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Abstract

Strains of the genus Gramella (family Flavobacteriacae, phylum Bacteroidetes) were isolated from marine habitats
such as tidal flat sediments, coastal surface seawater and sea urchins. Flavobacteriaceae have been shown to be
involved in the decomposition of plant and algal polysaccharides. However, the potential to decompose polysaccharides
may differ tremendously even between species of the same genus. Gramella echinicola KMM 6050T (DSM 19838T) and
Gramella portivictoriae UST040801-001T (DSM 23547T) have genomes of similar lengths, similar numbers of protein coding
genes and RNA genes. Both genomes encode for a greater number of peptidases compared to ’G. forsetii’. In contrast to
the genome of ’G. forsetii’, both genomes comprised a smaller set of CAZymes. Seven polysaccharide utilization loci were
identified in the genomes of DSM 19838T and DSM 23547T. Both Gramella strains hydrolyzed starch, galactomannan,
arabinoxylan and hydroxyethyl-cellulose, but not pectin, chitosan and cellulose (Avicel). Galactan and xylan were
hydrolyzed by strain DSM 19838T, whereas strain DSM 23547T hydrolyzed pachyman and carboxy-methyl cellulose.
Conclusively, both Gramella type strains exhibit characteristic physiological, morphological and genomic differences
that might be linked to their habitat. Furthermore, the identified enzymes mediating polysaccharide decomposition,
are of biotechnological interest.
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Introduction
Strain UST040801-001T (=DSM 23547T = JCM
13192T = NBRC 101534T = NRRLB-41137T) is the
type strain of G. portivictoriae [1] and strain KMM
6050T (=DSM 19838T =JCM 13510T =KCTC 12278T

=LMG 22585T =NBRC 100593T) is the types train of
G. echinicola [2], the type species of Gramella [2] of the
family Flavobacteriaceae [3, 4]. G. echinicola KMM 6050T

was isolated from the sea urchin Strongylocentrotus inter-
medius of the Sea of Japan [2], whereas G. portivictoriae

UST040801-001T was isolated from sediment of the
Victoria Harbor, Hong Kong [1]. All other Gramella
known strains were isolated from marine habitats, such as
tidal flat sediment [5–8] and coastal surface seawater
[9, 10]. Many Flavobacteriaceae have been shown to
harbour a great set of carbohydrate active enzymes,
such as Zobellia galactinovorans [11], Formosa agari-
phila [12], ’Gramella forsetii’ KT0803 [13]. However,
the set of CAZymes within a genus may differ tre-
mendously, as shown for Polaribacter [14] and

Table 1 Classification and general features of G. echinicola DSM 19838T and G. portivictoriae DSM 23547T in accordance with the
MIGS recommendations [60], as developed by [25], List of Prokaryotic names with Standing in Nomenclature [61, 62] and the Names
for Life database [63]

MIGS ID Property DSM 19838T DSM 23547T

Term Evidence codea Term Evidence codea

Current Domain Bacteria TAS [64] Domain Bacteria TAS [64]

classification Phylum Bacteroidetes TAS [65, 66] Phylum Bacteroidetes TAS [65, 66]

Class Flavobacteriia TAS [67, 68] Class Flavobacteriia TAS [67, 68]

Order Flavobacteriales TAS [4, 69] Order Flavobacteriales TAS [4, 69]

Family Flavobacteriaceae TAS [3, 4] Family Flavobacteriaceae TAS [3, 4]

Genus Gramella TAS [2] Genus Gramella TAS [2]

Species
Gramella echinicola

TAS [2] Species
Gramella portivictoriae

TAS [1]

Type strain
KMM 6050T

TAS [2] Type strain
UST040801-001T

TAS [1]

Gram-stain Negative TAS [2] Negative TAS [1]

Cell shape Rod-shaped TAS [2] Rod-shaped TAS [1]

Motility Motile, gliding TAS [2] Motile, gliding TAS [1]

Sporulation Non-spore forming TAS [2] Non-spore forming TAS [1]

Temperature range Mesophilic, 4–37 °C TAS [2] Mesophilic, 4–36 °C TAS [1]

Optimum temperature 23–25 °C TAS [2] 28–30 °C TAS [1]

pH range; optimum 4–11, 7–8 TAS [2] 6–10, 7–8 TAS [1]

MIGS-22 Oxygen requirement Strictly aerobic TAS [2] Strictly aerobic TAS [1]

Carbon source Carbohydrates, peptides TAS [2] Carbohydrates, peptides TAS [1]

Energy source Chemoheterotroph TAS [2] Chemoheterotroph TAS [1]

MIGS-6 Habitat Marine, host, sea urchin TAS [2] Marine, sediment TAS [1]

MIGS-6.3 Salinity (% NaCl, w/v) 1–15 % TAS [2] 1–6 % TAS [1]

MIGS-15 Biotic relationship Commensal TAS [2] Free-living TAS [1]

MIGS-14 Pathogenicity Not reported NAS Not reported NAS

Biosafety level 1 TAS [70] 1 TAS [70]

MIGS-4 Geographic location Troitsa Bay, Gulf of Peter the Great, Sea of Japan TAS [2] Victoria Harbour, Hong Kong TAS [1]

MIGS-5 Sample collection time 1. Sep. 2002 NAS Before 2005 NAS

MIGS-4.1 Latitude 42.64 NAS 22.31 NAS

MIGS-4.2 Longitude 131.10 NAS 114.12 NAS

Depth 3 m TAS [2] not reported
aEvidence codes - TAS traceable author statement (i.e., a direct report exists in the literature), NAS non-traceable author statement (i.e., not directly observed
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology
project [71]
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Flavobacterium [15, 16]. Thus, we selected these Fla-
vobacteriaceae type strains from different marine
habitats to gain insights into their unknown polysac-
charide decomposition potential (other than starch,
cellulose and chitin).
Here we present the different sets of carbohydrate

active enzymes, polysaccharide-utilization loci and
peptidases of both Gramella genomes and a sum-
mary of their current classification, the set of known
phenotypic features and a description of the perman-
ent draft genome sequence and annotation derived
from cultures of strains DSM 19838T and DSM
23547T. Furthermore, we investigated the polar lipid
profiles, cell surface structures and gliding motility of
these strains, as well as the hydrolysis of certain
polysaccharides.

