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Abstract: With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. 
Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and 
targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and 
accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more 
branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes 
herbal preparations and bioactive compounds which protect against IPF through regulating ERS. 
Keywords: idiopathic pulmonary fibrosis, endoplasmic reticulum stress, natural products, mechanisms

Introduction
Idiopathic pulmonary fibrosis (IPF) is an idiopathic interstitial pneumonia featured by progressive dyspnea, exercise 
intolerance, hypoxemia, and respiratory failure, occurring primarily in older adults.1 IPF is identified by the presence of 
patchy areas of fibrotic remodeling in the distal lung parenchyma with fibroblastic foci.2,3 Currently, the epidemiological 
studies of IPF indicated a morbidity of 2–30 cases/100,000 per annum and a prevalence of 10–60 cases/100,000.4 What’s 
more, median survival times for suffering from IPF are considered to be from 3 to 5 year.5–9 So far, several evidence 
shows that the progress of IPF is influenced by various factors including environmental factors,10 gene variants,11 aging 
alterations,12 epigenetic reprogramming,12 and comorbid diseases.13 However, the etiology is still unclear, the current 
perspectives on the etiology of IPF is the appearance of extracellular matrix (ECM) and fibrosis caused by continuous 
local micro-injuries causing DNA damage, imbalanced cell death and anomalous tissue remodeling.4,14–16 Drug devel-
opment for IPF has been challenging because of poorly understood disease etiology.17 Consequently, it is in great demand 
to clarify the pathological mechanisms of IPF, and discovery potential drug candidates.

Previously, IPF believed to be a chronic and sustained inflammatory response process,18 however, current evidence 
suggests that the fibrotic process is primarily driven by abnormal activation of alveolar epithelial cells (AECs). The 
activated AECs can release mediators that facilitate the proliferation of resident mesenchymal cells, attract circulating 
fibrocytes, and induce the epithelial to mesenchymal transition (EMT),19 ultimately making for fibrous lesion formation. 
Consequently, the focus produce excessive much collagen-based ECM, causing scar and lung remodeling.20

The endoplasmic reticulum (ER) as an active intracellular organelle is stemmed from the outer membrane of the nucleus. 
Under physiological conditions, a cell generates about 4×106 proteins every minute, furthermore, the function of the ER is to 
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preliminary fold and process not less than one-third of those proteins.21 The ER not only harmonizes protein fold, process, 
assemble and transport, but also degrades the misfolded proteins. The factors, for instance, protein load, cell metabolism, 
redox balance, and calcium homeostasis, can affect the ER function by promoting ER stress (ERS) as well as the adaptive 
response – unfolded protein reaction (UPR)21–25 and cell death.26

Recently, cumulative investigates have disclosed that ERS can promote the progression of many diseases, including 
depression,27 cardiovascular,28,29 neurodegenerative diseases,30 cancer,31 obesity, and diabetes.32–35 These years, numerous 
investigations have reported that ERS is closely associated with the development of lung diseases such as silicosis,36 asthma,37 

non-small cell lung cancer,38 acute lung injury,39 and IPF.40,41 It has been demonstrated that during the progress of IPF, ERS is 
activated and administration of the ERS inhibitors can alleviate fibroblast proliferation and improve lung function, suggesting 
an important factor of ERS for the pathogenesis of IPF.42,43

Lately, there has been a growing area of interest in studying natural products for their potential pharmacological 
activities and mechanisms in treating IPF. All sorts of natural products, for instance, alkaloids, flavonoids, polyphenols, 
terpenoids, and steroids have been reported to have ability to prevent IPF development owing to inhibiting ERS, 
inflammatory, apoptotic, and oxidative actions. However, there is currently a lack of comprehensive studies that have 
summarized the role of natural products in treating IPF through the inhibition of ERS signaling. Therefore, in this article, 
we underwent a thorough search of databases including PubMed, Web of Science, and CNKI databases for reviews and 
articles published from 1998 to 2023 (up to June), with search terms (“Pulmonary fibrosis” OR “Lung fibrosis”) AND 
(“endoplasmic reticulum stress” OR “Unfolded protein reaction”) AND (“bioactive compound” OR “plant extract” OR 
“herbal preparation”). In summary, this paper concludes the participation of ERS in IPF development, and summarizes 
the natural products which provide potential benefits in the treatment of IPF through regulating ERS signaling pathway.

Endoplasmic Reticulum Stress and the Unfolded Protein Reaction
As an organelle, the ER is essential to regulate proteostasis, calcium storage, lipid synthesis, and mitochondrial function. Both 
protein misfolding and subsequent ERS causing the activation of UPR through regulating protein kinase-like endoplasmic 
reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1α (IRE1α), to maintain its 
membrane-bound state of non-activation or bind to glucose-reactive protein 78 (GRP78). The UPR is activated to cope with 
the stress reaction; however, serious situation can ultimately lead to cell death. During the process of UPR, amounts of 
chaperones, for instance, protein disulfide isomerases (PDIs), cyclophilin B, CaBP1 (calcium-binding protein) and stromal 
Cell Derived Factor 2 Like Protein 1 (SDF2-L1), are upregulated with the purpose of restoring ER homeostasis.44,45

The ATF6 pathway is activated by unfolded/misfolded proteins and separated from the immunoglobulin heavy-chain 
binding protein (BIP, namely, GRP78 or heat shock 70 kDa protein 5 (HSPA5)). In resting state, BIP remains stably bound to 
ATF6, but upon activation, the dissociation of BIP initiates a cascade of signaling pathways.46 However, the activation of IRE1 
and PERK remains unclear, despite the presence of compatible sensing domains that facilitate homodimerize. Three different 
hypotheses have been proposed to explain this phenomenon: direct recognition, indirect recognition, and the hybrid recogni-
tion. Direct recognition is defined as that unfolded proteins activate the sensor IRE1 to trigger the UPR in the ER luminal;47 

Indirect recognition is defined as that both PERK and IRE1 form a steady complex with BIP;48 Hybrid recognition is defined 
as that BIP dissociation and unfolded protein binding trigger the UPR signaling pathways.49–51

ATF6
Normally, ATF6 remains inactive in its membrane-bound form; however, ATF6 activation results in its free from the ER and 
move to the Golgi,52 where it is divided by site-1 proteases into amino terminal (N-terminal) and carboxy terminal domains, 
then N-terminal fragment is liberated, subsequently, these both new and smaller proteins are transferred into the nucleus to 
carry out transcriptional activities.53,54 Consequently, several chaperones proteins, including protein disulfide isomerase 
associated 6 (PDIA6) gene,55 calreticulin,56 and X-box binding protein 1 (XBP1), are activated by IRE1-XBP1 pathway.57,58

IRE1
IRE1 as a kind of type I transmembrane protein kinases existed in the ER transmits stress signals in answer to 
unfolded protein, which is the first and the most evolutionarily conserved branch of the UPR.59–61 Once ERS are 
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detected, trans-autophosphorylation and dimerization of IRE1 activate its RNase domain. Although endoribonuclease 
activity plays a significant part in reducing the amount of proteins entering the ER lumen, and regulating the 
XBP1mRNA transcript.52,62 This splicing causes a change in the C-terminal region of XBP1, and only the XBP1 
piece, which is a transcriptional factor in connection with a diversity of UPR target genes,63 including refolding and 
degrading genes.64

PERK
PERK is also a transmembrane endoplasmic reticulum resident protein. Similar to IRE1, PERK also belongs to Type I 
transmembrane protein. When feeling ERS, PERK is activated, and then homodimerized and auto-phosphorylated.65 

Subsequently, the alpha subunit of eukaryotic translation Initiation factor 2α (eIF2α) at Ser51 is activated and phosphorylated 
(p-eIF2α), which causes the suppressant of eIF2β and suppression of protein synthesis.66 Therefore, PERK plays an indis-
pensable role in decreasing ERS through reducing the production of nascent proteins. ATF4 is a key gene for ERS-induced 
autophagy and apoptosis by activating these proteins,67,68 such as C/EBP homologous protein (CHOP),69 parkin,70 and CD36,71 

et al. The phosphorylated eIF2α can selectively activate ATF4, resulting in modulating amino acid transport, antioxidant 
defenses, and the biosynthesis of lipids the transcription factor.52,72 Notably, when the ERS persists continuously, autophagy 
is defined as the last guardian to restore the homeostasis of ER through engulfing the damaged ER73 (Figure 1).

