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ABSTRACT: This study presents for the first time the polymerization
of methyl methacrylate (MMA) in the presence of poly(vinyl chloride)
(PVC) that takes place by both SARA-ATRP and SET-LRP
mechanisms. The two types of polymerizations that occur in the
system are PMMA grafting to the PVC backbone and the formation of
a new PMMA polymer, both occurring in the presence of a Cu0wire.
The polymerizations were controlled as confirmed by the molecular
weight evolution, polymerization kinetics, and variations in the
dispersity value. The MMA polymerization in the presence of PVC
at 60 and 70 °C leads to the formation of two polymer species
characterized by an increase in the molecular weight with the
conversion and a narrowing of the dispersity value with the reaction
progress. To increase the degree of control over the polymerization,
the same reaction was performed at room temperature, which allowed us to highlight the presence of the SARA-ATRP and SET-LRP
mechanisms via subsequent polymer chain extensions. The results demonstrated that PMMA grafting on PVC polymers follows a
SARA-ATRP mechanism, while the formation of a PMMA homopolymer entails a SET-LRP process. The influence of solvent nature
on the polymerization reaction was studied by performing the grafting of N-isopropylacrylamide (NIPAM) onto the surface of PVC
particles in aqueous media in the presence and in the absence of CuCl2. The polymerization reactions and the obtained materials
were studied by gel permeation chromatography (GPC), 1H NMR, DMA, scanning electron microscopy (SEM), and atomic force
microscopy (AFM).

1. INTRODUCTION
Polyvinyl chloride (PVC) is one of the most used
commercially available polymers due to its low production
cost, its properties, such as chemical resistance to acids and
base, and good compatibility with additives, such as
plasticizers, thermal stabilizers, lubricants, and filler agents.1,2

The chemical modification of PVC is usually performed
through nucleophilic substitution of chlorine atoms to enhance
its mechanical properties.3,4 Reversible-deactivation radical
polymerization (RDRP) techniques include precise synthesis
methods to obtain macromolecular compounds with tailored
architectures and accurate control over the molecular weight of
polymer chains.5−7 Controllable architectures can also be
achieved by ionic polymerizations,8 but more stringent
conditions are required, making RDRP more appealing. The
most widely used RDRP processes include nitroxide-mediated
radical polymerization,9,10 reversible addition−fragmentation
chain transfer (RAFT),11,12 and atom transfer radical polymer-
ization (ATRP).13−15

The chemical modification of PVC to enhance certain
properties can be achieved by grafting mechanisms.16−18 Up to
now, the grafting process has been achieved predominantly by

three routes: “grafting onto”, “grafting from”, and “grafting
through”, resulting in the formation of different polymer
architectures, such as comb- or brush-type graft copolymers.
The “grafting from” approach is one of the more intensely used
methods that allows the use of controlled polymerization
techniques. This method can usually be employed in two types
of processes: surface grafting and graft copolymerization. The
surface grafting approach implies that only the surface is
modified without changing the properties of the bulk. Graft
copolymerization involves the reaction of a preformed
homopolymer or copolymer with fresh monomers, which are
then covalently bonded to the polymer chains; therefore,
conventional polymerization methods can be applied.
The reversible transfer of a halogen atom to propagating

radicals capable of forming dormant species represents a
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dominant, adaptable, and scalable alternative to attain control
over macromolecular species reactivity,15,19,20 This route is the
basis of the atom transfer radical polymerization (ATRP)
process. The molecular weight of a polymer resulting from the
ATRP process increases linearly with the conversion while
preserving a low dispersity value, which indicates that all chains
extend simultaneously.21

Recently, our team demonstrated the grafting both on the
surface and in homogeneous media of poly(acrylic acid) from
PVC by the ATRP process.17 The literature presents an
impressive number of papers on ATRP processes for the
chemical modification of PVC with polymers,16,22−24 however,
there is no mention of a process in the presence of metallic
copper. Therefore, this study focused on the grafting of PMMA
and PNIPAM in homogeneous and heterogeneous media using
a metallic copper catalyst.25,26 There is still a scientific debate
regarding the polymerization mechanism.27 Thus, Matyjaszew-
ski’s group sustains a SARA (supplemental activator and
reducing agent) ATRP mechanism,28−31 while the group of
Prof. Percec sustains a SET-LRP (single electron transfer living
radical polymerization) mechanism.32−36

The SARA ATRP and SET-LRP mechanisms use the same
components and involve same reactions but they differently
contribute to the overall polymerization. Both mechanisms are
characterized by primary deactivation by Cu (II) and negligible
deactivation by Cu (I)37 (Scheme 1).