Organism information
Classification and features
The draft genome of G. echinicola DSM 19838T has
one full-length and one partial 16S rRNA gene se-
quence identical with the sequence from the original
species description (AB681204, AY608409). The draft
genome of G. portivictoriae DSM 23547T has one full-
length 16S rRNA gene sequence identical with the se-
quence from strain NBRC 101534T (AB681471) and
99 % similar with the sequence in the original species
description (DQ002871) [1]. Based on 16S rRNA gene
sequence similarity, closely related strains were TW-JL-
80 (DQ073100, 98.1 %) from the South China Sea [17],
MAR_2010_163 (JX854363, 97.3 %) from the North Sea
[18] and the clone Vis_St18_35 (FN433421, 98.3 %)
from the North Atlantic subtropical gyre [19]. A

Fig. 1 Phylogenetic tree the genus Gramella and closely related genera of the family Flavobacteriaceae. The tree was inferred from 1,409 aligned
characters of the 16S rRNA gene sequence under the maximum likelihood (ML) and maximum parsimony [MP] criterion as previously described
by Göker et al. [51]. The sequences of the LTP v. 121 database [52, 53] and from GenBank were aligned in ARB [54] using the SINA aligner [39]
and manually corrected. The branches are scaled in terms of expected number of substitutions per site. Numbers adjacent to the branches are
support values from 1,000 ML bootstrap replicates (left) and from 1,000 maximum-parsimony bootstrap replicates (right) if larger than 60 % [51].
Numbers in wedges represent the numbers of sequences. The tree was rooted using type strains of the genera Doktonia, Aquimarina, Salinimicrobium,
Psychroflexus, Gillisia and Mesonia
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summary of the classification and general features of G.
echinicola DSM 19838T and G. portivictoriae DSM
23547T is shown in Table 1.
Figure 1 depicts a 16S rRNA gene sequence phyloge-

nomic tree of the genera Gramella, Zunongwangia and
other closely related Flavobacteriaceae. Gramella spp.
Nedashkovskaya et al. 2005 are Gram-stain negative,
rod-shaped, strictly aerobic Flavobacteriaceae that are
cytochrom-oxidase and catalase positive, move by glid-
ing, produce non-diffusible carotenoid pigments, but not
flexirubin-like pigments [2]. G. echinicola DSM 19838T

produces extracellular polymeric substances, whereas G.
portivictoriae DSM 23547T produces appendages (Fig. 2).
Colonies of both of these Gramella species are circular,
convex with entire translucent margins and yellow–

orange in color on marine agar (Fig. 2). Both strains
grow at pH 6–10 and between 4 °C and 36 °C, with a
temperature optimum at 23–25 °C for G. echinicola and
28–30 °C for G. portivictoriae [1, 2]. G. echinicola is able
to grow in medium of higher salinity (1–15 % (w/v)
NaCl) than G. portivictoriae (1–6 % (w/v) NaCl) [1, 2].
Both Gramella strains utilize D-arabinose, L-arabinose,
D-glucose and D-sucrose [1, 2], D-fructose and trehalose
[8]. G. portivictoriae UST040801-001T utilizes D-galact-
ose, glycerol, D-mannitol, D-melibiose, D-sorbitol and
starch [1], whereas G. echinicola JCM 13510T utilizes D-
xylose [7], but not D-lactose, D-mannose, D-mannitol,
inositol, sorbitol, malonate and citrate [2]. A list of car-
bon sources utilized by both strains using the Biolog
GN2 plate can be seen in Cho et al. [5].

A

B

C

D

E

F

Fig. 2 Gliding motility and scanning electron micrographs of G. echinicola DSM 19838T and G. portivictoriae DSM 23547T. (A-F) DSM 19838T and
DSM 23547T were incubated on bacto marine soft agar (0.3 % agar) at 25 °C to visualize the gliding motility of these Gramella. (G-H) DSM 19838T

and DSM 23547T were cultured in bacto marine broth at 25 °C and visualized by scanning electron microscopy. DSM 19838T expressed extracellular
polymeric substances, EPS (arrows) whereas DSM 23547T produced appendages (arrows)
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Chemotaxonomic data
Major fatty acids (>5 % of total) of G. echinicola KMM
6050T are C15:0, anteiso-C15:0, iso-C15:0, iso-C16:0, iso-C16:1,
and iso-C16:0 3-OH, iso-C17:0 3-OH and summed feature 3
(iso-C15:0 2-OH and/or C16:1 ω7c) [2]. Major fatty acids of
G. portivictoriae UST040801-001T are almost identical
with the exception that C15:0 was not identified but iso-
C15:0 3-OH, iso-C17:1 ω9c [1]. The major polar lipids of
strains DSM 19838T and DSM 23547T are phosphatidyl-
ethanolamine, five unidentified lipids (L1 – L2, L4 – L6)
and two unidentified aminolipids (AL1 – AL2). One
unidentified aminolipid (AL3) and three unidentified
lipids (L2, L7 – L8) appeared as minor components
(Fig. 3). As mentioned in the description of the genus
Gramella, the major respiratory quinone in both
strains is menachinone-6 whereas flexirubin-type pig-
ments were not observed, only non-diffusible caroten-
oid pigments [2]. The DNA G + C content of the type
strains was previously determined as 39.6 mol% of G.
echinicola KMM 6050T and 39.9 mol% of G. portivic-
toriae UST040801-001T [1, 2].