The Effect of Endoplasmic Reticulum Stress in Different Cell Types on 
Lung Fibrosis
Based on the currently available data, it has been proved that ERS and UPR are related to lung fibrosis via initiating the 
induction of alveolar epithelial cells (AECs) apoptosis, differentiation of fibroblasts to myofibroblasts, M2 polarization of 
macrophage, and Th17 cell differentiation26,74–77(Figure 2).

Figure 1 ERS and the UPR.
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Epithelial Cells
Recent research has proposed that ERS contributes to the progression of IPF. In animal experiment, BLM has been shown to 
enhance the induction of ERS in AECs, leading to lung injury and fibrosis.78 A full range of ERS markers including ATF4, 
ATF6, CHOP, and BIP have been found to have overexpression in AECs in the lung tissues of IPF patients.79,80 Surfactant 
Protein C (SP-C), a secreted transmembrane protein, is thoroughly found in AEC II. Overexpression of mutant SP-C protein or 
L188Q SP-C (a mutant form of SP-C) protein will activate the UPR and ER-associated degradation pathways, ultimately 
resulting in increased AECs apoptosis and lung pathological changes.81,82 Bridges et al also confirmed that the increase of 
exon 4 deleted SP-C protein could enhance sequential ER accumulation, followed by apoptotic cell death.83

Previous studies by Lawson et al have demonstrated that promoted-expression of L188Q SP-C or tunicamycin 
treatment can induce fibrotic remodeling and AECs apoptosis, suggesting there is a balance between AEC II and UPR. 
However, the BLM-treated L188Q SP-C mice possessed higher apoptosis of AECs and more numbers of fibroblasts than 
BLM-treated WT mice. Simultaneously, higher caspase-12 levels have also been observed in lung tissues in BLM- 
challenged-L188Q SP-C mice.78 A recent study also confirmed that L188Q SP-C expression impaired AEC II expansion 
during postnatal alveolarization, giving rise to a significant and perpetual decrease of AEC II numbers in adult mice, 
besides that, the level of the mutant allele was related to delayed onset of AEC II proliferation.84 Recently, Rodriguez 
et al have proposed that murine fibrosis models based on SP-C mutations cause activation of the AEC II UPR and ERS.85 

Collectively, these reports indicate that the relationship between ERS and AECs apoptosis or survival is unclear. It seems 
that only when the epithelial cells are damaged, the ERS will be more sensitive to fibrotic remodeling.

As is known to us, CHOP, an ERS-induced transcription factor, contributes to the progress of BLM-induced fibrosis 
in mice lung.86 Several other researches have demonstrated that AEC II can induce apoptosis and consecutive fibrosis 
through promoting the induction of CHOP.87,88 Tanaka et al revealed that BLM-induced lung inflammation, apoptosis 
and fibrosis were attenuated in CHOP gene deficient mice.89 Further, Yang et al identified that inhibition of CHOP gene 
mitigated lung fibrosis through inhibiting Shh/HH signaling pathway in fibroblasts.90 Then, Yang et al also indicated that 
CHOP knockdown promotes engraftment and suppresses the myofibroblast change of lung resident mesenchymal/ 
stromal cells during BLM-induced pulmonary fibrosis.91 These findings indicate that targeting CHOP may be 
a promising way to treat pulmonary fibrosis.

Figure 2 The effect of ERS in different cell types on pulmonary fibrosis.
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Fibroblasts
Although the repeated epithelial micro-injury is defined as a driver for IPF pathology, more and more studies have 
pointed that how fibroblasts respond to both nearby cells and the damaged microenvironment is a critical issue to be 
addressed. And, the proliferation, migration and differentiation of fibroblasts have been found to facilitate the occurrence 
and progression of lung fibrosis.20,92–95

ERS and the UPR are known to facilitate the development of lung fibrosis by regulating myofibroblast proliferation and 
differentiation.42,88,96,97 Lately, accumulating researches have pointed out the importance of ERS with regard to fibroblast 
during lung fibrosis.98 Baek et al provided the first evidence that the activation of UPR could promote differentiation of 
fibroblasts during fibrosis.99 TGF-β1-induced obviously increased expression of BIP, XBP-1, and ATF6α protein, which were 
coincided with an up-regulation of α-SMA and collagen I in mice or human fibroblasts. Further, 4-Phenylbutyric acid 
(4-PBA), as a chemical chaperone, evidently inhibited TGF-β1-induced myofibroblasts differentiation with increasing the 
activation of UPR, α-SMA and collagen.99,100 Cao et al have indicated that SiO2 exposure promotes the accretion of misfolded 
protein with triggering UPR in fibroblast, which conduces to the upregulation of ERS-related proteins.101 A similar result 
reported by Cheng et al found that ERS was activated in L929 and HPF-a cells induced by SiO2, which promoted activation of 
fibroblasts.102 In addition, PI3K/AKT signaling, upstream of ERS, can regulate fibroblast proliferation and differentiation, 
resulting in BLM-induced lung fibrosis.42 In fact, ERS can also activate fibroblast proliferation. ERS was activated in the 
course of myofibroblasts differentiation of human lung fibroblasts treated with cigarette smoke.103 Thioredoxin domain- 
containing protein 5 (TXNDC5), a resident ER protein, has been observed to participate in fibroblasts activation.104 A study 
has revealed that TXNDC5 is associated with excessive fibroblast activation, proliferation, and ECM production.1 Chen et al 
also revealed that IRE1α-XBP-1 signaling pathway was bound up with TXNDC5 in crystalline silica-induced pulmonary 
fibrogenesis model.104 Lee et al also confirmed that TXNDC5 promoted fibrogenesis by strengthening TGF-β1 signal via 
direct binding with TGFBR1 in fibroblasts.1 Overall, available data indicate that ERS conduces to a vulnerable fibroblast 
activation state in lung fibrosis. However, further research on pathological mechanism in lung fibrosis is still needed.