The following are the key distinctions among the proposed
mechanisms:

●For SARA-ATRP, Cu1+ is the main activator, while Cu0 is
a supplemental sacrificial and reducing agent in comparison the
SET-LRP considers Cu0 as the activator of alkyl halide.

●For SARA-ATRP comproportionation is specific, while for
SET-LRP it is disproportionation.30

●In the case of SARA-ATRP is limited termination versus
SET-LRP, where zero termination and end group functionality
is 100%.

●For SARA-ATRP, the activation step is via Inner Sphere
Electron Transfer (ISET), while for SET-LRP it involves other
Sphere Electron Transfer (OSET).33

Thus, the major difference between the two types of
mechanisms consists of the proportion in which each species
(Cu0, Cu1+, and Cu2+) participates in the polymerization
evolution. This aspect is key to determining which mechanism
is favored. The type of copper ions involved in each step
depends on the nature of the ligand used, which influences its
solubility in the reaction medium.38 Thus, the solubility of the
complex formed by the ligand and the copper ions is critical for
establishing the mechanism.
Regardless of the debate over the mechanism,39−42 in

practical applications, Cu0 has several key advantages

compared to other RDRP40,43−48 methods, which include
fast and ultrafast reaction rates at room temperature,49−51

simple reaction setup,37 only trace amounts of copper are
retained in the final polymer,52 nearly colorless products,53

tolerance to impurities54,55 and air, compatibility with a wide
range of organic solvents56,57 and aqueous media.58,59 The
presented examples are specific to homogeneous systems,
although a relatively recent study60 presented the synthesis of
mini-emulsions by SARA-ATRP, thus widening the versatility
of the mechanism.
The copper traces can be eliminated from the system by

using “metal-free” polymerization procedures.61−64 The
disadvantage of this strategy is that it involves an organic
photocatalyst, such as pyrene,65 perylene,66 or fenoxazine67

derivatives, which are not entirely environmentally friendly.
The polymer properties and applications are dictated by

their molecular architecture (composition, topology, and
functionality), molecular weight, and dispersity value. The
large-scale implementation of ATRP and RDRP has given rise
to a series of potential environmental issues.59 These are
related to the toxicity of the monomer, catalysts, solvents,
additives, and energy requirements. In our case, for the
initiating species, we used a preformed (nontoxic) polymer and
a low-toxicity monomer (methyl methacrylate).68 Also, the
catalyst, a copper wire, can be easily removed from the system
after polymerization and reused. The reaction reaches high
conversion values (resulting in low waste generation), and it
has low energy requirements because it can be performed at
room temperature. Considering the 12 principles of green
chemistry, our process satisfies most of the issues. Never-
theless, the second principle (design methods to maximize the
incorporation of all substrates used in the chemical process
into the final product (atom economy)) requires additional
study to determine the possibility of utilization of the final
product as obtained or after separation and can constitute the
topic of future studies related to green chemistry aspects of
controlled polymerization reactions in the presence of Cu0.
PMMA presents excellent impact and weathering resistance.

Through the modification of PVC with PMMA chains, the
final product will display some of the PMMA characteristics,
thus increasing its mechanical resistance as well as its UV
resistance; therefore, reducing the need for additional
compounds (UV absorbers or other filling agents, which
tend to leach in the environment) to be integrated into the
final product.
The recycling of polymers is one of the main objectives of

circular economy. The integration of controlled radical
polymerizations for this goal can be achieved through the
exploitation of the activation of the dormant polymer chain-
end functionality. Controlled radical polymerizations create an
avenue for polymerization and depolymerization through
activation of the dormant polymer chain-end functionality.
Martinez et al.69 present that depolymerizations can be
conducted in tetra(ethylene glycol) dimethyl ether with
zerovalent Fe0 as a supplemental activator and reducing
agent, with conversions reaching over 70%. The monomer
isolated during depolymerization is recovered by distillation.
The temperature of the process was 170 °C, which did not
affect the PVC backbone. The residual PVC could be recycled
mechanically or thermally, as presented in the literature.70,71

This study presents for the first time the grafting of PMMA
in homogeneous media on PVC in the presence of a Cu0 metal
catalyst and the grafting of PNIPAM on the surface of PVC