Organic matter degradation
Both Gramella strains hydrolyze casein, gelatin, starch and
Tweens 20, 40, 60 and 80 as well as esculin ferric citrate,
but not agar, chitin or cellulose (CM-cellulose or filter
paper) [1, 2, 6]. G. echinicola hydrolyzed DNA [2] whereas
G. portivictoriae did not [1]. For strains KCTC 12278T and
KCTC 22434T activity of acid phosphatase, alkaline phos-
phatase, naphthol-AS-BI-phosphohydrolase, esterase (C4),
esterase lipase (C8), cystine arylamidase, leucine arylami-
dase, valine arylamidase and α-glucosidase, β-glucosidase

were observed, but not the activity of β-glucuronidase, α-
mannosidase, α-fucosidase, lipase (C14) and trypsin [5].
However, Shahina et al. [10] showed the activity of trypsin,
α-chymotrypsin, α-glucosidase and N-acetyl-β-glucosamini-
dase for G. echinicola KCTC 12278T. Nedashkovskaya et al.
[2] showed β-galactosidase activity for G. echinicola KMM
6050T and Cho et al. [5] showed the α-galactosidase activity
for G. echinicola KMM 12278T. Furthermore, G. portivic-
toriae UST040801-001T was described with positive α-
chymotrypsin, lipase (C14), α-galactosidase, α-glucosidase,
β-glucosidase, trypsin and naphthol-AS-BI-phosphohy-
drolase activity and without N-acetyl-β-glucosaminidase,
arginine dihydrolase, lysine decarboxylase, ornithine de-
carboxylase, tryptophan deaminase activity [1].
To get further insights into the polysaccharide decom-

position potential of G. echinicola DSM 19838T and G.
portivictoriae DSM 23547T, both strains were incubated
in HaHa medium (12 mg/L carbon source mix, [18])
and marine broth (6 g/L carbon source mix, DSMZ
medium 514, [20]) supplemented with different poly-
saccharides, casein and gelatine at 25 °C for up to 14
days (Fig. 4). Each 200 μL well of a microtiter plate
was filled with a small portion of one of the AZO-
CL-polysaccharides, −casein (Megazym, Bray, Ireland),
charcoal-pectin, −gelatin (chapter 15.3.32.3, method 3
in [21]) and 100 μL medium. Each well was inoculated
with 100 μL of a starved culture or 100 μL medium as
control. Both Gramella type strains hydrolyzed casein and
starch but did not hydrolyze chitosan or cellulose (Avicel),
as described in previous studies [1, 2, 6], galactomannan,
arabinoxylan and hydroxyethyl-cellulose, but not pectin
(Fig. 4). Pachyman was hydrolyzed by strain DSM 23547T,

A B

Fig. 3 Polar lipids profiles of G. echinicola DSM 19838T and G. portivictoriae DSM 23547T. The polar lipids were extracted using a modified method
of Bligh and Dyer [55] (see Tindall [56]) and separated by two-dimensional thin-layer chromatography using the solvents chloroform/methanol/
water (65:2:4, by vol.) in the first dimension and chloroform/methanol/acetic acid/water (80:12:15:4, by vol.) in the second dimension at 25 °C, as
described by Tindall et al. [21]. For identification of the total polar lipids plates were sprayed with molybdatophosphoric acid (5 % in ethanol) and
specific spray reagents used to detect the functional head groups of the lipids, as described by Tindall et al. [21]. PE, phosphatidylethanolamine
(blue, phospholipid); AL, amino lipid (yellow, amino lipid); L, polar lipid
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whereas galactan and xylan were hydrolyzed by strain
DSM 19838T.

Genome sequencing information
Genome project history
G. portivictoriae DSM 23547T and G. echinicola DSM
19838T were selected for sequencing on the basis of
their phylogenetic position [22] and are part of the Gen-
omic Encyclopedia of Type Strains, Phase I: the one
thousand microbial genomes project [23], a follow-up of
the Genomic Encyclopedia of and Archaea: sequencing a
myriad of type strains initiative [24] and the Genomic
Standards Consortium project [25], which aim at in-
creasing the number of key reference microbial genomes
and to generate a large genomic basis for the discovery
of genes encoding novel enzymes [26]. The genome pro-
ject is deposited in the Genomes OnLine Database [27].
The permanent draft genome sequences are deposited in
GenBank. Sequencing, finishing and annotation were

performed by the DOE Joint Genome Institute [28]. A
summary of the project information is shown in Table 2.

Growth conditions and genomic DNA preparation
Cultures of DSM 23547T and DSM 19838T were grown
aerobically in DSMZ medium 514 [20] at 28 °C and 26 °C,
respectively. Genomic DNA was isolated using Jetflex
Genomic DNA Purification Kit (GENOMED 600100) fol-
lowing the standard protocol provided by the manufac-
turer but modified by an incubation time of 60 min, the
incubation on ice overnight on a shaker, the use of an add-
itional 50 μL proteinase K, and the addition of 200 μL
protein precipitation buffer. DNA is available from the
DSMZ through the DNA Bank Network [29].

