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ABSTRACT
Juglans mandshurica Maxim., 1856 is a second-class, protected, rare tree species of high economic and
ecological value. We elucidated the complete mitochondrial (mt) genome of J. mandshurica using the
Illumina Novaseq 6000 and Nanopore platforms. The complete sequences of 558,032 and 161,386 bp
had an overall GC content of 45.0% and 45.3%, respectively, and 61 genes could be annotated, includ-
ing 38 protein-coding, 20 tRNA, and 3 rRNA genes. The high-quality J. mandshurica mt genomic
sequences presented in this study will serve as a useful resource for a range of genetic, functional, evo-
lutionary, and comparative genomic studies on this species of the Juglandaceae family.
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Introduction

Juglans mandshurica Maxim. is a second-class, protected, rare
tree species that belongs to the genus Juglans of the
Juglandaceae family (Wang et al. 2010). It is primarily scat-
tered in mixed forest regions of northeastern China, northern
Korea, and far eastern Russia, at altitudes of 400–1000 m
(Chen et al. 2018; Liu et al. 2020). J. mandshurica has high
ecological and economic value and is widely used as a
source of wood, food, and medicine (Huang et al. 2010; Shen
et al. 2015; Luo et al. 2017). Notably, it is a straight-root tree
with strong tolerance to cold and drought that can survive at
temperatures as low as �50 �C. Consequently, it is often
employed as the parent plant for breeding cold-resistant
Juglans regia (Liu 2020).

Plant mitochondrial (mt) genomes tend to have a more
heterogeneous composition than chloroplast (cp) genomes
(Zhang et al. 2019). Owing to the conservation of their gen-
omic structure and a fairly low recombination rate, cp
genomes provide valuable information for taxonomic classifi-
cation and phylogenetic reconstruction, which aid in the
identification of complex evolutionary relationships (Jansen
et al. 2008; Parks et al. 2009; Zhang et al. 2019). In contrast,
it is well recognized that the highly dynamic mt genome
structure can have a variety of genomic conformations owing
to recombination and interference based on repeated con-
tent (Palmer and Herbon 1988; Marechal and Brisson 2010).
These characteristics make the plant mt genome a fascinating
study topic, and as of March 24, 2022, as many as 437 plant
mt sequences have been published (https://www.ncbi.nlm.

nih.gov/genome/browse#!/organelles/). Although many stud-
ies have concentrated on the ecological characteristics, culti-
vation techniques, and chemical composition of J.
mandshurica, there are very few exploring its genome (Wang
et al. 2018; Pang, 2021; Liu et al. 2021). To our knowledge,
the present study is the first report of the J. mandshurica mt
genome.

Materials and methods

Plant materials and sequencing

Fresh J. mandshurica leaves were collected in July 2021 from
the Forestry Experimental Station (37.52�N, 121.34�E) at
Ludong University, Yantai City, China. Plant specimens (bar-
code number SDF1000958) and total genomic DNA (code
number htq2021cp10) were stored at the Shandong
Provincial Center of Forest and Grass Germplasm Resources
(Biao Han, hanbiao3361@shandong.cn). Total DNA was
obtained using the Blood/Cell/Tissue Genomic DNA
Extraction Kit (TIANamp Genoic DNA Kit, Tiangen, Beijing,
China) (Uddin et al. 2014). The DNA library was constructed
using the Ligation Sequencing Kit (SQK-LSK109) and
sequenced using the Nanopore PromethION sequencing plat-
form (Nanodrop Technologies, Wilmington, DE, US); 11.54 Gb
raw data with an N50 length of 13,783 bp was generated.
The data was filtered and re-edited using NanoFilt and
NanoPlot in the Nanopack software (De Coster et al. 2018),
resulting in 10.71 G clean reads. Libraries with an average
fragment length of 350 bp were constructed; they were
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sequenced using the Illumina Novaseq 6000 platform
(Illumina, San Diego, CA, USA) and 8.83 Gb raw data was gen-
erated. After editing the data using the NGS QC ToolKit
v2.3.3 software (Patel and Jain, 2012), 8.78 Gb of data was
generated from 29.28 million reads. The read coverage depth
of Illumina and Nanopore sequencing exceeded 100�, indi-
cating good sequencing data results (Figure S1).