Scheme 1. Specific Comproportionations and
Disproportionations of SARA-ATRP and SET-LRP
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particles in aqueous media. The advantage of the proposed
strategy lies in the fact that the reaction media is not
contaminated with copper ions, but the mechanism by which
the process occurs must also receive attention. Thus, the goal
of this study is to both demonstrate a fast, efficient, and reliable
strategy for modifying the properties of PVC and to investigate
the mechanisms involved in the process by considering the
characteristics of both SARA-ATRP and SET-LRP reaction
pathways as presented in the literature.41,42 The control over
this polymerization appears to be dependent on several factors,
including solvent type and temperature, which motivated the
initial development of the reaction in bulk to obtain a more
economically viable route. The present study highlights the
synthesis of two species involving two reaction mechanisms
during a single reaction stage. Moreover, this study highlights
for the first time the coexistence of the same polymerization
reaction of both the SET-LRP and SARA-ATRP mechanisms.

2. MATERIALS AND METHODS
2.1. Materials. Polyvinyl chloride PVC (Mn = 44600 g/

mol, Đ = 2.4) (OLTCHIM S.A. Romania) was obtained by
suspension polymerization and used as received. Methyl
methacrylate (MMA) (Sigma-Aldrich) was purified by vacuum
distillation under reduced pressure in a stream of Argon gas,
and a center fraction was collected (bp 46 °C/100 mmHg). N-
isopropylacrylamide (NIPAM, Aldrich, 97%) was recrystallized
from hexane. Cu0 wire with a diameter of 0.025 mm was
obtained from Alfa Aesar. Tetrahydrofuran (THF) (Aldrich),
N-methyl pyrrolidone (NMP) (Aldrich), dimethylformamide
(DMF) (Aldrich), 2,2′-bipyridine (BiPy) (Aldrich),
N,N,N′,N″,N′′-pentamethyldiethylenetriamine (PENTA) (Al-
drich), CuCl (Aldrich), CuCl2 (Aldrich), and methanol
(Aldrich) were used as received.

2.2. Methods. 2.2.1. Polymerization of MMA in the
Presence of PVC in Homogeneous Media. In a 15 mL glass
vial, 0.1 g of PVC was added followed by the addition of 10 mL
of MMA. A magnetic PTFE stirring bar wrapped with 5 cm of
copper wire was subsequently added to the vial in the presence
of 10 mmol of PENTA. The vial was then sealed with a silicon
rubber septum, followed by deoxygenation by bubbling with
nitrogen for 10 min. The polymerization was allowed to occur
at ambient temperatures of 60° and 70 °C and stirred at 200
rpm. Samples were taken periodically under a nitrogen blanket
for gravimetric and GPC analysis. To establish conversion, the
collected samples were precipitated in methanol, filtered, and
dried at 70 °C under reduced pressure. The same procedure
was employed for the polymerization at room temperature
with the addition of 0.0003 g CuCl2. The molar ratio between
MMA: PVC = 62.5.
2.2.2. Chain Extension of the PVC Modified with PMMA

Obtained at Point 2.2.1. The synthesis of the polymer was
performed in DMF using as starting material the modified
PVC obtained as described in Section 2.2.12.2.1 at a
temperature of 70 °C (characterized by a bimodal molecular
weight distribution (Mn1 = 434000 g/mol, Đ = 1.27 and Mn2
= 66780 g/mol, Đ = 1.47). Thus, 0.2 g of PVC modified with
PMMA (70 °C) was dissolved in 5 mL of DMF, and 2 mL of
MMA was added. The mixture was subjected to nitrogen
purging, after which 0.0003 g of CuCl and 0.0005 g of BiPy
were added. The reaction vial was sealed and heated at 80 °C
with stirring for 2 h. Then, the reaction mixture was
precipitated in methanol, filtrated, and dried under a vacuum
until a constant mass was obtained.

2.2.3. Grafting of PNIPAM onto PVC Particle Surface in
Aqueous Media. In a 20 mL reactor, 15 mL of distilled water
was added followed by 0.1 g of PVC and 1 g of NIPAM. A
magnetic stirring bar was wrapped with 5 cm of copper wire.
The mixture was nitrogen purged for 10 min, followed by
starting the reaction at room temperature by the addition of 10
mmol of of PENTA ligand. After 4 h reaction time, the
reaction mixture was poured into 50 mL of distilled water,
followed by filtration of the PNIPAM-modified PVC particles
and drying at 50 °C until a constant mass was obtained. The
same procedure was employed for the polymerization in the
presence of 0.0003 g of CuCl2.