Genome sequencing and assembly
The draft genomes of DSM 19838T and DSM 23547T

were generated using the Illumina technology [30]. An
Illumina standard shotgun library was constructed and

Fig. 4 Polysaccharide hydrolysis by Gramella type strains G. echinicola DSM 19838T, G. portivictoriae DSM 23547T. Both strains were incubated
in medium 514 (6 g/L carbon source mix) and HaHa (12 mg/L carbon source mix) for up to 14 days. G. echinicola DSM 19838T was incubated
at 25 °C and G. portivictoriae DSM 23547T at 28 °C. Each 200 μL well of a microtiter plate was filled with a small portion of one of the
AZO-CL-polysaccharides, −casein (Megazym, Bray, Ireland), charcoal-pectin, −gelatin in 100 μL medium. Each well was inoculated with 100 μL of a
starved culture of the strains. The control wells were inoculated with 100 μL medium. The blue colour indicates the release of AZO- monomers and
thus hydrolysis of the polysaccharide/peptide. A red-brown colour indicates growth of the strain (mixture of blue and yellow-orange). Black grains in
the surrounding of the charcoal-pectin and -gelatine indicate hydrolysis
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sequenced using the Illumina HiSeq 2000 platform
which generated 13,321,360 reads totaling 1,998.2 Mb
for strain DSM 19838T and 9,930,650 reads totaling
1,489.6 Mb for strain DSM 23547T (Table 3).
All general aspects of library construction and sequencing

performed at the JGI can be found at the JGI website [31].
All raw sequence data were passed through DUK, a filtering
program developed at JGI, which removes known Illumina
sequencing and library preparation artifacts. The fol-
lowing steps were performed for assembly: filtered reads

were assembled using Velvet [32], (2) 1–3 Kbp simulated
paired end reads were created from Velvet contigs using
wgsim [33], (3) sequence reads were assembled with simu-
lated read pairs using Allpaths–LG [34]. Parameters for as-
sembly steps were: (1) Velvet ("velveth 63 -shortPaired" and
"velvetg -very clean yes -exportFiltered yes -min contig lgth
500 -scaffolding no -cov cutoff 10"), (2) wgsim ("wgsim -e
0–1 100–2 100 -r 0 -R 0 -X 0") (3) Allpaths–LG ("Prepar-
eAllpathsInputs: PHRED 64 = 1 PLOIDY= 1 FRAG
COVERAGE= 125 JUMP COVERAGE= 25 LONG JUMP

Table 2 Genome sequencing project information

MIGS ID Property Term

DSM 19838T DSM 23547T

MIGS-31 Finishing quality Level 2: Improved High-Quality Draft Level 2: Improved High-Quality Draft

MIGS-28 Libraries used Illumina Std shotgun library, 2 × 150bp Illumina Std shotgun library, 2 × 150bp

MIGS-29 Sequencing platforms Illumina HiSeq 2000 Illumina HiSeq 2000

MIGS-31.2 Fold coverage 123× 122×

MIGS-30 Assemblers Velvet v. 1.1.04, ALLPATHS v. r41043 Velvet v. 1.1.04, ALLPATHS v. r41043

MIGS-32 Gene calling method Prodigal, GenePRIMP, IMG-ER Prodigal, GenePRIMP, IMG-ER

Locus Tag G530_RS01 G529_RS01

NCBI project ID 16158 16157

Genbank ID AUHG00000000 AUHF00000000

Genbank Date of Release 2015-08-15 2013-12-12

GOLD ID Gp0013656 Gp0013657

BIOPROJECT PRJNA185622 PRJNA185621

MIGS-13 Source Material Identifier DSM 19838 DSM 23547

Project relevance Tree of Life, GEBA-KMG Tree of Life, GEBA-KMG

Table 3 Genome statistics

DSM 19838T DSM 23547T

Attribute Number % of Total Number % of Total

Genome size (bp) 3,513,826 100.0 3,269,398 100.0

DNA coding (bp) 3,220,860 91.7 3,025,367 92.5

DNA G + C (bp) 1,296,572 36.9 1,292,347 39.5

DNA, scaffolds 18 100.0 8 100.0

Total genes 3,253 100.0 3,045 100.0

Protein coding genes 3,199 98.3 2,984 98.0

RNA genes 54 1.7 61 2.0

Pseudo genes 21 0.7 27 0.9

Genes in internal clusters 216 6.6 174 5.7

Genes with function prediction 2,464 75.8 2,302 75.6

Genes assigned to COGs 1,863 57.3 1,747 75.6

Genes with Pfam domains 2,564 78.8 2,409 79.1

Genes with signal peptides 334 10.3 347 11.4

Genes with transmembrane helices 766 23.6 662 21.7

CRISPR repeats 1 0.1 0 0.0
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COV= 50" and "RunAllpathsLG THREADS = 8 RUN= std
shredpairs TARGETS = standard VAPI WARN ONLY=
OVERWRITE =True").
The final draft assembly contained 18 contigs in a sin-

gle scaffold for strain DSM 19838T and 11 contigs in two
scaffolds for strain DSM 23547T. The total size of the
genome of strain DSM 19838T is 3.5 Mbp and the final
assembly is based on 430.3 Mbp of data, which provides
a 122.6x average coverage of the genome. The total size
of the genome of strain DSM 23547T is 3.3 Mbp and the
final assembly is based on 396.8 Mbp of data, which pro-
vides a 121.5x average coverage of the genome.

