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Background. The need to focus more on children’s abilities to change requires new

assessment technologies in education. Process-oriented assessment can be useful in this

regard. Dynamic testing has the potential to provide in-depth information about

children’s learning processes and cognitive abilities.

Aim. This study implemented a process-oriented dynamic testing procedure to obtain

information regarding children’s changes in series-completion skills in a computerised

test setting. We studied whether children who received a graduated prompts training

would show more progression in series-completion than children who received no

training, and whether trained children would use more advanced explanations of their

solutions than their untrained peers.

Sample. Participants were 164 second-grade children with a mean age of 7;11 years.

Children were split into an unguided practice or a dynamic testing condition.

Methods. The study employed a pre-test-training-post-test design. Half of the children

were trained in series-completion, and theother half did not receive any feedbackon their

problem solving. Using item response theory analysis, we inspected the progression paths

of the children in the two conditions.

Results and conclusions. Children who received training showed more progression

in their series-completion skills than the children who received no training. In addition,

the trained children explained their solutions in a more advanced manner, when

compared with the non-trained control group. This information is valuable for

educational practice as it provides a better understanding of how learning occurs and

which factors contribute to cognitive changes.

One of the focal points in education is helping students make the most of their learning.

Teachers are repeatedly asked to improve students’ learning and cater to their

individual educational needs. As part of the discussion around enhancing learning

opportunities, Gotwals (2018) suggested that incorporating formative assessments
within the classroom is the way forward. Formative assessment tools provide feedback

to teachers to help students learn more effectively, as a consequence improving

students’ academic achievements (Dixon & Worrell, 2016). Despite the widely
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recognized need for schools to focus on personalization and learning how to learn,

education is still dominated by assessment and testing practices that focus on the

summative assessment of learning outcomes, rather than on formative assessment

practices that support and strengthen students as learners (Bennett, 2011; Crick, 2007).
The need to focus more on students’ abilities to change requires the development of

new assessment technologies. Process-oriented assessment techniques, such as

dynamic testing, can be useful in this regard.

A dynamic testing approach has the potential to provide in-depth information about

children’s learning processes and cognitive abilities (Elliott, Resing, & Beckmann, 2018).

This information can be used to develop effective educational practices (Elliott,

Grigorenko, & Resing, 2010; Jeltova et al., 2007). Our study aimed to address the need

for new assessment technologies that can be used to obtain more insight into children’s
learning processes. We have newly constructed a computerized series-completion test in

a dynamic testing setting, to better be able to assess children’s progression in solving a

domain-general inductive reasoning task.

Computerized dynamic testing

Recently, the benefits of adding electronic technology to a dynamic testing design have

been examinedby several researchers (e.g., Passig, Tzuriel, &Eshel-Kedmi, 2016; Poehner
& Lantolf, 2013; Resing & Elliott, 2011; Stevenson, Touw, & Resing, 2011). Incorporating

electronic displays is believed to contribute to the development of children’s cognitive

skills (e.g., Clements& Samara, 2002). The additional value of computerized testing canbe

attributed to the flexibility with which problems can be solved, which can promote more

adaptive prompting during training. Research has shown that children benefit from

computer-assisted learning (Tamim, Bernard, Borokhovski, Abrami, & Schmid, 2011), and

computerized dynamic testing has shown positive results in relation to children’s

accuracy on cognitive tasks (e.g., Passig et al., 2016; Poehner & Lantolf, 2013; Resing &
Elliott, 2011; Resing, Steijn, Xenidou-Dervou, Stevenson, & Elliott, 2011; Stevenson et al.,

2011; Tzuriel & Shamir, 2002). In the current study,we developed a computerized, tablet-

based dynamic test of inductive reasoning, which enabled us to examine the following

two aims. Firstly, using a dynamic test allowed us to investigate children’s ability to learn.

Secondly,we aimed to develop a digital test that could potentially beused in education as a

first step for developing a more effective and integrated learning environment. Moreover,

computerized dynamic testing not only allows for the investigation of emerging individual

differences during the process of solving cognitive tasks, but also provides information
about factors that influence performance change (Elliott et al., 2018).

Dynamic testing: Measuring change in children’s accuracy

The dynamic testing approach draws, among others, upon Vygotsky’s theory of the zone

of proximal development (ZPD) (Vygostsky, 1978), which has been influential in

education (Elliott et al., 2018). Dynamic tests examine the changes that occur during an

assessment (Tzuriel, 2011) by incorporating feedback and training into the testing phases,
providing information about the individual’s ZPD. The design of traditional static

assessment methods does not allow for discriminating between what a child can achieve

with and without help (Elliott et al., 2018). By tapping into underlying potential rather

than the current unaided abilities, however, dynamic testing does more than merely

examine the present cognitive abilities of children (Elliott et al., 2010; Grigorenko, 2009;
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Haywood & Lidz, 2007). By focusing on developing abilities and providing instruction or

help as part of the testing procedure, these tests, potentially, provide insight into

children’s cognitive potential, or potential for learning (Hill, 2015; Tiekstra, Minnaert, &

