagnostic performance of MPI. Howev-
er, an MPI examination can yield functional information as
well (e.g. left ventricular function, presence of wall motion
abnormalities, presence of scar tissue), rather than perfusion
images alone. Our analysis does not take into account the

possible impact of these parameters on the interpretation of
the MPI test and the results of MRI are therefore likely to be
even better than we estimated.

Also, it is important to note that in clinical practice a
small proportion of patients will be unsuitable for MRI,
either due to contraindications or claustrophobia. Like-
wise, an echocardiography procedure relies on an ade-
quate acoustic window. Often, unsuitable patients were
excluded from the original studies, which in turn could
have resulted in an overestimation of the diagnostic per-
formance in our analysis. Unfortunately, the included
studies did not report sufficient information to explore
these issues.

In the current review we included only studies that
used the most advanced technology by searching for
studies published from 2000 until 2011, which implies

Table 2 (continued)

Author Year Technique TP FN TN FP Sensitivity (%) Specificity (%) CAD definition

Peltier et al. [56] 2004 SPECT 18 4 11 2 81.8 84.6 >70 %

Schepis et al. [62] 2007 SPECT 32 10 32 3 76.2 91.4 ≥50 %

Senior et al. [57] 2004 SPECT 20 21 11 1 48.8 91.7 >50 %

Yao et al. [63] 2000 SPECT 42 3 18 1 93.3 94.7 ≥50 %

Yeih et al. [64] 2007 SPECT 20 8 20 3 71.4 87.0 ≥50 %

Table 3 Measures of diagnostic performance for MRI, ECHO and SPECT, estimated using the bivariate random effects model

Sensitivity Specificity LR+ LR- DOR lnDOR CAD prevalence*

MRI Overall 0.91 (0.88 – 0.93) 0.80 (0.76 – 0.83) 4.43 (3.64 – 5.23) 0.12 (0.08 – 0.15) 37.69 (26.00 – 54.63) 3.63 (3.26 – 4.00) 54% (1603/2970)

Suspected 0.90 (0.78 – 0.96) 0.86 (0.74 – 0.93) 6.61 (2.23 – 10.99) 0.12 (0.03 – 0.22) 54.70 (20.07 – 149.07) 4.00 (3.00 – 5.00) 49% (118/242)

CAD 50 0.89 (0.86 – 0.92) 0.79 (0.73 – 0.84) 4.25 (3.15 – 5.35) 0.13 (0.09 – 0.17) 31.84 (20.96 – 48.37) 3.46 (3.04 – 3.88) 66% (882/1338)

CAD 70 0.91 (0.87 – 0.94) 0.82 (0.75 – 0.87) 4.97 (3.47 – 6.47) 0.11 (0.07 – 0.15) 46.40 (28.90 – 74.49) 3.84 (3.36 – 4.31) 48% (937/1952)

ECHO Overall 0.87 (0.81 – 0.91) 0.72 (0.56 – 0.83) 3.08 (1.65 – 4.50) 0.18 (0.13 – 0.24) 16.94 (9.84 – 29.15) 2.83 (2.29 – 3.37) 66% (525/795)

Suspected 0.88 (0.60 – 0.97) 0.89 (0.58 – 0.98) 8.35 (6.67 – 21.76) 0.13 (-0.05 – 0.32) 62.76 (7.37 – 534.54) 4.14 (2.00 – 6.28) 64% (32/50)

CAD 50 0.86 (0.79 – 0.92) 0.74 (0.63 – 0.82) 3.28 (2.09 – 4.47) 0.19 (0.10 – 0.27) 17.59 (9.48 – 32.66) 2.87 (2.25 – 3.49) 63% (339/534)

CAD 70 0.90 (0.80 – 0.96) 0.65 (0.46 – 0.80) 2.58 (1.32 – 3.84) 0.15 (0.04 – 0.26) 17.04 (6.60 – 44.04) 2.84 (1.89 – 3.79) 71% (186/261)