M2 Macrophages
In addition to endothelial injury and myofibroblasts differentiation, ERS can alter the phenotype of immune/inflammatory 
cells, particularly macrophages. The enhanced M2 macrophages polarization can prompt fibroblast activation through 
secreting profibrotic mediators (such as TGF-β1, platelet-derived growth factor (PDGF), matrix metalloproteinase 9 
(MMP-9), tissue inhibitors of metal proteinase 1 (TIMP1), and CCL18).105–108 Accumulating evidence has revealed that 
ERS is pivotal in macrophage phenotypes, particularly in M2 macrophage polarization.109–111 Ryan et al have demonstrated 
that the expression of ERS genes in alveolar macrophages from patients with IPF or from mice with a fibrotic phenotype are 
up-regulated.112 In alveolar macrophages obtained from mice with fibrosis or allergic airway inflammation, the elevated 
CHOP expression along with ERS can modulate the generation of M2 macrophages, which then trigger development of lung 
fibrosis. Similarly, the deficiency of CHOP can attenuate the generation of M2 macrophages.110 Oh et al have demonstrated 
that the promoted ERS is necessary to the generation of the M2 macrophages through regulating JNK and PPARγ. Similarly, 
suppression of ERS shifted differentiated M2 macrophages toward an M1 phenotype.111 These literatures reveal that ERS 
(particularly CHOP) is associated with the M2 macrophage polarization, contributing to progression of fibrosis. However, the 
precise mechanism of how ERS signaling pathway participates in M2 macrophages still remains elusive.

Nonetheless, the role of ERS in macrophage is protective in several models of lung fibrosis. Apoptosis of macrophage 
plays an important role in host protection against mycobacterial infections.113 In the present study, ERS mediated 
macrophages apoptosis is thought to be crucial in host defenses against intracellular pathogens.114 Then, a recent study 
showed that the weakened PERK-eIF2α-ATF4 signal pathway could reduce THP-1 macrophages apoptosis and promote 
mycobacteria survival in the infected-macrophages.115 ERS markers (BIP and CHOP)-mediated macrophage apoptosis 
can protect against BLM-induced fibrosis.116 Hu et al have reported that silica-stimulated ERS is involved in the 
apoptosis of alveolar macrophages.117 The calcium-induced potassium ion channel KCa3.1 has been explicitly implied 
as a prospective treatment method to fibrotic diseases, especially IPF.118–120 Importantly, activation of the KCa3.1 ion 
channel induces cells including fibroblasts, macrophages, and epithelial cells in IPF.118 Perera et al discovered that 
barricade of the KCa3.1 ion channel mitigates the ERS and apoptosis in AEC II and macrophages.121 These data disclose 
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that ERS in macrophage may act as protective or harmfulness effects, whereas ERS-induced apoptosis of M2 macro-
phages could be a great force and new treatment strategy to alleviate fibrosis in lung.

Th17 Cell Differentiation
In addition to innate immunity, ERS/UPR signaling is involved in the adaptive immune system. Differentiation of Th17 
cells calls for two cytokines, including IL-6 and TGF-β.122 Th17 cells differentiation has been verified to be in 
connection with lung fibrosis.123,124 Preliminary studies have revealed that the CD147 protein is increased during 
pulmonary fibrosis.125 Geng et al have shown that CD147 promotes M1 macrophage and stimulates the differentiation 
of Th17 cells in lung interstitial fibrosis, perhaps through regulating IL-6, IL-1β, IL-12, and IL-23.126 In particulate 
matter (PM2.5)-induced lung fibrosis model, the activation of IL-17 and Th17 cell differentiation was observed.124 Dong 
et al have demonstrated that IL-27 mitigates BLM-induced fibrosis through modulating Th17 differentiation and cytokine 
secretion in lung.127 It has been proposed that inhibition of Th17 cell differentiation can result in attenuation of 
pulmonary fibrosis.128 Brucklacher et al have demonstrated that ERS-induced by hypoxia or nutrient deprivation can 
facilitate Th17 cell differentiation via sustained cytoplasmic calcium levels.129 These results revealed that Th17 cells 
differentiation may be a significant factor for the development of IPF.

Potential Therapeutic Approach
Mechanisms of Potential Target-TXNDC5 or STING
TXNDC5, an ER-localized protein disulfide isomerase, can catalyze the rearrangement of disulfide bonds. TXNDC5 acts 
as a molecular chaperone to reduce abnormal protein synthesis, promote ECM protein folding, and contribute to ECM 
protein stability.130 Numerous studies have shown that TXNDC5 is significantly up-regulated in lung and lung fibroblasts 
of IPF patients or mice by BLM-induced fibrosis. TXNDC5 promotes fibrogenesis by directly binding to TGF-β1 
receptors and stabilizing TGF-β1 signaling in lung fibroblasts. In addition, in lung fibroblasts, TXNDC5 is upregulated 
by TGF-β1 stimulation s through ERS/ATF6-dependent transcriptional control.1 Chen et al also pointed the importance 
of IRE1α-TXNDC5 signaling to fibroblast activation.104 In addition to pulmonary fibrosis, TXNDC5 also plays 
a promoting role in other fibrotic diseases. The research group of Chen et al has demonstrated that TXNDC5 is an 
important promoting factor of cardiac fibrosis through promoting ECM deposition and fibrosis activation by redox- 
sensitive c-Jun N-terminal kinase signaling. TXNDC5 deletion protects against β agonist-induced fibrosis.130 Besides, 
Chen et al demonstrated that loss of TXNDC5 in kidney fibroblasts extenuated the progression of established fibrosis, 
hinting the potential of TXNDC5 for intervening renal fibrosis and chronic kidney diseases131 (Figure 3).

Stimulator of interferon genes (STING), namely Transmembrane protein 173 (TMEM173), is an ER-associated membrane 
protein activated by cyclic GMP-AMP synthase (cGAS), DEAD-box helicase 41 (DDX41) and interferon-inducible protein 16 
(IFI16), in reaction to binding either host- or pathogen-derived cytosolic double-stranded DNA (dsDNA) or cyclic dinucleotides 
(CDNs).132,133 Increasing studies revealed the relevance and cross-regulation between the ER and STING, where the ERS known 
as the UPR brings into focus.134 Deng et al indicated that STING-mediated ERS signal pathway was activated in lung fibrosis 
mice.40 Zhang et al showed that deletion of STING can mitigate the expression of ERS-related proteins PERK, eIF2α and 
IRE1α.135 In turn, ERS perhaps induce activation of STING in one way or another lacking the mitochondrial intermediary, for 
example through stabilizing STING oligomerization or shifting STING trafficking, while the definitive mechanism has been 
uncleared. Since unbalanced cell death processes are involved in lung fibrosis, current evidence indicates that the deletion of 
STING causes an aggravated fibrosis independently of type I IFN signaling and featured with a prolonged inflammation136 

(Figure 4). In addition to pulmonary fibrosis, STING also plays a promoting role in other fibrotic diseases. Xiao et al described 
that STING-IRF3-NLRP3 signaling promotes hepatocyte pyroptosis and hepatic inflammation in liver fibrosis.137 H-151, 
a selective inhibitor of the cGAS-STING signaling pathway, can mitigate cardiac fibrosis by preserving myocardial function 
after myocardial infarction.138 The STING-PERK-eIF2α signaling pathway makes a significant contribution to cellular senes-
cence and organ fibrosis. Targeting the cGAS-STING-PERK signaling pathway mitigated lung and kidney fibrosis.139

These data indicated that targeting TXNDC5 or STING may be a forceful therapeutic strategy to alleviate lung 
fibrosis, and then improving pulmonary function and medical prognosis in patients with IPF.
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Natural Products Alleviate Pulmonary Fibrosis via Regulating Endoplasmic 
Reticulum Stress
Currently, only the two drugs, pirfenidone and nintedanib, are able to postpone IPF progression, but drugs neither 
improve or even stabilize lung function and enhance quality of life. More importantly, the two therapeutic drugs have 
undesirable adverse effects, including gastrointestinal tract (nausea, diarrhea and dyspepsia, et al), skin reactions (rash 
and photosensitivity, et al), nervous system, diarrhea, and nausea.140–142 Consequently, it is in a popular to develop new 
drugs for IPF with fewer poisonousness and side reactions. Nowadays, over decades of researches into the mechanism of 

Figure 3 Mechanisms of potential target-TXNDC5.
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IPF, ERS has been defined to be crucial. A variety of ERS-related proteins are associated with fibrotic response, and 
under certain condition, inhibition of these important factors were in connection with improvement of lung fibrosis.50 

Then, the natural products which have proven to provide benefits in IPF treatment by regulating ERS are summarized and 
categorized (Tables 1 and 2) (Figures 5 and 6).