Hessels, 2016).
A training procedure utilized in dynamic testing involves the provision of graduated

prompts (e.g., Campione & Brown, 1987; Ferrara, Brown, & Campione, 1986; Resing,

1997; Resing&Elliott, 2011). This standardizedmethod, based on the concept of differing

degrees of help, comprises provision of prompts in a gradual, hierarchic fashion when

independent problem-solving does not lead to an accurate solution. As the provision of

prompts is determined by the child’s needs, this training approach is believed to provide

more information about a child’s problem-solving process than standardized, conven-

tional testing (Resing, 2013).
For decades, however, researchers have debated about the best way of measuring

change in dynamic testing (e.g., Cronbach & Furby, 1970; Harris, 1963). In particular, the

reliability of gain scores in a pre-test–training–post-test design has been criticized because
of the possibility of ceiling effects and regression to the mean; whereby, a progression in

scores of, for example, four points from 1 to 5 items can have a different meaning than a

progression from 13 to 18 points for a test of 20 items (e.g., Guthke & Wiedl, 1996). To

overcome the limitations of classical test theory, Item response theory (IRT) was utilized

in this study. IRT models enable estimating the probability of solving an item correctly,
based on the child’s ability and the item difficulties (e.g., Embretson, 1987, 1991;

Embretson & Prenovost, 2000; Embretson & Reise, 2000). In this way, these models

provide a more favourable reliability of gain scores and their interpretation within a

dynamic testing context (Stevenson, Hickendorff, Resing, Heiser, & De Boeck, 2013).

Hessels and Bosson (2003) and De Beer (2005) also used Rasch scaling in dynamic testing

with the HART and the Computer Adaptive Test of Learning Potential, respectively. In the

current study, we therefore used IRT-based gain scores to measure children’s

performance changes at the group level.

Children’s verbal explanations of their series-completion task solving

Another important component of children’s performance changes is their use of solving

strategies (Siegler & Svetina, 2002). By examining the changes in children’s ways of

solving the tasks throughout the test sessions, it would be possible to analyse in-depth the

learning processes that may have occurred (Siegler, 2007; Siegler & Svetina, 2006). One

way of looking into these solving strategies is to study children’s verbal explanations, in
which they explain how they solved a task (Farrington-Flint, Coyne, Stiller, &Heath, 2008;

Pronk, 2014; Resing, Xenidou-Dervou, Steijn,&Elliott, 2012; Siegler& Stern, 1998). These

verbal explanations provide information about children’s strategies and problem-solving

knowledge and seem to have good validity (Reed, Stevenson, Broens-Paffen, Kirschner, &

Jollesa, 2015; Taylor & Dionne, 2000). In relation to dynamic testing, Resing et al. (2012)

and Resing, Bakker, Pronk, and Elliott (2016), for example, found that children’s verbal

problem-solving strategies regarding a series-completion task progressed to a more

advanced level of reasoning after dynamic training. These trained children became better
at explaining the separate item attributes and how these changed in the series they had to

solve, when compared with their non-trained peers.

In the current study, we investigated two aspects of children’s performance changes:

changes in accuracy in solving inductive reasoning tasks and changes in their verbal

explanations.
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Factors influencing individual differences in task solving

Substantial interindividual differences have been observed in the extent towhich children

show progression in task solving (Tunteler, Pronk, & Resing, 2008). Several studies in

dynamic testing showed that childrenwith a low initial ability profitedmore from training
in inductive reasoning than children with a higher initial ability (e.g., Stevenson,

Hickendorff et al., 2013; Swanson & Lussier, 2001). Also, working memory has been

hypothesized to contribute to children’s performance during dynamic testing (e.g.,

Resing, Bakker, Pronk, & Elliott, 2017; Resing et al., 2011; Stevenson, Bergwerff, Heiser,

& Resing, 2014). Earlier research on dynamic testing has reported that both verbal and

visual-spatial working memory components play a role in solving visual-spatial analogies.

This is particularly apparentwhen, as part of the assessment, children are asked to explain

their problem-solving procedures (Resing, Bakker et al., 2017; Stevenson, Heiser, &
Resing, 2013; Tunteler et al., 2008).