2.3. Characterization. The molecular weights of the
obtained polymers were analyzed using a PL-GPC 50
Integrated GPC/SEC System (Agilent Technologies) with a
flow rate of 1 mL/min THF and a column oven temperature of
40 °C. Polystyrene was used as a standard and a refractive
index detector was employed. The GPC equipment was
calibrated using polystyrene standards (with molecular weights
ranging from 162 to 10 000 000 g/mol across 18 points). The
GPC traces were treated according to Gavrilov et al.72

The morphological and structural characterization was
acquired with a Nova NanoSEM 630 Scanning Electron
Microscope (FEI Company, Hillsboro, OR, USA) at an
acceleration voltage of 10 kV and an element energy dispersive
spectroscopy (EDX) system (Smart Insight AMETEK) at an
acceleration voltage of 15 kV.
The NMR analyses were performed on a Bruker Advance III

HD 600 MHz spectrometer (Bruker, Rheinstetten, Germany),
corresponding to a resonance frequency of 600.12 MHz for the
1H nucleus equipped with a 5 mm multinuclear direct
detection z-gradient probe head (BBI). Samples were analyzed
by using CDCl3 as a solvent.
The DMA analyses were performed using a DMA 850

Discovery TA Instruments, single cantilever mode, oscillation
mode, frequency 1 Hz, temperature ramp from 30 to 150 °C,
heating rate 5 °C/min, and amplitude of oscillation 10 μm.
For imaging and mechanical measurements, specimens from

each sample were prepared by sprinkling a small supply of
sample powder on the substrate coated with an anchoring
adhesive, succeeded by blowing off the surface to remove
loosely attached particles. Optical inspection revealed a few
remaining grains stuck on the substrate, tens of micrometers in
size.
AFM measurements were performed on the surface of these

grains using a Ntegra AFM (Nt-MDT) equipped with a closed-
loop feedback system for compensating for the hysteresis and
nonlinearities. Prior to mechanical measurements, images of
the samples were acquired in tapping mode. Imaging and
mechanical measurements were performed with DCP20
probes (Nt-MDT) with a nominal spring constant of 48 N/
m, a tip radius of 100 nm, and a tip angle of 220°. AFM images
revealed that grains generally consisted of large clumps of
individual features (particles) hundreds of nanometers in size
(bigger than the tip radius). Suitable measurement sites where
constituent particles were exposed at the surface (as seen in
SEM image X) were selected for further force curve
spectroscopy. A number of approximately 20 force curves
were collected for each specimen on spots corresponding to
individual particles. The maximum Z displacement toward the
surface was 100 nm in all cases. Inverse optical lever sensitivity
(IOS) was established by measuring the slope of several
recorded force curves on sapphire, which was taken as an
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infinite rigidity material. Next, for fitting and analysis purposes,
the force−displacement curves were converted to force−
separation curves by adding the cantilever deflection to the
position of the scanner during the loading process. Finally, the
Hertzian fit was applied to the resulting curves to determine
the E value. Data processing was assisted by Image AnalysisTM
software (Nt-MDT).

3. RESULTS
3.1. Bulk MMA Polymerization in the Presence of PVC

at 60 and 70 °C. ATRP is a polymerization method that

allows for the fabrication of controlled polymer architectures.
Besides the multiple advantages that this technique offers, it
also has a major drawback, which is the contamination of the
polymer with copper ions. Based on the literature exam-
ples,38,73 some strategies avoid this contamination, but to the
best of our knowledge, their application for PVC modification
has not been implemented. Based on this reasoning, a strategy
using Cu0 metal was chosen for the fabrication of polymer
grafts on a PVC backbone. Thus, the bulk polymerization of
MMA using PVC as an initiator was performed at 60 and 70
°C. From Figure 1, it can be noticed that after the first 80 min,
the process undergoes an autoacceleration (70 °C) phase,
which makes detailed analysis of the process difficult and
justifies the utilization of a lower temperature (60 °C) to better
assess the polymerization.
At a lower temperature (60 °C), the conversion versus time

dependence is linear. The graphical representation of ln([M]0/
[M]) = f (t) (Figure 2) permits a preliminary assessment of the
reaction progress. It is easily noticeable that the process
appears to be controllable (no chain-breaking reaction),74,75

with an apparent polymerization constant kapp = 0.001 min−1,

which is a relatively low value compared to other controlled
polymerization reactions.76,77