Bioactive Compounds
Naringin
Naringin is a naturally resourced flavanone glycoside mainly existed in grapefruit and citrus fruits.166 Previous studies 
have identified that naringin possesses diverse pharmacological activities such as anti-inflammatory and anti-oxidative 
stress.167,168 It has been reported that naringin shows potential benefits to withstand BLM-induced fibrosis in vivo with 
reducing the level of inflammatory cytokines (TNF-α, IL-6, and IL-1β), regulating oxidative stress markers (MDA, SOD, 
and GSH-Px) and regulating the apoptosis-related genes (Bax and Bcl-2). Moreover, it has been revealed that naringin 
can inhibit ERS and mitophagy-related genes (BIP, PERK, p-eIF2α, ATF4, LC-3B, p62, and Parkin), thereby activating 
ATF-3 and suppressing PINK1. Thus, naringin may be an up-and-coming therapeutic active ingredient for treating IPF 
through inhibiting ERS, decreasing apoptosis, and keeping mitochondrial homeostasis, which may be related to its 
modulation of ATF3/PINK1 pathway.143

Figure 4 Mechanisms of potential target-STING.
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Table 1 Bioactive Compound Ameliorate Pulmonary Fibrosis by Regulating Endoplasmic Reticulum Stress

Name Types In vitro/in vivo 
Model (Effective 

Dose) 
Cell (Effective 

Concentration)

Related Pharmacological indicators Related Molecular 
Mechanisms

Refs.

Naringin 1 Flavonoids BLM (100mg/kg) HYP↓ TNF-α↓ IL-6↓ IL-1β↓ HYP↓ TGF-β1↓  
α-SMA↓ collagen III↓ MDA↓ 

SOD↑ GSH-Px↑ BIP↓ PERK↓ p-eIF2α↓ ATF4↓ 
Bax↓ Bcl-2↑ LC-3B↑ p62↓ PINK1↑ Parkin↑

Inhibition of ATF3/PINK1 
and ERS signaling axis 

Inhibition of inflammation 
and oxidative stress 

Inhibition of apoptosis 
Activation of mitophagy

[143]

Pachymic acid 2 Terpenes BLM (40 mg/kg) α-SMA↓ HYP↓ TGF-β1↓ collagen I↓ 
Fibronectin↓ 

MDA↓ ROS↓ ATP↑ SOD↑ CAT↑ BIP↓ CHOP↓ 
Caspase 9↓ ATF4↓

Inhibition of oxidative 
stress 

Inhibition of apoptosis 
Inhibition of 

BIP/ATF4 signaling 
pathways

[144]

Triptolide 3 Terpenes BLM (1.0 mg/kg) BIP↓ CHOP↓ Inhibition of apoptosis 
Inhibition of BIP signaling 

pathways

[145]

Tauroursodeoxycholic 
acid 4

Steroids BLM (250 mg/kg) 
Hypoxia (100 mg/kg) 
A549 (0.5 mmol/L)

α-SMA↓ E-cadherin↑ TGF-β1↓ HYP↓ IL-1β↓ 
p-Smad2↓ p-Smad3↓ Ki67↓ PCNA↓ HO-1↓ 

3-NT↓ BIP↓ CHOP↓ p-PERK↓ p-eIF2α↓ ATF4↓ 
ATF6↓ XBP-1s↓ p58IPK↓ caspase-12↓ caspase- 

3↓ TSP-1↓Caspase-11↓ 
GRP94↓ HRD1↓ SEL1L↓ parkin↓

Inhibition of oxidative 
stress 

Inhibition of TGF-β/ 
Smad2/3-mediated EMT 
Inhibition of BIP/PERK 
eIF2a/ATF6 signaling 

pathways 
Inhibition of apoptosis 

Inhibition of TSP-1/TGF- 
β1 signaling pathway

[89,146–148]

Engeletin 5 Flavonoids BLM (25 mg/kg) 
L929 (270 μg/mL)

α-SMA↓ collagen I↓ E-cadherin↑ Vimentin↓ 
Snail↓ BIP↓ ATF4↓ PERK↓ CHOP↓ p-Smad2/3↓ 

p-JNK↓

Inhibition of BIP/PERK/ 
ATF4 signaling pathways 

Inhibition of TGF-b1- 
smad2/3 and JNK signaling 

pathways

[149]

Spermidine 6 Polyamines BLM (50 mg/kg) 
mouse primary ATII 

(100 µmol/L)

P16↓ p21↓ HYP↓TNF-α↓ TGF-β1↓ IL-1β↓ 
CHOP↓ BIP↓ ATF6↓ IRE-1↓ caspase-3↓ LC3B II/ 

I↑ ATG7↑ beclin-1↑ p-mTOR↓

Inhibition of inflammation 
Inhibition of apoptosis 

Activation of autophagy 
Inhibition of BIP/ATF6 

signaling pathway

[150]

Salidroside 7 Terpenes BLM (150 μg/kg) 
primary fibroblasts  

(5 μmol/L)

BIP↓ CHOP↓ ATF-4↓ XBP-1↓ p-AKT↓ 
p-mTOR↓ p-p70S6K↓

Inhibition of PI3K/AKT 
signaling pathway 

Inhibition of BIP/ATF4 
signaling pathway

[151]

Ginsenoside Rb1 8 Terpenes Paraquat (120 mg/kg) TNF-α↓ IL-6↓ IL-1β↓ BIP↓ β-catenin↓ MMP2↓ Inhibition of inflammation 
Inhibition of BIP signaling 

pathway

[152]

Curcumin 9 Phenols BLM (30 mg/kg) 
WI-38 (5 μmol/L)

α-SMA↓ CCN2↓ collagen I↓ vimentin↓ p-JNK↓ 
p-p38↓ p-ERK↓ PERK↓ miR-19a↑ miR-19b↑ 

miR-26b↑

Inhibition of JNK and 
PERK signal pathway

[153]

Isorhamnetin 10 Flavonoids BLM (30 mg/kg) 
A549 (100 μmol/L) 
HBEC (100 μmol/L)

α-SMA↓ collagen I↓ E-cadherin↑ BIP↓ CHOP↓ 
vimentin↓ TGF-β1↓ p-PERK↓ p-eIF2α↓

Inhibition of EMT 
Inhibition of ERS and 

PERK signaling pathway

[154]