Aims of the current study

This study’s main aim was to examine children’s ability to progress in solving geometric

series-completion items, after theywere providedwith feedback in task solving, provided

by a tablet. We thereby focused on children’s potential improvement in accuracy of task

solving and their verbal explanations. Rasch scaling based on Embretson’s IRT modelling
was utilized to study children’s progression from pre-test to post-test in series-completion

accuracy, that is gain scores. On the basis of earlier findings about the effect of dynamic

testing on children’s accuracy, it was expected that trained childrenwould improve their

reasoning accuracy, as measured by their gains, more than the control-group children

(e.g., Resing, Touw, Veerbeek,& Elliott, 2017).We also expected that dynamically trained

children would employ more sophisticated verbal explanations at the post-test in

comparison with the pre-test explanations than the untrained control group (Resing

et al., 2016).
Moreover, we studied some factors that would potentially influence individual

differences in solving series-completion task items, by inspecting interindividual

differences in performance changes between the pre-test and post-test stages. Previous

research on inductive reasoning has focused on working memory (e.g., Resing, Bakker

et al., 2017; Stevenson, Heiser et al., 2013; Swanson, 2011) and initial ability (e.g.,

Stevenson, Hickendorff et al., 2013). On the basis of these earlier study results, we

explored whether these factors would influence dynamic test outcomes.

Method

Participants

The participants in this study were 164 second-grade children, 89 girls and 75 boys,

ranging in age from 6 years and 7 months to 9 years and 3 months (M = 94.91 months,

SD = 4.9 months). The children were recruited from 14 primary schools, located in
midsize and large towns in the western part of the Netherlands. The children’s primary

language spoken at schoolwasDutch. First, a random selection of regular primary schools

in the vicinity of the research institution was contacted by phone and sent an information

letter. If they agreed to participate, headmasters signed an informed consent form. Then,

parentswere informed, andwritten parental consent for participationwas obtained for all

children. Distribution of children throughout the participating schools was based on

parents’ signed consent, with a mean of 12.61 children (SD = 6.97) per school. Initially,
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the study included 177 children. However, 13 children dropped out in the course of the

study because they had been absent during one ormore of the testing sessions. No further

exclusion criteria were applied. The research projectwas approved by the ethics board of

our university.

Design

The study employed a control-group design consisting of pre-test, training, and post-test

segments (see Table 1). Each child took part in five individual weekly sessions, separated

by approximately 7 days. We used randomized blocking to avoid differences in initial

reasoning ability between the two conditions. Blockingwas based on children’s scores on

the Raven’s Standard Progressive Matrices test (Raven, Raven, & Court, 1998) and the
schools the children attended. Per school, blocks of two childrenwere randomly allocated

to the training or the control condition. Children completed a static pre-test thatmeasured

their initial abilities, in which they solved a series-completion test without feedback on

their performance. Children in the training condition then received two consecutive

dynamic training sessions, followed by a post-test. Children in the control group solved

mazes and dot-to-dot completion tasks between pre- and post-test, so that the contact

moments with the test leader and the time-on-testing would be as equal as possible

between the two groups.

Materials

Raven’s progressive matrices

This is a non-verbal test (Raven et al., 1998) that measures children’s fluid intelligence,

especially their inductive reasoning. Childrenwere asked to complete 60multiple-choice

items by choosing the missing element of a figure. The Raven test has a reliability of

a = .83 and a split-half coefficient of r = .91 (Raven, 1981).

Automated working memory assessment (AWMA): Listening recall

The ListeningRecall subtest of the AWMA (Alloway, 2007)was used tomeasure children’s

verbal working memory. In this subtest, a child had to listen to a certain number of

sentences and indicatewhether these are true or not true.Next, the child had to repeat the

first words of the sentences in the correct order. The reported test–retest reliability is

r = .88 (Alloway, 2007).

Automated working memory assessment: Spatial recall

Visual-spatial working memory was assessed by the Spatial Recall subtest of the AWMA

(Alloway, 2007). Children were shown two figures and had to indicate whether the

second figure was the same as or the reverse of the first figure. In addition, the second

Table 1. Schematic overview of the design of the study

Condition N Raven Pre-test Training 1 Training 2 Post-test

Training 80 Yes Yes Yes Yes Yes

Control 84 Yes Yes No/mazes No/mazes Yes
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figure contained a red dot. After inspecting a certain number of figures, the children had to

recall the positions of these dots in the correct order. Alloway (2007) reported a

test–retest reliability of r = .79.

Computerized dynamic test of series completion: Construction

A new computerized series-completion test, utilizing geometric series-completion items,

was used to measure children’s inductive reasoning ability. In this task, children were

asked to complete sequential patterns. A series of six boxes filled with geometric figures

and one empty box was presented. The children were asked to determine which figure

was needed to complete the series and verbalize why they thought their solutions were

correct. Determining the correct solution required discovering the number of pattern
transformations and the period of change (periodicity) (Resing, Tunteler, & Elliott, 2015;

Simon & Kotovsky, 1963). Discovering periodicity involves noticing that patterns are

repeated at predictable, regular intervals (Holzman, Pelligrino, & Glaser, 1983). The task

has been constructed with items having a large range of (theoretical) difficulty levels

depending on the number of transformations and the period of change in the items. Five

transformations were possible: changes in geometric shape (circle, triangle, or square),

colour (orange, blue, pink, or yellow), size (large or small), quantity (one or two), and

positioning in the box (top, middle, or bottom). See Figure 1 for an example item of the
series-completion test.