Genome annotation
Genes were identified using Prodigal [35] as part of the
DOE-JGI genome annotation pipeline [36], followed by
manual curation using the JGI GenePRIMP pipeline
[37]. The predicted CDSs were translated and used to
search the National Center for Biotechnology Informa-
tion non-redundant database, UniProt, TIGR-Fam, Pfam,
PRIAM, KEGG, COG, and InterPro databases. The
tRNAScanSE tool [38] was used to find tRNA genes,
whereas ribosomal RNA genes were found by searches
against models of the ribosomal RNA genes built from
SILVA [39]. Other non-coding RNAs such as the RNA
components of the protein secretion complex and the
RNase P were identified by searching the genome for the
corresponding Rfam profiles using INFERNAL [40].
Additional gene prediction analysis and manual func-
tional annotation was performed within the Integrated
Microbial Genomes-Expert Review platform [41] devel-
oped by the Joint Genome Institute, Walnut Creek, CA,
USA [31]. CRISPRs were identified using the online
CRIPSRFinder tool [42].

Genome properties
The assemblies of the draft genome sequence of DSM
19838T and DSM 23547T consist of one and two scaf-
folds amounting to 3,513,826 bp and 3,269,398 bp, re-
spectively (Table 3). The G + C content of DSM 19838T

is 36.9 %, which is 2.7 % less than the G + C content re-
ported by Nedashkovskaya et al. [2], and thus shows a
difference that surpasses the maximal range among
strains belonging to the same species [43]. The G + C
content of DSM 23547T is 39.5 % and similar to the G +
C content reported by Lau et al. [1]. From the genome
of DSM 19838T 3253 genes, 3199 protein-coding genes
and 54 RNAs were predicted. From the genome of DSM
23547T 3,045 genes, 2,984 protein-coding genes and 61
RNAs were predicted. The majority of the protein-
coding genes (DSM 19838T, 75.8 %; DSM 23547T,
75.6 %) were assigned a putative function while the
remaining ones were annotated as hypothetical proteins.

The distribution of genes into COGs functional categor-
ies is presented in Table 4.

Insights from the genome sequence
Comparative genomics
We present a brief comparative genomics analysis of
Gramella echinicola and Gramella portivictoriae with a
selection of its closest phylogenetic neighbors (according
to Fig. 1), 'Gramella forsetii' and Zunongwangia profunda.
The genomes of these strains differ significantly in their
size with 3.5 Mbp (Gramella echinicola), 3.3 Mbp (Gra-
mella portivictoriae), 3.8 Mbp ('Gramella forsetii') and 5.1
Mbp (Zunongwangia profunda).

Table 4 Number of genes associated with the general COG
functional categories

Code DSM
19838T

DSM
23547T

Description

Value % age Value % age

J 188 9.2 178 9.3 Translation, ribosomal structure
and biogenesis

A – – – – RNA processing and modification

K 108 5.3 99 5.2 Transcription

L 97 4.7 88 4.6 Replication, recombination and
repair

B 1 0.1 1 0.1 Chromatin structure and dynamics

D 23 1.1 22 1.2 Cell cycle control, cell division,
chromosome partitioning

V 63 3.1 54 2.8 Defense mechanisms

T 80 3.9 70 3.7 Signal transduction mechanisms

M 183 8.9 168 8.8 Cell wall/membrane biogenesis

N 15 0.7 19 1.0 Cell motility

U 21 1.0 19 1.0 Intracellular trafficking and secretion

O 102 5.0 91 4.8 Posttranslational modification,
protein turnover, chaperones

C 101 4.9 107 5.6 Energy production and conversion

G 115 5.6 102 5.3 Carbohydrate transport and
metabolism

E 182 8.9 188 9.8 Amino acid transport and metabolism

F 58 2.8 58 3.0 Nucleotide transport and metabolism

H 127 6.2 129 6.7 Coenzyme transport and metabolism

I 93 4.5 91 4.8 Lipid transport and metabolism

P 107 5.2 104 5.4 Inorganic ion transport and
metabolism

Q 51 2.5 44 2.3 Secondary metabolites biosynthesis,
transport and catabolism

R 218 10.6 189 9.9 General function prediction only

S 114 5.6 87 4.6 Function unknown

X 5 0.2 3 0.2 Mobilome: prophages, transposons

– 1,390 42.7 1,298 42.6 Not in COGs
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An estimate of the overall similarity among these four
strains was generated with the Genome-to-Genome
Distance Calculator (GGDC 2.0) [44, 45]. It calculates
intergenomic distances by comparing two respective ge-
nomes to obtain HSPs (high- scoring segment pairs)
and, then infers distances via a set of formulae (1, HSP
length/total length; 2, identities/HSP length; 3, iden-
tities/total length). Formula 2 is robust against the use of
incomplete genome sequences and the recommended
choice [45]. For convenience the GGDC also reports
model-based DDH estimates (digital DDH or dDDH)
along with their confidence intervals [45].
The result of this comparison is shown in Table 5 and

yields a dDDH value below 22 % throughout, i.e., clearly
underlines the expected status of distinct species. With
21.3 % dDDH Gramella echinicola has the highest similar-
ity to 'Gramella forsetii', whereas Gramella portivictoriae

Table 5 Pairwise comparison of Gramella echinicola and
Gramella portivictoriae with 'Gramella forsetii' and Zunongwangia
profunda using the GGDC 2.0 (Genome-to-Genome Distance
Calculator). Digital DDH (dDDH) and the respective confidence
intervals (C.I.) are specified for GGDC’s recommended formula 2

Strain 1 Strain 2 % dDDH % C.I.