Chlorogenic acid 11 Phenols BLM (60 mg/kg) 
RLE-6TN (50 μg/mL)

α-SMA↓ Collagen I↓ CHOP↓ BIP↓ p-PERK↓ 
p-IRE-1↓ cleaved-ATF-6↓ cleaved-Caspase-12↓ 

cleaved-Caspase-9↓ cleaved-Caspase-3↓

Inhibition of apoptosis 
Inhibition of ERS and 

PERK signaling pathway

[155]

Melatonin 12 Alkaloids BLM (5 mg/kg) HYP↓ α-SMA↓ ATF-6↓ BIP↓ p-eIF2α↓ p-IRE1α↓ 
XBP-1↓ p-JNK↓

Inhibition of ATF6/eIF2α/ 
IRE1 signaling pathway

[77]

Note: The number represents the corresponding bioactive compound.
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Table 2 Herbal Preparation Ameliorate Pulmonary Fibrosis by Regulating Endoplasmic Reticulum Stress

Herbal 
Preparation

Major Plants In vitro/in vivo 
Model (Effective 

Dose) 
Cell (Effective 

Concentration)

Related Pharmacological 
Indicators

Related 
Molecular 

Mechanisms

Refs.

Tanreqing 

injection 1

Scutellaria baicalensis 
Georgi (Huangqin, 

23.6%) 
Selenaretos thibetanus 
Cuvier (Xiongdanfen, 

3.8%) 
Capra hircus Linnaeus 

(Shanyangjiao, 1.9%) 

Lonicera japonica Thunb. 
(Jinyinhua, 23.6%) 

Forsythia suspensa 
(Thunb.) Vahl (Lianqiao, 

47.1%)

BLM (5.2 mL/kg) TNF-α↓ IL-6↓ IL-1β↓ HYP↓ TGF-β1↓ 
α-SMA↓ collagen I↓ E-cadherin↑ 

STING↓ p-P65↓ p-PERK↓ p-eIF2α↓ 
BIP↓ ATF4↓

Inhibition of 

STING-mediated 

PERK/eIF2α/ATF4 
signaling pathway 

Inhibition of 

inflammation

[40]

Bushen Yifei 

Xiaozheng 
Decoction 2

Rehmannia glutinosa 
(Gaert.) Libosch. ex 

Fisch. et Mey. 

(Shudihaung) 

Angelica sinensis (Oliv.) 
Diels (Danggui) 

Citrus reticulata Blanco 
(Chenpi) 

Pinellia ternata (Thunb.) 

Ten. ex Breitenb. 
(Banxia) 

Fritillaria thunbergii Miq. 

(Zhebeimu) 
Whitmania pigra 

Whitman (Shuizhi) 

Glycyrrhiza uralensis 
Fisch. (Zhigancao)

BLM (12.68 g/(kg·d)) 

A549 (200 μg/mL)

SP-C↓ α-SMA↓ E-cadherin↑ BIP↓ 
IRE1↓ TRAF2↓ p-JNK↓ PERK↓ 

CHOP↓ Bax↓

Inhibition of JNK 

signaling pathway 
Inhibition of BIP/ 

PERK/IRE1 signaling 

pathway 
Inhibition of 

apoptosis

[156–159]

Citrus alkaline 

extract 3

Citrus reticulata Blanco BLM (96 mg/kg) 

A549 (200 μg/mL) 
MRC-5 (200 μg/mL)

Collagen I↓ collagen III↓ PERK↓ 
p-eIF2α↓ BIP↓ ATF4↓ ATF3↓ PINK1↑

Inhibition of ATF3/ 

PINK1 signaling 
pathway

[160]

Maimendong 

Decoction 4

Radix Ophiopogonis 
(Maimendong) 

Rhizoma Pinelliae 
(Banxia) 

Radix et rhizoma ginseng 
(Renshen) 

Radix glycyrrhizae 
(Gancao) 

Fructus Jujubae (Dazao) 

Oryza sativa L. (Jingmi)

BLM (2.4 g/100 g) HYP↓ α-SMA↓ SPC↑ BIP↓ CHOP↓ Inhibition of 

apoptosis Inhibition 
of BIP signal 

pathway

[161]

Gualou Xiebai 
Decoction 5

Trichosanthes kirilowii 
Maxim. (Gualou) 

Allium macrostemon 
Bunge (Xiebai)

BLM (2.8 g/kg) p-PERK↓ p-IRE1α↓ BIP↓ ATF6α↓ Inhibition of BIP/ 
PERK signal 

pathway

[162]

(Continued)
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Pachymic Acid
Pachymic acid is a bioactive ingredient of Poria cocos with various pharmacological properties, including anti-tumor, 
anti-inflammatory, antioxidant, hypoglycemic, and sedative hypnosis.169 Furthermore, pachymic acid possesses beneficial 
effects against fibrosis. Li et al reported that pachymic acid alleviated rat pancreatic injury and fibrosis with pancreatitis, 
and the inhibition of NLRP3 inflammasome is involved.170 Furthermore, in rats with BLM-induced pulmonary fibrosis, 
pachymic acid also showed benefits with decreasing the expressions of HYP and TGF-β1, and regulating oxidative 
indicators (MDA, SOD, CAT, and ROS).144 Importantly, pachymic acid treatment also could down-regulate the levels of 
ERS-related proteins (BIP, CHOP, caspase-9, and ATF4). Collectively, pachymic acid may alleviate BLM-induced lung 
fibrosis and pathological injury in vivo by inhibiting ERS and improving mitochondrial function.170

Triptolide
Triptolide, a diterpenoid triepoxide, is the active component of Tripterygium wilfordii Hook F. Triptolide has been proved 
to various prospective pharmacological effects, including anti-cancer, anti-tumor, anti-obesity and anti-diabetes.171 

Previously, the study of triptolide on BLM-induced fibrosis in mice lung were conducted. The pulmonary function 

Table 2 (Continued). 

Herbal 
Preparation

Major Plants In vitro/in vivo 
Model (Effective 

Dose) 
Cell (Effective 

Concentration)

Related Pharmacological 
Indicators

Related 
Molecular 

Mechanisms

Refs.

Yougui drink 6 Rehmannia glutinosa 
(Gaert.) Libosch. ex 

Fisch. et Mey. 

(Shudihaung) 
Dioscorea polystachya 

Turczaninow (Shanyao) 

Cornus officinalis Sieb. et 
Zucc. (Shanzhuyu) 

Glycyrrhiza uralensis 
Fisch. (Zhigancao) 

Cinnamomum cassia (L.) 

D. Don (Rougui) 

Eucommia ulmoides 
Oliv. (Duzhong) 

Lycium chinense Miller 

(Gouqizi) 
Aconitum carmichaelii 

Debeaux (Fuzi)

BLM (1 g/mL) HYP↓ PGE2↓ BIP↓ CHOP↓ caspase- 
3↓

Inhibition of 
apoptosis Inhibition 

of BIP signal 

pathway

[163]

Dan Shao Hua 
Xian Capsule 7

Salvia miltiorrhiza Bunge 
(Danshen) 

Paeonia lactiflora Pall 

(Chishao) 
Astragalus 

membranaceus (Fisch.) 