Pre-test task difficulty for the sample of children in the current study, themean p-value

and range,was .42 (range .00 to .95) and .43 (range .01 to .96), for the control and dynamic

training groups, respectively. For the post-test, themean p-valuewas .44 (range .02 to .95)

and .59 (range .01 to 1.00) for the control and dynamic training groups, respectively.

A higher p-value shows more children solved the item correctly.

Computerized dynamic test of series completion: Pre-test and post-test

After two examples, 18 geometric series-completion task itemswere presented on a tablet

in both the pre-test and post-test. The sessions comprised items equivalent in structure;

the items had identical patterns of item difficulty but differed in the figures and colours

that were used in the series. Before the start of the pre-test, the geometrical shapes used in

this task were introduced to the children. Thereafter, the procedures of the pre-test and

post-test were the same. Each session lasted approximately 30 min.

Figure 1. Geometric series-completion test. Item with four transformations: geometric shape

(periodicity 3), colour (periodicity 3), size (periodicity 2), and position (periodicity 3). [Colour figure

can be viewed at wileyonlinelibrary.com]
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Internal consistency for thepre-testwasa = .64. Post-test reliability for the control and

the training conditions was a = .63 and a = .64, respectively. Test–retest reliability

between the pre-test and post-test scores for the children in the control group was found

to be r = .74, p < .001. For the children in the training group, the test–retest reliability
score was, as expected, lower: r = .35, p = .002.

Computerized dynamic test of series completion: Training procedure

The two training sessions each consisted of six series-completion items that were

comparable to those used in the pre-test and post-test. The order of the items presented

during the training sessions ranged from difficult to easy. After a correct answer was

provided during the training sessions, the children received positive feedback and were
asked why they had chosen this answer. After an incorrect answer, graduated prompts

(e.g., Campione & Brown, 1987; Ferrara et al., 1986; Resing, 1997; Resing & Elliott, 2011)

were provided. The predetermined prompts ranged from general to specific instruction

(see Figure 2). If a child could not solve the task independently, he or she was gradually

prompted towards the correct solution, starting with general, metacognitive prompts.

Subsequently, a more explicit, cognitive prompt that emphasized the specific

General instruction
The tablet starts by providing general verbal 
instructions.  

Prompt 1 (metacognitive)  
"Look at the row again. What do you have to do 
to complete the row?"

Prompt 2 (metacognitive) 
"Look at what changes in the row and what does 
not. Pay attention to shape, colour, small or large, 
one or two, and where in the figure." 

Prompt 3 (cognitive prompt, item-specific) 
The tablet points out the changing 
transformations (shape, colour, size, quantity, 
and position) in the row, and the child is 
instructed to try again.

Prompt 4 (cognitive prompt/scaffolding, item 
specific) 
The tablet only points out the elements that are 
incorrect. If the answer is incorrect again, the 
correct answer is shown by the tablet. 

Figure 2. Schematic overview of the graduated prompts offered by the tablet during the dynamic

training sessions.
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transformations in the series was provided. If the child still could not accurately solve the

task, direct guidance by scaffolding was provided.

Electronic device: Tablet

The task was presented on an Acer Aspire Switch 10 convertible tablet. This tablet

operated on Windows and had a 10.1-inch touch screen display with a resolution of

1,280 9 800 pixels. During the task, the tablet provided different kinds of output. On the

tablet’s display, an animated figure, named Lisa, appeared on the left side of the screen and

gave the children verbal instructions. The childrenwere asked to construct their answers

bydragging anddropping geometric figure(s) (froma range of possibilities) into the empty

seventh box. The possibilities (24 figures) were presented below the row of figures (see
Figure 3). In addition, the tablet provided visual effects parallel to the verbal instructions

in all four sessions to visually attract attention to the figures. The tablet briefly enlarged the

geometric figures in the series, the outlines of the boxes, and the outline of the entire row.

Furthermore, during the example and training items, the tablet provided auditory

feedback. A high ‘pling’ sound was played whenever an answer was correct and a lower

sound when the child’s answer was incorrect. The appendix presents a schematic and

detailed overview of the computerized series-completion test presented on the tablet.

Scoring and analyses

The tablet automatically scored children’s performance during the pre-test, training, and

post-test by producing log files. For each of the 18 pre-test and post-test items, answers

were scored as accurate (1) or inaccurate (0). To examine the effect of training on series-

completion performance,we used Embretson’s (1991)multidimensional Raschmodel for

learning and change (MRMLC) to reliably estimate initial ability and change from pre-test

Figure 3. Display of the tablet with answering possibilities. [Colour figure can be viewed at wileyonline

library.com]
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to post-test (e.g., Embretson & Prenovost, 2000). Following Stevenson, Hickendorff et al.

(2013), we included condition as a covariate in our model to examine the effect of

condition and reliably estimate change scores for each experimental condition. Initial

analyses were performed using the ltm package for R (Rizopoulos, 2006); MRMLC
estimates were computed with the lme-4 package (Bates & Maechler, 2010).