Following the polymerization reactions, two polymer species
(a bimodal distribution) were obtained and characterized by
Mn1 andMn2 (at 60 °C) andMn1’ andMn2’ (70 °C), possibly
due to different mechanisms being present and requiring
further investigation for clarification. The role of metallic Cu0
in the catalytic system is explained within the SET-LRP
process, as sustained by the Percec group,33,36,78 and by the
SARA-ATRP process as indicated by the Matyjaszewski
group.29,41,79 For a clearer understanding of the polymerization
process, the variations in the two molecular weights was
presented separately, one in the order of the PVC molecular
weight (104g/mol), while the other in the 106 g/mol
domain. Thus, according to Figure 3A,C, the molecular weight
variation with reaction time (for Mn1−in the PVC molecular
weight domain) has the same effect for both reaction
temperatures, with an initial high increase of the molecular
weight followed by a slow one. In Figure 3B,D, the molecular
weights of Mn2 and Mn2’ are of the 106 order and can be
explained by the formation of the PMMA homopolymer via
chain transfer reactions with the monomer. In both cases, an
increase in the molecular weight with reaction time can be
observed.
The variation of the dispersity (Đ) value during the

polymerization process is another aspect that can be used to
characterize the control characteristics of the reaction. From
Figure 4, it can be observed a decrease of the dispersity value
from 2.4, specifically for unmodified PVC, to 1.5 or even 1.2.
In the case of high-molecular weight species (Figure 4), at
both reaction temperatures, an increase in the dispersity value
with the reaction progress was registered from values of 1.1 to
1.3 or even 1.5. It is certain that, in the case of the Mn1 and
Mn1’ molecular weight species, monomer grafting occurs,
specially PMMA on the PVC chains. In the case of Mn2, Mn2’
species, a new polymer is generated, PMMA homopolymer.
The first conclusion is that two polymeric species are generated
through one reaction.
Additional information can be obtained by tracking the

evolution in time of the percentage of each type of polymeric
species generated: the modified PVC and PMMA homopol-
ymers for the reaction at 60 °C. This temperature was chosen
because it allowed controlling the polymerization reaction. At a
temperature of 70 °C the linearity is exhibited up to 90 min
after which the autoacceleration phenomena are present, as
confirmed by the viscosity increase of the reaction medium, the
diffusion processes being favored.80

Each type of polymeric species generated�the modified
PVC and the PMMA homopolymer for the reaction at 60 °C
was determined by integrating the GPC signal (area of the
peak) for the two species. Analyzing Figure 5A, it can be
noticed that in the case of the modified PVC, the percentage
of polymer continuously decreases, evidently due to the
formation of the PMMA homopolymer. Using the calculated
percentage of the polymers, the conversion value was also
calculated (Figure 5B). The linearization of this equation
(Figure 5C) is presented. Linear fitting (Figure 5C, Mn1and
Mn2) in the case of both species demonstrated without any
doubt the control characteristics of the reaction with kapp value
of approximatively 0.00035 min−1 (modified PVC with
PMMA) and 0.00055 min−1 (for the novel PMMA species).

3.2. Polymerization of MMA in the Presence of PVC
at Room Temperature. To shed light on the mechanistic

Figure 1. Conversion versus time at different reaction temperatures:
60 and 70 °C.

Figure 2. ln([M]0/[M]) versus time at the different reaction
temperatures: 70 and 60 °C.
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aspects of the PVC grafting method, the polymerization was
also performed at 25 °C in order to reduce/eliminate the chain
transfer reaction,15 which leads to a narrowing of the dispersity
value.
Figure 6A presents the variation of the conversion with the

reaction time for MMA polymerization in the presence of PVC
at 25 °C under identical conditions as those for the
polymerizations performed at 60° and 70 °C. The variation
in conversion with time is linear, which is also true for the

representation of ln(M0/M) depending on the reaction time, as
shown in Figure 6B. The linear fitting allows the determination
of a kapp value of 0.00047 min−1.
As in the case of the polymerization performed at 60 °C, two

types of molecular weights are obtained at the same time: one
in the same order of magnitude as the initial PVC, which
represents the polymer grafts on the PVC backbone and one of
the orders of magnitude 106, which represents the formation
of a new polymer, probably PMMA, generated by the chain
transfer reaction with the monomer.
Figure 7B presents the variation in the dispersity value,

which demonstrates that the polymerization process is
controlled. In the case of the PVC grafts, the dispersity
value decreased from 2.4 to 1.6, while for the newly formed
polymer, the dispersity value varied from around 1.2. Using
the peak area for each molecular weight from the GPC
analysis, the percentage of each species was calculated,
meaning the grafts and the newly formed polymer, respectively
(Figure 7C). From the results, it can be observed that the
percentage of modified PVC slightly decreased with time in
favor of the PMMA formation in the system.
The 1H NMR spectra of PVC-g-PMMA 1 and PVC-g-

PMMA-2 display the following characteristic signals: the
multiplet at 4.59−4.29 ppm (a’) assigned to the methine

Figure 3. Variation of Mn1, Mn1’ versus time (A); variation of Mn2, Mn2’ versus time (B); and the GPC traces at (C) 60 °C and (D) 70 °C.