Bge. var. mongholicus 
(Bge.) Hsiao (Huangqi) 

Ginkgo biloba 
L. (Yinxingye) et al

BLM (0.8 g/(kg·d)) BIP↓ NF-κB↓ HYP↓ MDA↓ SOD↑ Inhibition of 
oxidative stress 

Inhibition of BIP 

signal pathway

[164,165]

Note: The number represents the corresponding herbal preparation.
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Figure 5 The mechanisms underlying the inhibitory effects of bioactive compounds on lung fibrosis. The number represents the corresponding bioactive compound. The 
arrow refers to the role of promotion, the “ ” refers to the role of inhibition.

Figure 6 The mechanisms underlying the inhibitory effects of herbal preparation on lung fibrosis. The number represents the corresponding herbal preparation. The arrow 
refers to the role of promotion the “ ”refers to the role of inhibition.

https://doi.org/10.2147/DDDT.S388920                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2024:18 1638

Deng et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


indicators such as FVC, mass FVC, and Cydn were up-regulated, and FEV0.4/FVC, RI, and RE were down-regulated in 
the triptolide treated groups. Moreover, triptolide can mitigate the seriousness of alveolitis and fibrosis by downregulat-
ing the abnormal expression of BIP and CHOP, indicating the inhibition ERS is involved in the triptolide against lung 
fibrosis.145

Tauroursodeoxycholic Acid
Tauroursodeoxycholic acid (TUDCA), a molecular chaperone, has been proved to decrease ERS via promoting protein folding 
and transporting.172 According to the recent research, it has been demonstrated that TUDCA mitigated non-liver diseases, for 
instance intestinal inflammation and neurodegenerative disorders through reducing ERS.173,174 Additionally, TUDCA has 
displayed a therapeutic effectiveness of lung fibrosis. Firstly, TUDCA treatment repressed ERS-related molecules/events 
(ATF6 and eIF2a) and subsequently alleviated paraquat-caused pulmonary fibrosis.146 Another study also demonstrated that in 
BLM-caused lung fibrosis, TUDCA not only prevented the BLM-induced fibrotic changes (the HYP content and histological 
scores), but also suppressed inflammations (total protein and leucocytes, peculiarly neutrophils), and IL-1β, caspase-11, IRE1, 
eIF2a, XBP-1, and CHOP.89 Then, addition to BLM-induced lung fibrosis model, TUDCA also inhibited PERK pathway- 
dependent ERS activation in chronic intermittent hypoxia (IH)-induced model. The levels of TGF-β1 and TSP-1 mRNAs were 
up-regulated after IH induction; however, these changes were reduced by administration of TUDCA. Moreover, TSP-1/TGF-β1 
pathway is in relation to the protection of TUDCA against IH-stimulated lung fibrosis.147 The latest research showed that 
TUDCA reduced excessive cell proliferation and ECM in BLM-stimulated fibrosis model. Moreover, TUDCA prevents 
pulmonary TGF-β/Smad2/3-mediated EMT and fibrosis in part via inhibiting BLM-induced oxidative stress and ERS (BIP, 
p-PERK, p-eIF2α, ATF4, ATF6, and XBP-1s).148 Thus, TUDCA may have potential preventive and therapeutic effects for 
inhibiting apoptosis, oxidative stress, and fibrosis.

Engeletin
Engeletin, a flavonoid glycoside, was largely obtained from the dry rhizome of Liliaceae plant Smilax china L., shows 
a variety of potentially beneficial effects, for instance, inhibiting inflammation and oxidative stress.175,176 In a study, 
protective action of engeletin against BLM-induced lung fibrosis and TGF-β1-induced L929 cells were investigated. The 
results demonstrated that engeletin suppressed myofibroblast activation and ameliorated lung structure. Engeletin adminis-
tration remarkably decreased the expression of collagens I and III, a-SMA, and vimentin in vivo and in vitro. RNA 
sequencing unveiled that PERK/ATF4 signaling pathway in relation to ERS was involved in antifibrotic actions of engeletin. 
Furthermore, engeletin treatment decreased the expressions of ATF4, CHOP and BIP, which was dependent on its inhibition 
of p-smad2/3, p-JNK, and lnc949. Overall, engeletin may be a new and promising therapeutic drug for lung fibrogenesis 
through suppressing ERS via lnc949-mediated TGF-β1-Smad2/3 and JNK were upstream signaling pathways.149

Spermidine
Spermidine is prevailing in living organisms as a natural polyamine.177 Spermidine exerts various activities, including 
antioxidant, anticancer, anti-oxidative, and anti-inflammatory.178 The actions of spermidine in BLM-induced lung fibrosis 
mice were also studied. BLM stimulated the upregulation of β-gal, IL-1β, TNF-α, and TGF-β1 in mice and alveolar epithelial 
cells, while all the changes were inhibited by spermidine therapy. BALF outcomes unveiled that spermidine obviously 
mitigated inflammatory reaction, including the reduction of macrophages, neutrophils, and lymphocytes. BLM-induced 
upregulation of ER-related proteins, for instance CHOP, GRP78, ATF6, and IRE-1 were also decreased with spermidine 
treatment. Thus, exogenous spermidine mitigated lung fibrosis via the downregulation of the ERS signaling pathway. 
Interestingly, spermidine was able to increase the LC3 I/II ratio and the autophagy-related protein (ATG7 and beclin-1), 
indicating autophagy may be also involved in the beneficial effects of spermidine in lung fibrosis.150

Salidroside
Salidroside, a phenylpropanoid glycoside, is the major effective ingredient discovered in all species of Rhodiola. A study has 
revealed that salidroside has the effect of reducing oxidative and inflammatory.179 The actions of salidroside on BLM-induced 
lung fibrosis in mouse have been studied, and the results showed that salidroside represented strong anti-fibrotic functions via 
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suppressing alveolar structure injury and collagen deposition. In addition, salidroside inhibited the levels of ERS associated 
proteins, including ATF-4, BIP, CHOP, XBP-1, and regulating the levels of PI3K/AKT/mTOR signal proteins, including 
p-AKT, p-mTOR and p-p70S6K in lung tissues. Thus, perhaps salidroside is a very potential chemical constituent in 
alleviating BLM-induced pulmonary fibrosis.151

Ginsenoside Rb1
Ginsenoside Rb1 as one of the most prominent compounds in Panax ginseng C. A. Mey. has been proved to own various 
bioactivities, including decreasing oxidative stress and inflammation, balancing cell autophagy, reducing apoptosis, 
affecting sugar and lipid metabolism, and modulating different cytokines.180 The protective action of ginsenoside Rb1 
on paraquat-induced lung fibrosis has been reported. Paraquat caused a severe respiratory failure and fibrosis in rats, and 
the inflammatory factors in serum were increased significantly. Otherwise, ginsenoside Rb1 administration inverted the 
whole biomarkers and cytokine levels, and histopathological changes induced with paraquat. Furthermore, ginsenoside 
Rb1 inhibited the level of BIP, MMP2 and β-catenin in lung. Thus, the outcome points out a potential part of ginsenoside 
Rb1 in treating paraquat-induced pulmonary fibrosis.152