To examine our second research question, the examiners assigned children’s verbal

explanations to one of 13 strategy categories, which are depicted in Table 2. These

Table 2. Verbal explanation categories and strategy groups

Category Verbal explanation Description

No-answer Unknown Explanation is inaudible, or child gives explanation from

which a strategy cannot be deducted

Guessing The child does not know how he/she solved the task or

guessed the answer

Non-inductive Missing piece Child used a figure because it was not in the row yet

Fairness Child aimed at an equal distribution of figures in the row

Skipping the gap Child only looks at certain boxes in the row

Wishful thinking Child changes one of the figures in the row for him-/

herself, to make his/her answer fitting

Partial-inductive Repetition random square Child repeats random figure from the row

Repetition first square Child repeats first figure from the row

Simple repetition Child tries to find the figure in the row that is the same

as the figure in box 6 and repeats the figure that comes

after this

Incomplete complex

repetition

Child looks back in the row per transformation, like in

simple repetition, but does not mention all changing

transformations

Incomplete seriation Child mentions the pattern, but does not mention all

changing transformations

Full-inductive Complete complex

repetition

Child looks back in the row per transformation, like in

simple repetition, and combines these

transformations. Child mentions all changing

transformations

Complete seriation The child follows the row for all changing

transformations

Strategy group Criterion

1 No-answer No-answer explanation was used in more than 33% of the items

2 Mix of no-answer–
non-inductive

Both categories were used in more than two times 33% of the items

3 Non-inductive Non-inductive explanation was used in more than 33% of the items

4 Mix of no-answer–
partial-inductive

Both categories were used in more than two times 33% of the items

5 Mix of non-inductive–
partial-inductive

Both categories were used in more than two times 33% of the items

6 Partial-inductive Partial-inductive explanation was used in more than 33% of the items

7 Mix of partial-inductive–
full-inductive

Both categories were used in more than two times 33% of the items

8 Full-inductive Full-inductive explanation was used in more than 33% of the items
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categories were separated into four main categories, partly on the basis of the categories

used by Resing, Touw et al. (2017): (1) no-answer: when no explanation or an unclear

explanation is given; (2) non-inductive: when no inductive thinking is verbalized; (3)

partial-inductive: when only one or a few (changing) transformations in the row are
mentioned inductively; and (4) full-inductive: when an inductive description of all the

changing transformations in the row is given.

To create strategy groups for each test session, a further categorization was made: (1)

no-answer; (2) mix of no-answer and non-inductive; (3) non-inductive; (4) mix of no-

answer and partial-inductive; (5) mix of non-inductive and partial-inductive; (6) partial-

inductive; (7) mix of partial-inductive and full-inductive; and (8) full-inductive (see

Table 2). Recordings of the verbal explanations of five childrenduring the pre-test or post-

test were not available; the data of these children were not included in the analysis. Inter-
rater reliability was examined for the ratings of the verbal explanations of 70 children

(44%) by calculating a two-way mixed-consistency-average intra-class correlation coeffi-

cient (ICC) per verbal explanation category. For the verbal explanation category ‘no-

answer’, ICC = .96 (95% CI = 0.94–0.98); for the category ‘non-inductive’, ICC = .94

(95% CI = 0.90–0.96); for the category ‘partial-inductive’, ICC = .97 (95% CI = 0.95–
0.98); and for the category ‘full-inductive’, ICC = .90 (95% CI = 0.83–0.94).

Our third research question involved a tree analysis to determine interindividual

differences in performance changes between the pre-test and post-test. We conducted a
CRT tree analysis because it is themost suitable for data sets underN = 500 (Hayes,Usami,

Jacobucci, & McArdle, 2015; Loh, 2009). Pruning was applied to avoid model overfit

(Breiman, Friedman,Olshen,& Stone, 1984; Song&Lu, 2015;Wilkinson, 1992).We set 10

as theminimumnumber of cases in the parent node, and fivewas used as theminimum for

each child node. We entered the following variables to investigate the influence on

performance change: initial ability (pre-test score), condition, visual and auditoryworking

memory, gender, and age.

Results

Before analysing the research questions, the comparability of the two groups of children

in the experimental and control condition, respectively, was examined. Analyses of

variance (ANOVA), using age inmonths and Raven’s ProgressiveMatrices test score as the

dependent variables and condition as the independent variable, revealed no significant
differences between the children in the two conditions regarding age (F(1, 162) = 2.245,

p = .136), or initial level of inductive reasoning as measured with the Raven (F(1,

162) = .510, p = .476), which indicated that participants in both conditions were

comparable on these baseline variables. Table 3 provides an overview of the basic

statistics between the children in the two conditions.

Accuracy in solving series-completion task items
Our first research question concerned the effect of training on children’s progression in

accuracy on a series-completion test. We hypothesized that as an effect of training,

children in the experimental conditionwould improve their serial reasoning performance

more than the untrained children in the control group, as indicated by their gain scores.