G. echinicola DSM
19838T

’G. forsetii’ KT0803 21.3 2.3

’G. forsetii’
KT0803

G. portivictoriae DSM 23547T 18.6 2.3

G. echinicola DSM
19838T

G. portivictoriae DSM 23547T 18.4 2.3

’G. forsetii’ KT0803 Zunongwangia profunda SM A87T 20.4 2.3

G. echinicola DSM
19838T

Zunongwangia profunda SM A87T 18.6 2.3

G. portivictoriae
DSM 23547T

Zunongwangia profunda SM A87T 18.2 2.3

Table 6 Gliding motility-related genes in strain DSM 19838T and DSM 23547T compared to genes in F. johnsoniae studied by
McBride and Zhu [72]

G. echinicola 19838T G. portivictoriae 23547T F. johnsoniae ATCC 17061T

Locus tag prefix G530_RS01 G529_RS01 FJOH_

Gliding motility + + +

Adhesin-like

remA – – 0808

remB 04710 03110 1657

sprB 00190 – 0979

ATP-binding cassette transporter

gldA 13745 03925 1516

gldF 00125 12395 2722

gldG 00120 12390 2721

Additional proteins

gldBa 05595 08905 1793

gldC 05600 08910 1794

gldDa 03500 02145 1540

gldE 03505 02150 1539

gldHa 01530 00125 0890

gldJa 05045 08395 1557

peptidoprolyl isomerase (Flavobacteriia, protein folding)

gldI 12360 06845 2369

Type IX secretion system (secretion of RemA/RemB)

gldKa 14425 05780 1853

gldLa 14430 05775 1854

gldMa 14435 05770 1855

gldNa 14440 05765 1856, 1857

sprAa 04685 03085 1653

sprEa 01675 00280 1051

sprTa 15350 04170 1466
aessential gliding motility genes after McBride and Zhu [72]
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has the lowest similarity to Zunongwangia profunda with
18.2 % dDDH. The comparison of Gramella echinicola
and Gramella portivictoriae yielded 18.4 % dDDH.

Gliding motility
As given in the description of the genus, all Gramella
are motile by gliding [2]. We identified all of the genes
in the genomes of both type strains that are essential for
gliding- motility (Table 6). Furthermore, we observed dif-
ferent modes of gliding-motility on marine soft agar
(medium 514 with 0.3 % agar) for both strains. Interest-
ingly, the observed modes of gliding-motility corroborate
the observed cellular morphologies (Fig. 2). G. echinicola
DSM 19838T moved by gliding with smooth and entire
translucent margins and produced extracellular polymeric
substances. In contrast, G. portivictoriae DSM 23547T

formed micro-colonies surrounding the original colony
and produced appendages at the cell surface (Fig. 2).

Peptidases
The MEROPS [46] annotation was carried out by
searching the sequences against MEROPS 9.10 (access
date: 2014.10.16, version: pepunit.lib) as described by
Hahnke et al. [15]. G. echinicola DSM 19838T processes
161 peptidases the majority of which were 68 metallo
(M) and 62 serine (S) peptidases (Table 7 and Table S1
in Additional file 1). Furthermore, the genome contained
17 simple peptidase inhibitors (Table 7 and Table S2 in

Table 7 Peptidases and simple peptidase inhibitors in the
genome of strains DSM 19838T and DSM 23547T

Peptidase Number of genes

family DSM 19838T DSM 23547T

M01 5 4

M03 2 2

M12 2 2

M13 1 1

M14 6 7

M15 1 1

M16 6 5

M19 1 1

M20 6 5

M23 8 10

M24 4 4

M28 6 5

M38 12 6

M41 1 1

M42 1 1

M43 2 1

M48 2 3

M49 2 0

M50 1 1

M56 3 1

M57 1 1

M61 2 2

M75 1 1

M79 3 1

M97 2 2

A08 1 1

A28 1 1

S01 1 2

S06 0 1

S08 2 3

S09 22 19

S10 1 1

S12 9 4

S13 1 1

S14 2 2

S15 1 0

S16 3 3

S24 1 2

S26 1 1

S33 15 13

S41 6 4

S41 6 4

Table 7 Peptidases and simple peptidase inhibitors in the
genome of strains DSM 19838T and DSM 23547T (Continued)

S51 1 1

S54 4 4

S66 1 1

N11 0 1

C01 1 0

C26 6 6

C40 4 4

C44 5 5

C45 1 1

C56 4 4

C82 1 1

T02 2 2

T03 0 1

U32 2 2

I4 1 1

I39 18 15

I43 1 0

I87 1 1
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Additional file 1). G. portivictoriae DSM 23547T pro-
cesses 181 peptidases the majority of which were 81
metallo (M) and 72 serine (S) peptidases (Table 7 and
Table S3 in Additional file 1). The genome contained 21
simple peptidase inhibitors (Table 7 and Table S4 in
Additional file 1).

Carbohydrate active enzymes
G. echinicola DSM 19838T and G. portivictoriae DSM
23547T harboured a large set of 127 and 119 CAZymes, re-
spectively, comprising 37–39 glycoside hydrolases, 2–5
polysaccharide lyases, 9–14 carbohydrate esterases, 9–10
carbohydrate binding modules and 55–61 glycoside trans-
ferases (Table 8 and Table S5 and S6 in Additional file 1).

