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ABSTRACT
Deciphering principles of inter-tumoral heterogeneity is crucial for refinement of precision oncology. We
have recently demonstrated that ‘oncogenic cooperation‘ between somatic mutations and regulatory
germline variants can serve as a major cause for inter-tumoral heterogeneity, suggesting the require-
ment of integrating the regulatory genome into ‘omics‘-based precision oncology.
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The increasing availability and technological advancements of
‘omics‘-technologies in the past years progressively enabled the
individualization of diagnosis and treatment of diseases – an
approach often referred to as ‘precision‘ or ‘personalized‘
medicine.1 In this regard, oncology holds an avantgarde position
in relation to other medical disciplines: based on somatic muta-
tions in the protein-coding genome, patients can be subjected to
targeted therapies.1

However, compared to cancers of adulthood, pediatric cancers
are characterized by a strikingly low number of recurrent somatic
mutations.2 These few somatic alterations may not explain the
high inter-individual variability in tumor behavior and clinical
outcomes observed,2,3 and render current approaches of persona-
lized oncology in many instances to be less effective in pediatric
malignancies. Hence, it is important to uncover mechanisms
underlying inter-individual variability in oligo-mutated cancers,
to improve diagnosis, risk-prediction and targeted therapies in the
context of precision oncology.3

In our recent study, we show in the Ewing sarcoma (EwS)
model how the interplay between somatic mutations and regula-
tory germline variants impacts on tumor growth, patient survival,
and drug response, thereby constituting a major cause of inter-
individual tumor heterogeneity4 (Figure 1).

In EwS, the pathognomonic fusion transcription factor
Ewing sarcoma breakpoint region 1-Friend leukemia integra-
tion 1 (EWSR1-FLI1) can bind to highly polymorphic GGAA-
microsatellites (mSats). EWSR1-FLI1-binding to such mSats
can convert them into active enhancers, whereby the number
of consecutive GGAA-repeats modulates the enhancer activity
of the respective mSat.5–7 Indeed, it has been shown that the
interplay between EWSR1-FLI1 and such GGAA-mSats may
influence the inter-individual susceptibility toward EwS

tumorigenesis.6,7 However, whether such cooperation may
also influence the inter-individual variability in tumor pro-
gression and therapy response remained unclear.

To identify clinically relevant EWSR1-FLI1 target genes
that may potentially mediate inter-tumoral heterogeneity, we
screened in a first step available ‘omics’-datasets for genes that
are on the one hand regulated by EWSR1-FLI1, and on the
other hand associated with worse overall patient survival
when being highly expressed.4 This analysis revealed MYB
proto-oncogene like 2 (MYBL2), encoding for a transcription
factor involved in regulation of cell cycle, cell survival and cell
differentiation,8 as the top hit of our screen.4 In a second step
we analyzed published EWSR1-FLI1 chromatin immunopre-
cipitation and sequencing (ChIP-seq) data for peaks nearby
MYBL2, which displayed histone marks indicative for active
enhancers. One of the most prominent peaks mapped to
a polymorphic GGAA-mSat located about 150kb telomeric
of the MYBL2 gene.4 Using reporter assays, we validated the
EWSR1-FLI1-dependent enhancer activity of this GGAA-
mSat in vitro and confirmed its regulatory effect on MYBL2
expression by Clustered Regularly Interspaced Short
Palindromic Repeats interference (CRISPRi).4 The regulatory
potential of this GGAA-mSat on MYBL2 transcription was
further supported by its expression quantitative trait loci
(eQTL) properties.4 In fact, we found in a whole-genome
sequencing dataset comprising 35 primary EwS tumors with
matched gene expression data, that EwS tumors exhibiting
≤13 GGAA-repeats at both alleles of the MYBL2-associated
GGAA-mSat exhibited significantly lower MYBL2 mRNA
levels than those with >13 GGAA-repeats at both alleles.4

Interestingly, analysis of 38 whole-genome sequenced
matched tumor/germline pairs revealed that the number of
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consecutive GGAA-repeats at the MYBL2-associated mSat
was entirely conserved at both alleles in every matched
tumor/germline pair, indicating that the mSat haplotypes are
inherited via the germline.4 Using RNA interference (RNAi)
experiments, we characterized the functional role of MYBL2
in vitro and in vivo, demonstrating that MYBL2 suppression
impairs cell proliferation (accompanied by G2/M blockage),
cell survival and clonogenic growth of EwS.4 Through combi-
nation of RNA-sequencing data with and without MYBL2
knockdown, MYBL2 ChIP-seq data, gene expression data of
primary EwS with matched clinical annotations, and func-
tional experiments, we identified cyclin F (CCNF), baculoviral
IAP repeat-containing 5 (BIRC5) and aurora kinase
B (AURKB) as critical, functionally and clinically relevant,
MYBL2 target genes.4 To therapeutically exploit our findings,
we targeted cyclin dependent kinase 2 (CDK2), the upstream
kinase phosphorylating and activating MYBL2.4,8 Using
small-molecule inhibitors, we showed that high MYBL2 levels
sensitize EwS cells for anti-CDK2 treatment in vitro and
in vivo, suggesting a potential use for MYBL2 as a predictive
biomarker for effective CDK2 inhibitor treatment.4

In summary, our findings made in the EwS model exemplify
how oncogenic cooperation of a somatic driver-mutation (here
EWSR1-FLI1) and a regulatory germline variant (here
a polymorphic enhancer-like GGAA-mSat) may essentially
determine inter-tumoral heterogeneity by influencing tumor
growth, drug response and patient survival through modula-
tion of a critical druggable downstream player (here MYBL2).4

These findings possibly represent a general principle that
accounts for inter-individual variations in disease phenotypes,
which is supported by recent data from research fields other
than oncology showing that the same somatic event or muta-
tion may result in different phenotypes depending on (inher-
ited) regulatory element variations.9–11 For example, it has
been shown in Caenorhabditis elegans (C. elegans) that the

severity of RNAi phenotypes differs depending on variations
between the genetic backgrounds of two particular C. elegans
isolates.9 Similarly, in mice, single nucleotide polymorphisms
(SNPs) in binding sites of the peroxisome proliferator-activated
receptor gamma (PPARγ) transcription factor modify the func-
tion of PPARγ as well as response to anti-diabetic drugs,11 and
in humans, a genome-wide association study (GWAS) identi-
fied genetic variants modifying the onset of Huntington‘s
disease.10 In this respect, after identification of disease-
specific unfavorable regulatory variants interacting with domi-
nant driver-oncogenes, future approaches in precision oncol-
ogy specifically could aim at sequencing also non-coding
regulatory genomic regions to stratify patients into risk-
groups according to their genetic context (i.e. the pattern of
genetic regulatory variants with which somatic mutations
cooperate). Thus, we anticipate that our findings are translata-
ble to other cancer entities beyond EwS, and suggest to include
the regulatory genome in approaches of ‘omics‘-based preci-
sion oncology.4
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Figure 1. Oncogenic cooperation determines inter-individual heterogeneity in tumor growth and drug response. Variability of a regulatory element inherited
via the germline modifies the effect of a disease-driving somatic mutation and influences targeted therapy effectivity.
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