We used the MRMLC model to answer this question. The base model (M0) assumes the

person variables to be random. For the first model (M1), we added the main effect of

Session, which resulted in a significantly better model fit, p < .001. In the second model
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(M2), the correlation between sessions was added to test the individual differences that

arose between the pre-test and post-test. This model again led to a significantly better fit

for the data, p < .001. In the thirdmodel (M3), the effect of Conditionwas incorporated to
analyse whether children in the experimental condition progressed significantly more in

reasoning accuracy than the children in the control condition. Adding the effect of

Condition also led to a significant improvement to the model’s fit, p < .001, which

indicates a significant effect of Condition on children’s reasoning accuracy. Table 4

displays themodels’ statistics andAIC andBIC values,with lower values indicating a better

model fit. In conclusion, the analysis outcomes revealed that the trained children, when

compared with the children in the control condition, made more progression in

accurately solving series-completion task items (see Figure 4).

Verbal explanations

For our second research question, we examined the influence of two dynamic training

sessions on children’s verbal strategy use. A multivariate repeated measures ANOVA was

performed with Session (pre-test and post-test) as the within-subjects factor and with

Condition (dynamic testing or control) as the between-subjects factor. The number of

verbal explanations per strategy category (full-inductive, partial-inductive, non-inductive,
and no-answer) was used as dependent variables. Multivariate effects were found for the

Verbal strategy category (Wilks’ k = .062, F(3, 155) = 780.39, p < .001, gp
2 = .94),

Session 9 Verbal strategy category (Wilks’ k = .872, F(3, 155) = 7.56, p < .001,

gp
2 = .13), Verbal strategy category 9 Condition (Wilks’ k = .924, F(3, 155) = 4.23,

Table 3. Basic statistics of the children in the two conditions (control and training)

N M SD

Gender

Control

Boy 39

Girl 45

Training

Boy 36

Girl 44

Age in months

Control 84 94.36 5.17

Training 80 95.50 4.56

Raven raw scores

Control 84 33.37 8.94

Training 80 34.31 7.90

IRT gain scores

Control 84 �.25 .32

Training 80 .27 .52

AWMA spatial recall processing standard score

Control 70 109.21 18.88

Training 68 107.40 20.48

AWMA listening recall processing standard score

Control 70 109.59 17.67

Training 68 114.51 15.36
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p = .007, gp
2 = .08), and Session 9 Verbal strategy category 9 Condition (Wilks’

k = .908, F(3, 155) = 5.25, p = .002, gp
2 = .09). The results of these analyses are

depicted in Figure 5.

The univariate outcomes per verbal strategy category revealed no significant

effects in both the no-answer verbal strategy category and the partial-inductive

verbal strategy category. Training did not affect children’s non-responsiveness or
partial-inductive answers. Although the children who received training provided a

larger number of partial-inductive verbal explanations, and the non-trained children at

first sight showed a decrease in these explanations, these changes were not

Table 4. Statistics for the IRT analysis investigating the effect of training

df AIC BIC Log likelihood Deviance Chi-square df Probability (p)

M0 19 5091.5 5218.5 �2526.8 5053.3

M1 20 4993.2 5126.8 �2476.6 4953.2 100.33 2 <.001
M2 22 4970.4 5117.4 �2463.2 4926.4 26.79 2 <.001
M3 24 4915.1 5075.5 �2433.5 4867.1 59.31 2 <.001
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Figure 4. Schematic overview of the IRT gain scores.
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Figure 5. Patterns of change in verbal explanations of children in the training and control condition.
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significant (p = .107). The analysis for the non-inductive verbal strategy category

revealed a significant interaction effect for Session 9 Condition: Wilks’ k = .949, F(1,

157) = 8.51, p = .004, gp
2 = .05. Children in the control condition increased their

non-inductive verbal explanations from the pre-test to post-test, and the children who
received training showed a decrease in this non-advanced verbal strategy. In the full-

inductive verbal strategy category, significant main effects were found for Session

(Wilks’ k = .889, F(1, 157) = 19.66, p < .001, gp
2 = .11) and Condition (F(1,

157) = 6.98, p = .009, gp
2 = .04), and a significant interaction was found for

Session 9 Condition (Wilks’ k = .964, F(1, 157) = 5.91, p = .016, gp
2 = .04). Chil-

dren used more advanced full-inductive verbal strategies in the post-test session, and

training appeared to positively influence this progression.