Curcumin
Curcumin is an active compound extensively extracted from a member of the Zingiberaceae family. Previous researches 
have exhibited that curcumin holds several pharmacological actions, such as apoptosis, antiatherosclerosis, anti- 
inflammation, and antithrombotic activities in vitro or in vivo.181 In BLM-treated mice, the levels of α-SMA, CCN2, 
and vimentin were markedly upregulated, which were reversed by an intraperitoneal injection of curcumin. Furthermore, 
curcumin suppressed fibroblast differentiation in BLM-treated mice lung tissues, and suppressed endothelin-1 or 
thrombin-induced MAPK activation and PERK protein level in WI-38 cells. Additionally, curcumin reversed endothe-
lin-1 or thrombin-induced decrease of miR-19a, miR-19b, and miR-26b levels, which contributed to curcumin-mediated 
suppression of CTGF generation and fibroblast differentiation.153

Isorhamnetin
Isorhamnetin is a flavonol aglycone obtained from the plant Hippophae rhamnoides L which is extensively used in 
traditional Chinese medicine (TCM) to the prevention and treatment of various diseases. Isorhamnetin has been proved to 
be effective components that exert several effects, for instance anti-ERS, antiviral, antitumor, antioxidant, anti-inflam-
matory, and neurodegenerative injury protection effects.182,183 Antifibrosis effect of isorhamnetin on mice lung fibrosis 
model with BLM was estimated. According to the report, isorhamnetin inhibited BLM-induced collagen deposition, 
reduced collagen I and α-SMA expression, and alleviated ERS-mediated EMT in vivo. Furthermore, incubation of 
HBECs and A549 cells with TGF-β1 markedly activated EMT and ERS, and this effect was reversed by isorhamnetin via 
PERK pathway. Further investigations are necessary to illuminate the all-round antifibrotic effective of isorhamnetin, and 
identify the precise mechanism.154

Chlorogenic Acid
Chlorogenic acid, a naturally occurring non-flavonoid polyphenol, is extensively discovered in green coffee beans, teas, 
certain fruits, and vegetables. Researches have demonstrated that chlorogenic acid exerts antiviral, antitumor, antibacterial, 
and antioxidant effects.184 Importantly, chlorogenic acid (60 mg/kg) significantly suppressed BLM-promoted mesenchymal 
markers α-SMA and collagen I. Furthermore, chlorogenic acid represented inhibitory actions on the phosphorylation of PERK 
and ATF-6 in lung tissues. Interestingly, the expressions of cleaved caspase-12, caspase-9 and caspase-3 were evidently 
upregulated when induced by TGF-β1, which were significantly suppressed with chlorogenic acid.155

Melatonin
Melatonin as the main secretory substance of the pineal gland possesses anti-oxidant and anti-inflammatory effect.185,186 

Moreover, previous research revealed the effective of melatonin in BLM-treated pulmonary fibrosis model.187,188 

Melatonin clearly mitigated BLM-treated EMT and fibroblasts differentiation, as determined by its inhibition of 
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a-SMA level. Further information discovered that melatonin markedly mitigated BLM-induced BIP upregulation and 
elevation of the cleaved ATF6 in the lungs. Additionally, melatonin obviously reduced the level of eIF2a, a downstream 
protein of the PERK pathway, as well as IRE1a phosphorylation. In brief, melatonin alleviates ERS and ERS-mediated 
EMT in BLM-treated lung fibrosis. Hence, melatonin may be helpful in protecting against IPF.77

Herbal Preparation
Tanreqing Injection
As is known to all, Tanreqing injection (TRQ), a Traditional Chinese Patent Medicine, is popular for the syndrome of 
wind-warm lung fever and phlegm-heat blocking lung. Thus, TRQ is widespread used clinically for various lung 
diseases, including pneumonia, COPD, and IPF.189–193 TRQ comprises five TCMs, namely Scutellaria baicalensis 
Georgi (Huangqin), Selenaretos thibetanus Cuvier (Xiongdanfen), Capra hircus Linnaeus (Shanyangjiao), Lonicera 
japonica Thunb. (Jinyinhua), and Forsythia suspensa (Thunb.) Vahl (Lianqiao).194 Previous researches have demon-
strated that chemical compositions of TRQ are greater than 126 compounds, including flavonoids, phenolic acids, 
lignans, iridoids, amino acids, phenethyl alcohol glycosides, and steroids, and possesses a series of pharmacological 
effects, for instance anti-microbial, anti-inflammatory, anti-apoptotic, anti-oxidative, and anti-virus actions.190,195,196

Previously, the promising functions of TRQ in BLM-treated mice lung fibrosis have been estimated. TRQ not only 
improved lung edema and pulmonary function of mice with lung fibrosis (down-regulated airway resistance and up- 
regulated lung compliance) but also increased inflammatory responses (down-regulated the number of total cells and 
neutrophils in BALF, down-regulated inflammatory factors). Additionally, TRQ mitigated collagen synthesis and 
deposition of lung tissues as well. Moreover, TRQ relieved fibrosis via down-regulating α-SMA and up-regulating 
E-cadherin. Furthermore, the decreased expression of STING, p-P65, BIP, p-PERK, p-eIF2α, and ATF4 were also 
involved in the mechanism of TRQ treatment of IPF. However, further research should pay close attention to the potential 
mechanisms and the active components for TRQ treatment of IPF.40

Bushen Yifei Xiaozheng Decoction
Bushen Yifei Xiaozheng decotion (BSYF), a Chinese herbal prescription, is derived from the classic formula “Jinshui Liujun 
decoction”. BSYF comprises six traditional Chinese medicine, including Rehmannia glutinosa (Gaert.) Libosch. ex Fisch. et 
Mey. (Shudihaung), Angelica sinensis (Oliv.) Diels (Danggui), Citrus reticulata Blanco (Chenpi), Pinellia ternata (Thunb.) 
Ten. ex Breitenb. (Banxia), Fritillaria thunbergii Miq. (Zhebeimu), Whitmania pigra Whitman (Shuizhi). In clinical, BSYF is 
used to tonify lung, kidney, phlegm and eliminate disease. IPF belongs to “lump of pulmonary collateral”.197,198 Thereby, 
a series of studies were conducted to estimate the roles of BSYF on BLM-treated lung injury. Yan et al showed for the first time 
that BSYF could relieve the inflammatory reaction and inhibit deposition of extracellular matrix protein and collagen in 
diseased region to refrain the process of IPF rats.199 And then, systemic researches are carried out to clarify the underlying 
mechanisms. BSYF (12.68 g/(kg·d)) administration significantly decreased the AEC II apoptosis, and interfered the process of 
EMT in BLM-treated mice, and these effects of BSYF were mediated by the downregulation the abnormal expression of 
SP-C.156,157 Another study identified that BSYF could regulate the expression of CHOP pathway, suppress the ERS 
(down-regulated PERK) and inhibit the apoptosis (down-regulated Bax) of AEC II, thereby delaying the pathological changes 
of IPF.158 Further investigation revealed the underlying mechanism of BSYF inhibiting ERS in IPF. BSYF was given to A549 
(200 μg/mL) after TGF-β1 administration. On the basis of the results presented, TGF-β1 dropped markedly the expression of 
SP-C and α-SMA, and the decrease in E-cadherin. Furthermore, BSYF suppressed TGF-β1-mediated EMT by inhibiting JNK 
signaling pathway and the BIP/IRE1 signaling pathway.159