Figure 4. Variation in dispersity value for the molecular weight
species Mn1, Mn1’ (same order of magnitude as PVC) and Mn2, Mn2’
(in the 106 range) versus time.
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proton (−CH−Cl) of PVC; the strong singlet at 3.69 ppm
corresponding to the methoxy groups (−OCH3); and the 1.81
ppm signal (c) from the methylene group (−CH2−Cq) of
MMA units. The 2 singlets at 1.01 and 0.84 ppm are the
proton resonance of the methyl group (−CH3) of the PMMA

chain. The other assignments (b, b’, and a) are presented in
Figure S1a,b and are consistent with previous literature
examples.81,82

For the spectrum of compound PVC-g-PMMA-3, the same
chemical shifts are observed for the signals as in the other

Figure 5. Variation of %Mn1 and %Mn2 with reaction time (A); variation of % conversion Mn1 and Mn2 (B); ln M0/M versus time (C).

Figure 6. Variation of the conversion with time (A); ln M0/M = f(t) (B); and GPC traces (C)
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spectra but with an increase in the intensity of the signals
corresponding to the PMMA chain due to the increase of its
amount used in synthesis.
From the integral values of the methoxy protons (−OCH3)

and of the methine proton (−CH-Cl), the molar ratio of the
PVC:PMMA was assessed to be 1:3 in the PVC-g-PMMA
spectra, while in the spectrum of PVC-g-PMMA-2, the PVC:
PMMA was 1:5, and in compound PVC-g-PMMA-3 was 1:37.
Thus, using the1HRMN characterization method, the

synthesis of graft copolymer, modified PVC. Increasing the
reaction time, the molar ratio between PVC and PMMA
decreased. Unfortunately, the synthesis of the homopolymer
PMMA is difficult to attribute because the weight percentage
provided from the mixture of PVC-graf t-PMMA with PMMA
was less than 10% weight (Figure 5).
To note the obtained PMMA homopolymer, DMA analysis

was performed on the same samples used in the case of
1HRMN characterization. The results are presented in Figure
S2.
In the cases of the samples PVC-graf t-PMMA-1 and PVC-

graf t-PMMA-2, the values of the Tg increased compared to
that of pure PVC, (80 °C), sustaining the modification of the
PVC backbone. In both cases, a single Tg value is indicated,

which is explained by the physical compatibility between PVC
and PMMA. For the sample PVC-graf t-PMMA 3, two values
of Tg are noticed. This behavior could be attributed to the
coexistence of the two types of polymers PVC modified with
PMMA and PMMA homopolymer.
Considering the conversion at different reaction intervals,

respectively, the % of each species, it is easy to determine the
conversion of each type of polymer Mn1 and Mn2 (Figure 8A).
Moreover, the linearization of ln M0/M as a function of time
for both species formed at the same time (Figure 8B) allows
for the determination of the reaction rate (kapp) for each type
of polymerization. It can be observed that the PMMA synthesis
rate was 14 times greater than the PVC graft formation. What
can be ascertained up to this point is that both reactions, the
grafting and the PMMA synthesis, are controlled polymer-
ization process with a dispersion value relatively narrow or
decrease with the reaction progress. Considering the
examples in previous literature,40 it is relatively easy to
conclude that the grafted PMMA on the PVC polymer
backbone follows a SARA-ATRP, while the PMMA syn-
thesis follows a SET-LRP mechanism. These conclusions are
based on the fact that the SET-LRP reactions are much faster
than those of SARA-ATRP.

Figure 7. Variation of Mn1 and Mn2 (A); dispersity values for Mn1 and Mn2 (B); % of Mn1 and Mn2 with reaction time (C).