To examine the effects of dynamic testing and verbal explanations, the children were
assigned to different strategy groups. Crosstab analyses (chi-squared tests) were used to

investigate howchildren changed their verbal explanations over time.Weexamined shifts

in verbal strategy use by analysing the relationship betweenCondition andVerbal strategy

group (see Table 5). The pre-test results showed, as predicted, no significant association

between the condition and types of verbalization (v2 pre-test (5, N = 153) = 6.80,

p = .236, 33.3% of the cells had an expected count of less than 5). Unexpectedly,

however, a non-significant association was found between the condition and verbal

Table 5. Change in verbal strategy groups from pre- to post-test, by condition

Strategy group

1 2 3 4 5 6 7 8 Total

Pre-test

Control

Frequency 19 2 3 6 6 43 0 0 79

Percentage 24.1 2.5 3.8 7.6 7.6 54.4 0 0 100

Training

Frequency 25 3 7 4 8 27 0 0 74

Percentage 33.8 4.1 9.5 5.4 10.8 36.5 0 0 100

Post-test

Control

Frequency 22 0 9 10 3 35 0 0 79

Percentage 27.8 0 11.4 12.7 3.8 44.3 0 0 100

Training

Frequency 25 0 5 5 8 32 1 1 77

Percentage 32.5 0 6.5 6.5 10.4 41.6 1.3 1.3 100

Table 6. Independent variable importance to the model of change scores

Independent variable Importance Normalized importance (%)

Condition 0.067 100.0

Total correct at pre-test 0.025 37.6

Age 0.013 19.1

AWMA listening recall processing standard score 0.009 13.0

AWMA spatial span processing standard score 0.004 6.6
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strategy-group for the post-test (v2 post-test (6, N = 156) = 7.38, p = .287, 28.6% of the

cells had an expected count of less than 5).

Interindividual changes in inductive reasoning

Our next research question concerned which factors influenced interindividual

differences in gain scores between the pre-test and post-test of the computerized series-

completion test. We used a tree analysis to answer this research question. Children’s

IRT-based gain scores were used as the dependent variable, while initial ability (pre-test

score), condition, gender, age, standardized AWMA Listening Recall score, and standard-

ized AWMA Spatial Span score were entered as predictors. Figure 6, showing the

classification tree that resulted from the analysis, depicts each independent variable’s
contribution to the model. As Figure 6 shows, the condition is the first predictor that

distinguishes children with large gain scores from those with small gain scores. Children

in the training condition outperformed those in the control condition. Children in the

training condition can be differentiated further by their initial ability: Children with a

lower initial ability showedmore improvement from the pre-test to post-test than children

with a higher initial ability. The trained children with a higher initial ability can be

differentiated further by their auditory working memory: Those with lower scores for

their auditory working memory showed more improvement from the pre-test to post-test
than the children with higher scores. Overall, condition and initial ability seem to be the

most important predictors of children’s progression in reasoning accuracy (see Table 6).

Trained children with lower initial ability scores profited most from training.

Discussion

This study investigated children’s progress in solving series completion after training by

focusing on process-oriented assessment data captured by a tablet, including their

reasoning accuracy and verbal explanations on a dynamic series-completion test. We

compared the inductive reasoning progression between pre-test and post-test of

children who received graduated prompts training with the progression of children

who solved only the series-completion tasks twice without feedback. With IRT analysis,

we were able to focus on gain scores of the individual children, which enabled us to

conclude that children who received graduated prompts training achieved better
learning gains in their series-completion skills than the children who received no

training. These findings underline previous studies in which a dynamic testing

approach has shown an additional effect of training on children’s inductive reasoning

accuracy (e.g., Resing & Elliott, 2011; Stevenson, Hickendorff et al., 2013; Tzuriel &

Egozi, 2010).

With regard to the verbal explanation strategies, our data revealed that children were

categorized most often in the non-responsive and partial-inductive verbal explanations.

However, the results did not show that training produced different strategy paths for
these two verbal explanation categories. We did, however, find significant effects for the

non-inductive and full-inductive verbal explanations, which children used less fre-

quently. Children who received training utilized fewer non-inductive verbal explana-

tions and showed an increase in the advanced full-inductive verbal strategies in the post-

test session. Our findings only partially support those reported by Resing, Bakker et al.

(2017), who found a strong increase in the advanced verbal strategy of inductive

reasoning after training was provided. Children’s infrequent use of full-inductive verbal
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explanations in our study might have occurred because the children in the current study

were younger, and our task appeals less to step-by-step task solutions, which may affect

children’s verbal explanations. The series-completion test used in this study asks for a

Figure 6. Classification tree of predictors (condition, pre-test scores, AWMA Listening Recall),

influencing change scores.
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more holistic approach to solving a global task when compared with, for example, the

puppet task used by Resing et al. (2015) and Resing, Bakker et al. (2017). Moreover,

when the children were asked to explain their answers, the question did not clearly

indicate that they should name as many transformations as possible. Since the dynamic
test we constructed was made less verbal than tests developed before, no explicit

training in verbally explaining their answers was provided, and though the transforma-

tions werementioned andmodelled in the training, verbalizing themwas not the primary

purpose of the training.

Another aspect of the current study that should also be considered in future studies on

children’s verbal explanations is the difficulty level of the task items. It might be

worthwhile to examine verbal explanations for the easy and difficult items separately

becausemore full-inductive answers would be expected for the easy items, as these items
comprise fewer transformations.