Polysaccharide utilization loci
Kabisch et al. [13] investigated ’G. forsetii’ KT0803 for
its ability to decompose laminarin-like, α-1,4-linked-glu-
cose and alginate-like polysaccharides. The two PULs in-
volved in either the decomposition of laminarin-like
polysaccharides or α-1,4-linked glucose-polymers (glyco-
gen, starch and amylose) were as well found in G. porti-
victoriae DSM 23547T and G. echinicola DSM 19838T

(Figure S1, Figure S2 in Additional file 2). Both PULs
were greatly conserved among other closely related gen-
era (see Fig. 1) and within the Flavobacteriaceae. The
PUL involved in the decomposition of alginate-like poly-
saccharides was found in G. portivictoriae DSM 23547T,

Table 8 Carbohydrate active enzymes (CAZy) in the genome of
strains DSM 19838T and DSM 23547T

CAZy Number of genes

family DSM 19838T DSM 23547T

GH2 1 2

GH3 4 3

GH5 1 3

GH9 0 1

GH13 6 2

GH15 1 1

GH16 5 3

GH17 1 1

GH20 1 0

GH23 2 2

GH26 1 2

GH27 0 1

GH28 1 0

GH29 1 0

GH31 1 1

GH32 1 4

GH37 1 0

GH43 2 1

GH63 0 1

GH65 0 1

GH73 1 1

GH88 1 0

GH97 1 1

GH105 1 0

GH113 1 1

GH130 0 1

GHa 1 3

CE1 1 0

CE4 3 1

CE8 1 0

CE11 1 1

CE12 1 0

CE14 3 2

CEa 4 2

PL6 0 1

PL7 0 2

PL9 1 0

PL12 0 1

PL17 0 1

CBM38 0 1

CBM48 2 2

CBM50 4 4

Table 8 Carbohydrate active enzymes (CAZy) in the genome of
strains DSM 19838T and DSM 23547T (Continued)

CBM57 2 1

CBMa 2 1

GT2 29 26

GT4 18 16

GT5 2 1

GT8 0 1

GT9 2 1

GT10 2 0

GT19 1 1

GT20 1 1

GT28 1 1

GT30 1 1

GT51 3 3

GT83 1 1

GTa 0 2

AA1 1 0

AA6 0 1

AA12 1 0

AAa 0 2
agenes attributed to an enzyme class, but not to a family
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but not in G. echinicola DSM 19838T (Figure S3 and
Figure S4 in Additional file 2). This PUL was not con-
served among other closely related genera, but greatly
distributed within the Flavobacteriaceae. Interestingly,
the PULs of the Salegentibacter and Aquimarina were
highly syntenic with those of Gramella, whereas the
PULs of Gillisia, Mesonia, Zunongwangia, Psychroflexus,
Salinimicrobium and Dokdonia had additional genes.
One PUL that potentially encodes for the decomposition
of sulfated β-D-glucosides (Figure S5 in Additional file
2) and one for the decomposition of β-D-fructans
(levans) (Figure S6 in Additional file 2) was found in all
three Gramella and in other closely related Flavobacter-
iaceae. A PUL that was found only in G. echinicola
DSM 19838T comprised pectin-like polysaccharide de-
composing CAZymes and genes of the pectate degrad-
ation pathway (Fig. 5, Figure S7 in Additional file 2). A
similar set of genes was found in a PUL of Flavobacter-
ium johnsoniae UW101T, which was hypothesized to be
involved in pectin decomposition [16].
Surprisingly, we found a PUL in G. portivictoriae DSM

23547T, Salinimicrobium terrae DSM 17865T and some
other Flavobacteriaceae (Fig. 6) comprising typical cellu-
lases/hemicellulases, such as GH5 (cellulase family A),
GH9 (cellulase family E) and GH26 (cellulase family I).
However, Salinimicrobium terrae DSM 17865T was de-
scribed to be unable to hydrolyze carboxymethyl-cellulose
and filter paper. Lau et al. [1] showed β-glucosidase activity
by G. portivictoriae DSM 23547T, but no decomposition of
carboxymethyl-cellulose. The authors tested cellulose de-
composition using a 0.5 % CMC overlay agar as described
by McCammon et al. [47]. As mentioned above, we could
show that G. portivictoriae DSM 23547T is able to
hydrolyze hydroxyethyl-cellulose, but not Avicel-cellulose.

Thus we additionally tested this strain for the decompos-
ition of AZO-CL carboxymethyl-cellulose, Whatman filter
No. 1 cellulose and cellulose of cigarette paper. In
HaHa medium and marine broth strain DSM 23547T

hydrolyzed AZO-CL carboxymethyl-cellulose, but not
the Whatman filter.

Conclusion
All three of the genome-sequenced Gramella spp. se-
quenced to date were isolated from marine habitats, Gra-
mella echinicola DSM 19838T was isolated from a sea
urchin, G. portivictoriae DSM 23547T from the sediment
and ’G. forsetii’ KT0803 from surface seawater. In contrast
to ’G. forsetii’ (48.7 peptidases Mbp−1) [14, 48], both G.
echinicola DSM 19838T and G. portivictoriae DSM 23547T

have a greater number peptidases, 68 Mbp−1 and 81
Mbp−1, respectively. The observed dominance of metallo
(M), serine (S) and cysteine (C) peptidase families was
already reported by Xing and Hahnke et al. [14] and
seems to be a general feature among Flavobacteriaceae.
Interestingly, while both G. echinicola DSM 19838T and G.
portivictoriae DSM 23547T have a similar amount of
CAZymes (119 and 127), CAZymes Mbp−1 (36.1 and 36.4)
and CAZy families (44 and 45), the genome of ’G. forsetii’
comprised a larger amount of CAZymes (164 overall
and 43.2 Mbp−1) and a greater diversity of CAZy families
(54) [13, 14]. We observed different polysaccharide de-
composition capabilities among the Gramella which
might be linked to the nutrient composition of the habi-
tats they were isolated from. Whether the laminarin-like
and the starch/amylose-like PUL is a common feature of
Gramella needs to be assessed once further Gramella
genomes are available. Furthermore, the link between
the coincidence of the observed gliding-motility modes,