Genome assembly and annotation

We first obtained a rough but computationally efficient
assembly using the Miniasm tool (Li, 2016) after trimming
adapter sequences with the Porechop software (https://
github.com/rrwick/Porechop) and polished the resulting
assembly with the Racon tool (https://github.com/isovic/

Figure 1. Morphological characteristics of Juglans mandshurica. (a) whole plant, (b) fruits, (c) inflorescence, (d) seeds, (e) leaves.
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racon). We selected contigs with homology to Fagus sylvatica
(NCBI Reference Sequence: MT446430.1) mt genome using the
Bandage software (Wick et al. 2015), retaining contigs with at
least one �5 kb alignment to the F. sylvatica mitochondrion
using the BLASTn tool (Chen et al. 2015). We then proceeded
to align the Nanopore reads to our draft F. sylvatica assembly
with the minimap2 tool (Li, 2018), segregated aligned reads,
and assembled them de novo first using the Unicycler software
(Wick et al. 2017) and then with the Flye software
(Kolmogorov et al. 2019), as described previously. The final
genome sequence was obtained by polishing with the Pilon

tool using Illumina Novaseq 6000 sequencing reads. The mt
genomes were annotated using the BLASTn, MITOFY (Alverson
et al. 2010), and MFannot tools (http://megasun.bch.umon-
treal.ca/cgi-bin/mfannot/) and angiosperm mt genes were
used to query sequences in the NCBI database (https://www.
blast.ncbi.nlm.nih.gov). The tRNA genes were identified using the
tRNA scan-SE software (http://lowelab.ucsc.edu/tRNAscan-SE/).
The genome circle map of mt genome was visualized with
the OGDRAW v1.2 software (http://ogdraw. mpimp-
golm.mpg.de/). Manual correction was performed after soft-
ware annotation to ensure the accuracy of annotation.

Figure 2. J. mandshurica mitochondrial (mt) genome gene map. The gene map denotes annotated genes based on different functional groups, which are color-
coded on the outer circle as transcribed clock-wise (outside) and counter clock-wise (inside). The inner circle indicates the GC content as a dark grey plot.

Table 1. Gene composition of the J. mandshurica mt genome.

Group of genes

Name of genes

Molecule 1 Molecule 2

Complex I nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad9 nad1, nad7
Complex II sdh3, sdh4
Complex III ccmFc, ccmB, ccmC ccmFN
Complex IV cox1, cox2, cox3
ATP synthase atp1, atp4, atp6, atp8, atp9(�2)
Cytochrome c biogenesis cob
Maturases matR
Transport membrane protein mttB
Large subunit of ribosome rpl2, rpl5, rpl10, rpl16
Small subunit of ribosome rps3, rps4(�2), rps7(�2), rps10, rps12(�2), rps14, rps19 rps1, rps7
Ribosome RNA rrnL rrn5, rns
Transfer RNA trnK(ttt), trnH(gtg), trnE(ttc)(�2), trnC(gca)(�2), trnP(tgg)(�2), trnW(cca),

trnI(cat)(�2), trnD(gtc)(�2), trnS(tga)(�3), trnV(gac)(�2), trnL(caa),
trnN(gtt), trnY(gta), trnL(aac), trnQ(ttg), trnG(gcc), trnM(cat)(�2), trnS(gct),
trnF(gaa), trnR(acg)

The number in parentheses represents the number of copies of the gene, e.g. (�2) means that there are two copies.
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Phylogenetic analysis

The phylogeny of J. mandshurica was analyzed by aligning
the mt genomic sequences of 18 species using the
HomBlocks software (Bi et al. 2018) and subsequent trimming
using the Gblock method. The Model-finder software was
employed to chop the model WAGþ IþG, followed by con-
struction of the maximum likelihood (ML) phylogenetic tree
using the RAxML v8.2.9 software with 1,000 bootstrap repli-
cates (Stamatakis, 2014).

Results

Morphological characteristics

We obtained many photographs while observing and record-
ing the morphological characteristics of J. mandshurica,
including photographs of the whole plant, fruits, inflores-
cence, seeds, and leaves (Figure 1). J. mandshurica is an arbor
with imparipinnate leaves. The fruits are globose, ovate, or
elliptic. Flowering occurs in May, and the fruit stage is in
August–September.