Figure 8. Mn1, Mn2 conversion depending on the reaction time (A); linearization of ln(M0/M) = f(t) for Mn1 and Mn2 (B).
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The schematic representation of the possible polymer
grafting routes is presented in Scheme 2 and it consists of
the two controversial polymerization mechanisms SET-LRP
and SARA-ATRP. The polymerizations took place through
SARA-ATRP, which involved the grafting of PMMA in the
PVC chain, respectively, through SET-LRP, which is the
homopolymerization reaction of MMA. The two reactions are
shown in Scheme 1. The termination in the case of SET-LRP is
disproportionated, and the reactivity of the terminal chain is
not lost, unlike in SARA-ATRP, where it is comproportionated
and the partial reactivity of the chain is lost.

3.3. Bulk Polymerization of MMA in the Presence of
PVC and CuCl2 at Room Temperature. It has been

established in the literature that in some cases, the addition of
CuCl2 promotes the SARA-ATRP mechanism .83,84 Figure 9
presents the evolution for MMA polymerization using PVC at
room temperature in the presence of CuCl2, respectively, in the
absence of CuCl2. The analysis of Figure 9 reveals a stagnation
of the reaction progress at low conversion values in the
presence of CuCl2, which sustains its role as a deactivator
.38,85

3.4. MMA Polymerization Using PVC at Room
Temperature in NMP, in the Presence of CuCl2. In the
case of the polymerization performed in NMP, it can be
noticed that the addition of CuCl2 increases the conversion

Scheme 2. Two Polymerization Routes: A) SARA-ATRP and B) SET-LRP

Figure 9. Conversion versus time for the MMA polymerization in the
presence of PVC (bulk polymerization) (presence and absence of
CuCl2).

Figure 10. Conversion versus time for MMA polymerization in the
presence of PVC (polymerization in NMP) (presence and absence of
CuCl2) (a).
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and the molecular weights do not display a clear dependence
on the conversion value (Figure 10).
The results confirm that the polymerization evolution is

strictly dependent on the nature of the solvent used and its
interaction with Cu2+ions (as it can be observed from the
images in Figure 11, the change in color signifying different

coordination of Cu2+ ions). Thus, if the solvent facilitates the
dissolution of Cu2+, the SARA-ATRP mechanism is improved.

3.5. Synthesis of Block Copolymers by Chain
Extension with MMA. As presented in previous studies,40,73

if a polymerization follows a SARA-ATRP mechanism, due to
the termination reactions, there is the possibility of the loss
of terminal reactive functionality. For this reason, we selected
a specimen that presented a bimodal molecular weight
distribution obtained by polymerization at 70 °C (Mn2 =
434000 g/mol, Đ = 1.27 and Mn1 = 66780 g/mol, Đ = 1.47).
After the polymerization reaction, through chain extension, a
polymer with a bimodal molecular weight distribution was
obtained with an increase of Mn2 = 510900 g/mol, Đ = 1.12
while Mn1 remained unchanged at 66800 g/mol, Đ = 1.47

Figure 11. Images of the CuCl2 solution in NMP (a) and MMA (b)
(bulk polymerization).

Figure 12. GPC traces for the PMMA polymer extension.

Figure 13. GPC traces for the poly(NIPAM) graft on the PVC
surface.

Figure 14. SEM images of PVC (a) and PVC-graf t-PNIPAM (b) (in
the absence of CuCl2).
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(Figure 12), which sustains that the PMMA formation is the
result of a SET-LRP mechanism.
In conclusion, the polymerization of MMA using PVC

follows two types of mechanisms: one involving a SARA-ATRP
process to generate the PMMA grafts onto the PVC backbone,
which does not display a reactive terminal group capable of
polymer extension, and a SET-LRP mechanism, which leads to
the formation of a PMMA homopolymer, which retains the
reactive terminal group.

3.6. Grafting PNIPAM on the PVC Surface. To further
investigate the mechanism, we studied the influence of a polar
and protic solvent (also “green”), such as water, to perform the

grafting reaction. The reaction was performed at room
temperature, using NIPAM as the monomer. The reaction
involves surface-initiated (SI) grafting from the PVC
suspension particles in the presence and the absence of
CuCl2 salt. The reaction was performed in the presence of a
Cu2+ salt to shift the equilibrium toward the formation of
additional Cu+ species.
After performing the polymerization reaction under the

same conditions (4 h reaction time), the presence of Cu2+ salt
led to the formation of an Mn1 of 82200 g/mol with a
dispersity (Đ) value of 1.67, which signifies almost a doubling
of the molecular weight versus PVC, and the grafting in the