Fig. 5 A pectin-like PUL of G. echinicola DSM 19838T and other Flavobacteriaceae. A similar PUL was identified in Flavobacterium johnsoniae UW101T by
McBride et al. [16]. Locus tags are given below both the first and last gene of the loci. Accession numbers in brackets are GenBank accession numbers
of the corresponding contig. Investigation of syntenic loci was done using MultiGeneBlast [57]. A description of glycoside hydrolase (GH), polysaccharide
lyase (PL) and carbohydrate esterase (CE) families can be seen at the CAZy homepage [58, 59]. The pectin-like polysaccharide decomposition pathway,
encoded by these genes, is shown in Figure S6 in the Additional file 2. SusD, SusD-like protein; LacI, LacI family transcriptional regulator;
MFS, major facilitator superfamily transporter; KduD, 2-keto-3-deoxy-D-gluconate-dehydrogenase; UxaB, altronate oxidoreductase; UxaC, glucuronate
isomerase; KdgA, 2-keto-3-deoxygluconate-6-phosphate aldolase; KdgF, pectin degradation protein; KduI, 5-dehydro-4-deoxy- D-glucuronate isomerase;
KdgK, 2-dehydro-3-deoxygluconokinase; UxuA, mannonate dehydratase; UxuB, D-mannonate oxidoreductase; UxaE, D-tagaturonate epimerase
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the cellular morphologies and certain environmental
conditions has to be investigated in detail. For example,
Gramella oceani and Muricauda ruestringensis, both
producing appendages, were isolated from marine inter-
tidal sediment [6, 49]. Bruns et al. [49] and Hahnke et al.
[50] assumed that such appendages are connections
between the cells or serve as anchor to mediate surface
attachment and particle formation.

Taxonomic and nomenclatural proposals
Based on the new morphological (gliding, EPS, append-
ages), physiological (polysaccharide hydrolysis) and gen-
omic observations (DNA G+C content, CAZymes, PUL,
peptidases) we propose the emendation of Gramella echi-
nicola DSM 19838T Nedashkovskaya et al. [2] emend.
Shahina et al. [10] and the emendation of Gramella
portivictoriae Lau et al. [5].

Emended description of Gramella echinicola
Nedashkovskaya et al. [2] emend. Shahina et al. [10]
The description of Gramella echinicola is as given by
Nedashkovskaya et al. [2] and Shahina et al. [10], with
the following emendations. The major polar lipids are
phosphatidylethanolamine, together with a number of
unidentified lipids, that included seven polar lipids that
did not stain with any of the specific spray reagents
(L1 – L8) and two amino lipids (AL1 – AL3) that together
with their specific Rf values, that can be deduced from
Fig. 3 and their staining behavior, may serve as reference
points for future work where chromatographic condi-
tions are the same. The G + C content is 36.9 %.

Production of extracellular polymeric substances. Hy-
drolyses aesculin, galactomannan, arabinoxylan, galactan,
xylan and hydroxyethyl-cellulose, but not Avicel-cellulose,
pectin and chitosan.

Emended description of Gramella portivictoriae Lau et al. [1]
The description of Gramella portivictoriae is as given by
Lau et al. [1], with the following emendations. The major
polar lipids are phosphatidylethanolamine, together with
a number of unidentified lipids, that included seven
polar lipids that did not stain with any of the specific
spray reagents (L1 – L7) and two amino lipids (AL1 –
AL3) that together with their specific Rf values, that can
be deduced from Fig. 3 and their staining behavior, may
serve as reference points for future work where chroma-
tographic conditions are the same. Appendages at the
cell surface. Hydrolyses aesculin, galactomannan, arabi-
noxylan, pachyman and hydroxyethyl-cellulose, but not
Avicel-cellulose, pectin and chitosan.

Additional files

Additional file 1: Table S1. Peptidases or homologues in the genome
of Gramella echinicola DSM 19838T. Table S2. Simple peptidases inhibitors
in the genome of Gramella echinicola DSM 19838T. Table S3. Peptidases or
homologues in the genome of Gramella portivictoriae DSM 23547T.
Table S4. Simple peptidases inhibitors in the genome of Gramella
portivictoriae DSM 23547T. Table S5. Carbohydrate active enzymes
(CAZymes) in the genome of Gramella echinicola DSM 19838T. Table S6.
Carbohydrate active enzymes (CAZymes) in the genome of Gramella
portivictoriae DSM 23547T. (PDF 261 kb)

Fig. 6 A cellulose/hemicellulose-like PUL of G. portivictoriae DSM 23547T and other Flavobacteriaceae. Locus tags are given below both the first
and last gene of the loci. Accession numbers in brackets are GenBank accession numbers of the corresponding contig. Investigation of syntenic
loci was done using MultiGeneBlast [57]. A description of glycoside hydrolase (GH), polysaccharide lyase (PL) and carbohydrate esterase (CE) families
can be seen at the CAZy homepage [58, 59]. SusD, SusD-like protein; AraC, AraC family transcriptional regulator; manA, Man-6-P isomerase;
nanK, GlcNAc-2-epimerase; FAS, FAS1 domain protein; SSS, sodium:solute symporter
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Additional file 2: Figure S1. The laminarin-like PUL. Figure S2. The
1,4-linked glucose-polymer-like PUL. Figure S3. The alginate-like PUL.
Figure S4. Part of the alginate-like polysaccharide decom- position pathway.
Figure S5. The sulfated β-D-glucoside PUL. Figure S6. The two combined
β-D-fructans PUL. Figure S7. Part of the pectin-like polysaccharide
decomposition pathway. (PDF 642 kb)
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