When studying children’s ability to change, in relation to strategy use, we examined

their development both in verbal explanations and in overt problem-solving behaviour, as

posited by Siegler & Svetina (2006). However, verbal explanations might not always be

reliable indicators of children’s problem-solvingprocesses, especially for those as youngas

7 to 8 years old (Resing et al., 2012). Including children’s detailed problem-solving, for

example, theirovertproblem-steps,behaviourwouldpotentiallyprovidemore insight into

individual differences of children’s problem-solving processes. Future studies on dynamic
testing and the development of children’s strategies should consider both aspects.

In addition to children’s development in accurately solving and explaining series-

completion tasks,wewere interested in the factors that influence individual differences in

solving series-completion tasks. Our results showed that receiving training and children’s

initial ability were the most important predictors of children’s increase in reasoning

accuracy. Trained children, especially those who had a lower initial ability, outperformed

untrained children. Also, trained childrenwith ahigher initial ability plus a relatively lower

auditory working memory showed more improvement from the pre-test to post-test than
did the children with higher scores for their auditory working memory. These results

highlight the importance of dynamic testing for children with weaker initial reasoning

skills or auditoryworkingmemories. Computerized dynamic tests, such as the oneutilized

in this study, certainly generate more information regarding the process of solving tasks

individual children show. The assessment outcomes, reported by educational or school

psychologists, reveal what children do with the feedback provided during dynamic

testing and could influence teachers’ views on how individual children could be

supported in their learning, thereby contributing to formative assessment. Computerized
dynamic testing is a promising starting point for designing an efficient, integrated, and

student-centred learning environment. Whether teachers can easily implement these

assessment outcomes in their teaching and educational plans will have to be a focus of

study in the future (e.g., Bosma, Stevenson, & Resing, 2017). Moreover, the benefits of

dynamic testing lie in the fact that this method aims to focus on individual needs and can

be seen as a potentially useful addition to conventional static tests used to predict school

achievement (Caffrey et al., 2008; Fabio, 2005). Such predictions are important as they

can identify students at risk of school failure as well as those in need of a more intensive
intervention (Caffrey, Fuchs& Fuchs, 2008; Resing&Drenth, 2007). As part of the current

study, no scholastic achievement data of children were collected. Therefore, the

predictive value of dynamic tests in relation to scholastic achievement needs to be a focus

point of future studies (e.g., Jeltova et al., 2007; Yang et al., 2017). Some overall

limitations of the dynamic series-completion test used in the current study included that
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the training approach consisted of two short training sessions and no follow-up after the

post-test. Because children were tested during school hours, it was not possible to

increase the length of the training sessions. In future studies, however, it would be

worthwhile to investigate whether a more intensive training procedure, for instance one
that contains more items or a larger number of training sessions, would lead to different

progression paths in the context of accuracy and children’s verbal explanations, aswell as

larger interindividual differences. Moreover, future studies could implement a follow-up

session to investigate to what extent children retain the skills and knowledge acquired as

part of the dynamic test.

Furthermore, the technological possibilities of using a tablet should be explored

further. For example, we did not program the tablet to record children’s verbal

explanations. The test examiner used a separate voice recorder,whichwas an extra action
for the examiner and more time-consuming. The benefits of using electronic technology

in the field of dynamic testing are numerous, and computer technology can create new

methods for examining problem-solving processes in more depth (Resing & Elliott, 2011;

Tzuriel & Shamir, 2002). Computerized testing can provide additional information that

may be useful for individualized (educational) instructions, problem-solving processes,

and intervention (Passig et al., 2016; Resing & Elliott, 2011; Stevenson et al., 2011).

The current study has shown that providing children a dynamic graduated prompts

training leads to a positive change in their reasoning abilities in a series-completion test.
More informationwas obtained about the cognitive-development trajectories of children,

providing us with better understanding of how learning occurs and which factors

contribute to cognitive change. Because static testing can lead to the underestimation of

children’s actual cognitive level, future research should focus on more process-oriented

assessment techniques, such as dynamic testing. In doing so, the dynamic test of series

completion utilized in the current study could be employed to assess children’s reasoning

ability, as series completion is a subform of inductive reasoning, as ameasure of their fluid

intelligence. As the test items are constructed using geometric shapes, it can be argued
these are relatively culturally non-sensitive, being appropriate for testing children of

diverse cultural and linguistic backgrounds. Of course, for these target groups the verbal

instructions provided may need to be adapted. These aspects will be valuable topics for

future research, investigating the wider applicability of the dynamic test utilized in the

current study.

Advances in computerized dynamic testing may establish testing methods that can

provide both adaptive and standardized means of examining children’s problem-solving

processes and the development of their cognitive abilities. Implementation of the
assessment outcomes in classroom learning and thereby enhancing learning opportuni-

ties in children have to be studied in the future (e.g., Stringer, 2018). Computerized

dynamic testing can be considered a good step in that direction.
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