Figure 15. AFM images, representative force−distance curves, and histograms of Young’s modulus for P1, P2, and P3.
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absence of a Cu2+salt (Mn1 of 63 700 g/mol and Đ = 1.95) was
obtained (Figure 13). Thus, it can be noticed that in the
presence of a Cu2+ salt, higher molecular weights are obtained
with a narrower dispersity value. This aspect sustains the
successful grafting of PMMA on the surface of PVC by a
SARA-ATRP mechanism,41,85,86 in the presence of metallic
copper.87,88

The initial PVC- and PNIPAM-functionalized PVC particles
(in the absence of CuCl2) were characterized by SEM and
EDX (Figure 14). It is easily observed that the initial
dimension varies between 70 and 100 μm, while the ones
functionalized with PNIPAM suffer a 10−20 μm size increase.
Figure 15 displays a typical topography image acquired for

the reference sample (PVC) (P1), the sample modified with
PNIPAM (in the absence of CuCl2) (P2), and the sample
modified with PNIPAM (in the presence of CuCl2) (P3),
together with representative force−distance curves and histo-
grams of Young’s modulus measured for each sample. The
derived average elastic modulus values were E = 450 MPa
(P1), 217 MPa (P2), and 136 MPa (P3). It is worth noting
that for the case of core−shell particles, our approach provides
a combined Young’s modulus of the shell and of the underlying
core.
Figure 16a−c presents the typical images of the surface

morphologies at 2 μm by 2 μm scan size. Additionally, Figure

16d displays the morphology of P2 (PVC�poly(NIPAM) in
the presence of CuCl2) at 5 μm × 5 μm scan size.
One can see that the images for samples A (P2) and C (P1)

are very similar, both exhibiting a fine-grained morphology,
with a Z scale of a few nm and <1 nm rms roughness. The size
of individual grains noticeable in the images, which comprises
the film morphology, is ∼20 nm, on the order of the AFM tip
dimensions. On the contrary, sample B (P2 - PVC-poly-
(NIPAM) (in the presence of CuCl2) displays a very different
morphology, resembling a macroporous nanostructure with
pore sizes typically on the order of 150−250 nm and a wall
thickness of about 100 nm, leading to a surface rms roughness
of ∼30 nm. This structured honeycomb arrangement results
from the interpenetration between the soft poly(NIPAM) and
hard PVC polymers under the particular conditions of film
formation (employed solvent, proportion of the two
components, thermal treatment). An attempt to “scratch” the
honeycomb walls revealed that the nanostructure walls consist
of underlying strands comprised of particles tens of nanome-
ters in size, wrapped in an amorphous shell about 15 nm thick.

4. CONCLUSIONS
This study presents for the first time in the literature the
controlled polymerization of MMA in the presence of PVC
using metallic Cu0. Initially, the polymerizations were
performed at 60 and 70 °C, in bulk, with the obtaining of

Figure 16. Surface morphologies for A) PVC-p(NIPAM) (in the absence of CuCl2)−P2; B) PVC-p(NIPAM) (in the presence of CuCl2)−P3; C)
PVC (P1) and D) PVC-p(NIPAM) (in the presence of CuCl2) (P3).
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two different polymer species, one of the order of the initial
PVC (104 g/mol) and another of the order 106 g/mol. The
first species represents PVC grafted with PMMA, while the
second species represents PMMA resulting from chain
transfer reactions with the monomer. From the kinetics
analyses, it was demonstrated that the grafting process follows
a SARA-ATRP mechanism, while the homopolymerization
involves a SET-LRP reaction mechanism, which was confirmed
by subsequent chain extension reactions.
Unrelated to the debate over the mechanism, in practical

applications, Cu0 has several key advantages compared to
other RDRP40−48 methods, which include fast and ultrafast
reaction rates at room temperature, a simple reaction system,
high purity of the final polymer, which will contain only trace
amounts of copper, nearly colorless products, tolerance to
impurities and air, compatibility with a wide range of organic
solvents and aqueous media. Also, the catalyst, a copper wire,
can be easily removed from the system after polymerization
and reused.
To investigate the influence of the solvent, respectively, of a

Cu2+ salt on the evolution of the reactions, experiments using
water as a solvent were performed. The addition of Cu2+ salt
favors the poly(NIPAM) grafting reaction in water, as
confirmed by GPC, SEM, and AFM analyses.
In conclusion, it was evidenced for the first time that the

MMA polymerization in the presence of PVC and metallic
copper involves two types of controlled polymerization
reactions: one of PVC grafting by SARA-ATRP and a
homopolymerization process of MMA by transfer with the
monomer following the SET-LRP route.
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