Genome sequencing assembly and characterization

Ample evidence suggests that plant mt genomes can exist in
multiple circular configurations and even noncircular forms
owing to intramolecular recombination events mediated by
repeats (Kozik et al. 2019; Zhang et al. 2019; Logacheva et al.
2020). We obtained two complete circular J. mandshurica mt
genomic molecules (558,032 bp and 161,386 bp) from the de
novo assembly of the filtered mt reads with overall GC con-
tents of 45.0% and 45.3%, respectively. Circular genome
maps were constructed using the OGDRAW software
(Figure 2), and 61 total genes, including 38 protein-coding
genes, 20 tRNA genes, and 3 rRNA genes, were subsequently

annotated (Table 1). Among these, 38 protein-coding genes
were found to contain exons: atp1, atp4, atp6, atp8, atp9,
ccmB, ccmC, ccmFN, cob, cox1, cox3, matR, mttB, nad3, nad4L,
nad6, nad9, rpl5, rpl10, rpl16, rps1, rps3, rps4, rps7, rps10,
rps12, rps14, rps19, sdh3, and sdh4 with one exon; ccmFc,
cox2, and rpl2 with two exons; nad4 with four exons; and
nad1, nad2, nad5, and nad7 with five exons. Moreover, eight
protein-coding genes were found to contain introns: ccmFc,
cox2, and rpl2 with one intron; nad4 with three introns; and
nad1, nad2, nad5, and nad7 with four introns. Notably, nad1,
nad2, and nad5 were found to undergo trans-splicing.

Phylogenetic analysis

Phylogenetic analysis was performed using the ML method,
based on the mt genome sequences of 19 species: including
Eriobotrya japonica, Pyrus betulifolia, Prunus avium, Cannabis
sativa, Morus notabilis, Hemiptelea davidii, Leucaena trichan-
dra, Gleditsia sinensis, Robinia pseudoacacia, Dalbergia odori-
fera, Populus tremula, Salix paraflabellaris, Euonymus alatus,
Cucurbita pepo, Citrullus lanatus, Luffa acutangula, Quercus
variabilis, F. sylvatica, and Pinus Taeda. Our results revealed
that J. mandshurica is most closely related to Q. variabilis and
F. sylvatica (Figure 3).

Discussion and conclusion

Juglans L. is an economically and ecologically important genus
of the Juglandaceae family (Hu et al. 2016). A total of five spe-
cies (J. regia, J. sigillata, J. cathayensis, J. hopeiensis, and J. man-
dshurica) and one variety (J. draconia) belonging to this genus
are found in China. The Juglans L. cp genome is highly con-
served, with a typical four-segmented structure (LSC, SSC, IRa,
IRb) (She, 2021). In contrast, mt genomes are highly diverse,
which is evident based on the different plant mitogenome

Figure 3. Maximum likelihood (ML) phylogenetic tree of J. mandshurica and 19 other species based on the conserved segments of mitogenome sequences, with
Pinus taeda as the outgroup. The accession numbers are showed in the figure, and the numbers behind each node are bootstrap support values.
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sequences that have been reported (Kozik et al. 2019; Liu et al.
2022). Although plant mitogenomes are often assembled and
displayed as circular maps, they mostly exist as complex and
dynamic collections of linear DNA interspersed with smaller cir-
cular and branched configurations (Oldenburg and Bendich
et al. 2015; Morley and Nielsen 2017; Wynn and Christensen
2018; Kozik et al. 2019). For example, the Quercus acutissima
mt genome is a branched structure comprising one linear and
two circular formations (Liu et al. 2022), the Abelmoschus escu-
lentus mt genome is composed of one linear and one circular
structure (Li et al. 2022), and the Ipomoea batatas mt genome
is arranged as four circular sections (Yang et al. 2022). The pre-
sent study demonstrates that the J. mandshurica mt genome
comprises two circular formations (558,032 bp and 161,386 bp);
however, the coexistence of these molecules requires further
investigation.

Given the low substitution rate in the mt genome, the
constituent genes are a valuable source of information for
phylogenetic analysis at high taxonomic levels (Hiesel et al.
1994). Our analysis of the phylogenetic relationships of J.
mandshurica based on its mitochondrial genomic information
revealed its close relationship with Q. variabilis and F. sylva-
tica. The high-quality mt genomic sequences presented in
this study will serve as an important resource for a range of
genetic, functional, evolutionary, and comparative genomic
studies on J. mandshurica and other Juglans species of the
Juglandaceae family.
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