Citrus Alkaline Extract
Citrus (Citrus reticulata Blanco) is used as a food and dietary supplement around the world.200 It is assumed that anti- 
fibrotic, anti-apoptosis, and anti-senescence effects of Citrus is believed to be mediated by its flavonoids and 
alkaloids.201–204 In Wang’s study, the effects of Citrus alkaline extract on lung fibrosis induced by BLM in rats were 
investigated, according to the result of the experiment, Citrus alkaline extract effectively mitigated collagen deposition, 
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thereby ameliorating fibrosis in vivo. Furthermore, the administration of this extract was found to suppress the BLM or 
tunicamycin-induced upregulation of ERS biomarker (BIP and PERK), leading to a reduction of ERS levels in lung and 
A549 cells. What’s more, the extract treatment restrained BLM or tunicamycin-treated activation of ERS with increasing 
ATF-3 and PINK1 expression in vivo or in vitro. These outcomes indicate that Citrus alkaline extract acts as a promising 
therapeutic drug for lung fibrosis. However, further studies were needed to clarify underlying mechanisms of the whole 
plant extract.160

Maimendong Decoction
Maimendong Decoction (MMDD) consists of six herbs (Radix Ophiopogonis (Maimendong), Rhizoma Pinelliae (Banxia), 
Radix et rhizoma ginseng (Renshen), Radix glycyrrhizae (Gancao), Fructus Jujubae (Dazao), and Oryza sativa L. (Jingmi)). 
In clinical, MMDD is frequently used in China to treat allergic asthma, radiation pneumonitis, chronic bronchitis with lung 
yin deficiency, pulmonary fibrosis and other respiratory illnesses.205–207 It has been confirmed that MMDD contains various 
chemical constituents, such as Steroidal saponins, 4-O-Demethylophiopogonanone E, methylophiopogonanone A, and 
liquiritin, and possesses various pharmacological effect of anti-inflammation, anti-oxidative, and anti-apoptosis.208–210 

Previously, MMDD has been confirmed to alleviate pulmonary fibrosis, improve pulmonary function (FVC), and decrease 
SP-C expression in BLM-induced fibrotic rats. Importantly, MMDD significantly suppressed the activation of ERS (BIP 
and CHOP) and cell apoptosis in AEC II. Therefore, the inhibition of ERS and apoptotic pathway in fibrotic lung tissue by 
MMDD may be involved in the therapeutic effects of MMDD against lung fibrosis.161

Gualou Xiebai Decoction
Gualou Xiebai Decoction (GLXB) is one of the classical prescriptions originally recorded in “Jin Kui Yao Lue” by the 
famous Chinese physician Zhang Zhongjing in the Han Dynasty. GLXB consists of Trichosanthes kirilowii Maxim. 
(Gualou) and Allium macrostemon Bunge (Xiebai) and is clinically used in treating angina pectoris and coronary heart 
disease.211–214 Recent studies have revealed that GLXB exerts anti-oxidative, anti-inflammatory, anti-apoptotic, and anti- 
fibrotic.215–217 Oral administration of GLXB increased the loss in body weight and decreased lung index by BLM- 
induced. Additionally, GLXB prevented lung histology injury, and relieved the severity of alveolitis and fibrosis by 
downregulating these abnormal expressions of p-PERK, p-IRE1α, BIP, and ATF6α. The findings suggested that GLXB 
might be a promising drug candidate in treating IPF.162

Yougui Drink
Yougui drink (YG) is originally recorded in “Jin Kui Shen Qi Decoction” by the famous Chinese physician Zhang 
Zhongjing in the Han Dynasty. YG is comprised of Rehmannia glutinosa (Gaert.) Libosch. ex Fisch. et Mey. 
(Shudihaung), Dioscorea polystachya Turczaninow (Shanyao), Cornus officinalis Sieb. et Zucc. (Shanzhuyu), 
Glycyrrhiza uralensis Sieb. et Zucc. (Shanzhuyu), Glycyrrhiza uralensis Fisch. (Zhigancao), Cinnamomum cassia 
(L.) D. Don (Rougui), Eucommia ulmoides Oliv. (Duzhong), Lycium chinense Miller (Gouqizi), and Aconitum 
carmichaelii Debeaux (Fuzi). It has been defined that YG inhibited oxidative stress, inflammatory, apoptotic and 
fibrotic.163,218,219 In Qiu’s experiment, the preventive and therapeutic role of YG on BLM-treated lung injury was 
discussed. YG administration significantly relieved dysfunction of lung and improved alveolar gas exchange function. 
Furthermore, YG prevented BLM-induced inflammatory infiltration and collagen deposition in lung tissues through 
depressing the expression of EP2 in AEC II, elevating the expression of EP3 in macrophage in lung tissues. 
Additionally, YG delayed lung fibrosis via modulating the levels of BIP and CHOP protein, and improving lung 
cell apoptosis induced by ERS.163

Danshao Huaxian Capsule
Danshao Huaxian Capsule (DSHX), a mixed preparation, is composed of five traditional Chinese herbal medicinal 
ingredients, including Salvia miltiorrhiza Bunge (Danshen), Paeonia lactiflora Pall (Chishao), Astragalus membranaceus 
(Fisch.) Bge. var. mongholicus (Bge.) Hsiao (Huangqi), Ginkgo biloba L. (Yinxingye) et al. DSHX has been used for 
activating blood, eliminating stasis, clearing heat and removing dampness. The ingredients of DSHX have been 
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demonstrated to possess therapeutic actions, for instance, anti-inflammatory, anti-fibrosis, anti-oxidation.164,220 In Han’s 
study, the role of DSHX on BLM-treated rat pulmonary injuries was discussed. Experimental results have discovered that 
DSHX markedly diminished the lung HYP contents. Moreover, DSHX ameliorated oxidative stress through down- 
regulating the MDA level and up-regulating SOD activity. In addition, the alveolitis and fibrosis scores in the pulmonary 
pathology of the DSHX groups were obviously improved. Further, DSHX postponed the progression of lung fibrosis via 
down-regulating the level of BIP protein.164 Simultaneously, another research revealed that DSHX administration 
significantly relieved lung index and prevented pulmonary fibrosis by suppressing BIP and NF-κB. Therefore, these 
findings suggest a potential action of DSHX in treating IPF through inhibiting ERS.165

Conclusion and Future Directions
There is an ever-increasing scholarly center on the potential therapeutic targets associated with components within the 
endoplasmic reticulum stress (ERS) response in the treatment of idiopathic pulmonary fibrosis (IPF). Given the crucial 
role of the unfolded protein response (UPR) in maintaining cellular homeostasis, current research suggests that blocking 
or extensively inhibiting signaling through one or more branches of the ERS signaling pathway may hold promise as 
a treatment approach. This review article provides a comprehensive description of the actions on herbal preparations and 
bioactive compounds by inhibiting ERS in a lung fibrosis model, elucidating the pharmacological actions and underlying 
mechanisms of these agents. In addition to ERS, the roles of natural compounds have been ascribed to their anti- 
inflammatory, anti-oxidant, and anti-apoptotic effects, as well as their ability to activate autophagy. Various components 
may exhibit comparable protective roles and target similar pathways. Notably, in the process of ERS-induced fibrosis, the 
BIP, PERK, eIF2α, and ATF4 signaling pathways were frequently implicated. Consequently, phytochemicals hold 
promise as potential therapeutic agents for IPF. These studies will provide a new direction for natural products to treat 
IPF via clarifying the pharmacological effects and underlying mechanistic functions of these drugs. Nevertheless, there is 
an urgent need for further clinical trials to validate the therapeutic efficacy of these compounds against lung fibrosis.
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