SPECT Overall 0.83 (0.73 – 0.89) 0.77 (0.64 – 0.86) 3.56 (2.07 – 5.04) 0.22 (0.14 – 0.31) 15.84 (9.74 – 25.77) 2.76 (2.28 – 3.25) 50% (666/1323)

Suspected 0.83 (0.70 – 0.91) 0.79 (0.66 – 0.87) 3.88 (2.03 – 5.73) 0.21 (0.09 – 0.34) 18.15 (8.34 – 39.52) 2.90 (2.12 – 3.68) 41% (221/535)

CAD 50 0.81 (0.72 – 0.87) 0.81 (0.72 – 0.87) 4.15 (2.55 – 5.75) 0.24 (0.15 – 0.33) 17.24 (9.67 – 30.73) 2.85 (2.27 – 3.43) 53% (452/848)

CAD 70 0.85 (0.76 – 0.91) 0.66 (0.54 – 0.77) 2.53 (1.69 – 3.37) 0.22 (0.12 – 0.33) 11.42 (6.04 – 21.59) 2.44 (1.80 – 3.07) 53% (331/620)

When data were available for both CAD definitions (≥50 % and ≥70 %) the overall estimates only include data from CAD ≥70 % stenosis

CAD 50 corresponds to the studies that defined obstructive CAD either as >50 % or ≥50 % stenosis

CAD 70 corresponds to the studies that defined obstructive CAD either as >70 %, ≥70 % or ≥75 % stenosis and studies that combined one of these
with >50 % (or ≥50 %) stenosis in the left main coronary artery

“Suspected” refers to studies that only included patients with suspected CAD without a history of MI, PCI or CABG.
a The CAD prevalence defined by “CAD diagnosed by CCA” divided by the total sample size
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that some large landmark SPECT studies performed in
the 1980s and 1990s were excluded from our analysis.

A previously published comprehensive systematic re-
view sheds light on the effect of this exclusion criterion
[13]. In the previous review 103 SPECT studies with a
total of 11,977 patients published between 1984 and
2002 were analysed. There is no overlap with the
SPECT studies that we included. The diagnostic odds
ratios for SPECT found in the previous review and in
the current review are the same: they found an lnDOR

Fig. 3 Forest plots. The data are sorted by suspected and known CAD
versus suspected CAD and CAD definition of ≥50 % versus ≥70 %
stenosis from lowest to highest sensitivity and data are reported at the
patient level. a MRI, b ECHO, c SPECT. *When data were available
for both CAD definitions (≥50 % and ≥70 %) the summary estimates
only include data from CAD ≥70 % stenosis

�

Fig. 4 ROC space with summary estimates for each technique with
95 % confidence areas. This figure shows the diagnostic performance
of studies relative to each other with specificity (plotted in reverse) on
the x-axis and sensitivity on the y-axis. Perfect diagnostic accuracy is in
the upper left corner, where sensitivity and specificity are both 1.

aMRI, b ECHO, c SPECT, d All three techniques. The grey rectangles
in a refer to the studies using delayed contrast enhancement and in c
they refer to the studies using gated SPECTwith radiotracer 99mTc. The
size of the rectangles corresponds with the inverse standard error of
sensitivity and specificity, which correlates with the size of the study
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of 2.8 (95 % CI 2.6–3.0) compared to our lnDOR of
2.8 (95 % CI 2.3–3.3).

The funnel plot for MRI and SPECT suggests that
there is evidence of publication bias, which implies that
our summary measures may be overestimated. Neverthe-
less, the overestimation applies to both MRI and SPECT.
The funnel plot for ECHO does not suggest evidence of
publication bias.

Heterogeneity across studies is a limitation of meta-
analyses of diagnostic performance. Across studies differ-
ences exist with respect to imaging techniques, assessment
methods, stressors, radiotracers, contrast media, CAD def-
inition (lumen diameter reduction of at least 50 %, at least
70 % or at least 75 %), CAD prevalence, percentage male
patients, patient inclusion criteria, setting and country.
Although we were able to analyse the effect of using
different CAD definitions and patient inclusion criteria,
sample size limitations did not allow us to do subset
analyses for the other cross-study variations. Due to
chance there will always be variability between studies,
but there may also be different types of biases influencing
the results. We used a random effects model which adjusts
the estimates and confidence intervals to account for
between-study variations. Nevertheless, heterogeneity
across studies remains an important limitation.

For calculation and precision purposes, we excluded
studies with less than 30 patients. In this way, we
minimised the number of studies with for example zero
FPs or FNs. This exclusion criterion may have intro-
duced a selection bias.

Another limitation of meta-analyses is the dependence on
the level of detail reported in the original papers. For
example, data on the individual territories were generally
not available. Furthermore, most studies included a mix of
known and suspected CAD patients or did not report the
test characteristics for the subgroup of patients with sus-
pected CAD without a prior history of MI, PCI or CABG.
Therefore, our subgroup analysis of suspected CAD was
limited due to a small sample size. Nevertheless, our
analysis did suggest that the diagnostic performance of
MPI tests is not substantially affected by including patients
with known CAD.

Although our results show that all tests are reasonably
accurate, the likelihood ratios suggest that neither one of them
is suitable to rule out or rule in the presence of disease [19].
This can also be seen in Fig. 5, where the post-test probability
after a positive test rarely exceeds 90 %, and the post-test
probability of disease after a negative test may still be
substantial. Since MPI is intended as a gatekeeper test,
ruling out disease is more important than ruling in disease.
MRI performs quite well in this respect with an LR− of
0.12 (0.08–0.15). SPECT and ECHO demonstrate less
favourable LRs (Table 3).

The reference standard test for diagnosing CAD is CCA.
Innovative technological developments in diagnosing CAD
are most often compared with CCA. The limitation of CCA
is that it evaluates the lumen diameter reduction of the coro-
nary arteries, but for instance a 50 % vessel diameter reduction
does not always result in the same reduction in blood flow and
does not necessarily lead to myocardial ischaemia. There are
alternative techniques such as fractional flow reserve (FFR)
that measure the pressure difference across a coronary stenosis.
It is even possible that the imaging techniques we evaluated are
better diagnostic tools than CCA to begin with, since they
measure myocardial perfusion which is the physiological
basis of myocardial function. Thus, the less than perfect
sensitivity and specificity could in part be attributed to
imperfections of CCA instead of the limitations of perfu-
sion imaging.

Clinical implications

The results of our systematic review and meta-analysis
suggest that MRI is superior to ECHO and SPECT in
diagnosing CAD. This statement is strengthened firstly by
the findings of the MR-IMPACT study [5]—a multicentre
randomised trial—which suggested that MRI is superior to
SPECTand secondly by the findings of the EuroCMR registry

Fig. 5 Revised probability of CAD. This figure shows the revised
(post-test) probability of CAD (y-axis) as a function of prior (pre-test)
probability (x-axis) of CAD for positive and negative MPI results,
based on the likelihood ratios presented in Table 3 (overall analysis).
MRI+, ECHO+ and SPECT+ represent the lines for a positive test
result and MRI−, ECHO− and SPECT− represent the lines for a
negative test result
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[20], which demonstrated that in patients who underwent
stress MRI for the diagnostic workup of suspected CAD,
invasive angiography could be avoided in nearly one-half
of the patients. All in all, the results suggest that stress
perfusion MRI is potentially useful as a gatekeeper test
before CCA in patients with low to intermediate prior
probability of CAD but this needs to be confirmed with
a comparative cost-effectiveness analysis. Furthermore,
more research of the diagnostic performance of stress
perfusion ECHO, PET and CT is required to evaluate their
clinical usefulness.

In conclusion, our results suggest that stress perfusion
MRI is superior for the diagnosis of obstructive CAD com-
pared to stress perfusion contrast-enhanced echocardiogra-
phy and SPECT, and that echocardiography and SPECT are
similar in terms of diagnostic performance.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribution,
and reproduction in any medium, provided the original author(s) and
the source are credited.
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