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Characterizing the cytoarchitecture of mammalian central nervous system on a brain-
wide scale is becoming a compelling need in neuroscience. For example, realistic
modeling of brain activity requires the definition of quantitative features of large neuronal
populations in the whole brain. Quantitative anatomical maps will also be crucial to
classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in
a high reproducible and reliable manner. In this paper, we apply recent advances in
optical microscopy and image analysis to characterize the spatial distribution of Purkinje
cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image
with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic
mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for
fully automated cell identification was applied on the image to extract the position of
all the fluorescent PCs. This vectorized representation of the cell population allows a
thorough characterization of the complex three-dimensional distribution of the neurons,
highlighting the presence of gaps inside the lamellar organization of PCs, whose density
is believed to play a significant role in autism spectrum disorders. Furthermore, clustering
analysis of the localized somata permits dividing the whole cerebellum in groups of
PCs with high spatial correlation, suggesting new possibilities of anatomical partition.
The quantitative approach presented here can be extended to study the distribution of
different types of cell in many brain regions and across the whole encephalon, providing
a robust base for building realistic computational models of the brain, and for unbiased
morphological tissue screening in presence of pathologies and/or drug treatments.

Keywords: quantitative neuroanatomy, Purkinje cells, cerebellum, light sheet microscopy, image analysis, brain
imaging

Introduction

Since the times of Golgi and Ramòn y Cajal, technological advances always played a crucial role in
helping neuroanatomists to disentangle the complex architecture of the mammalian brain. Indeed,

Frontiers in Neuroanatomy | www.frontiersin.org 1 May 2015 | Volume 9 | Article 68

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://dx.doi.org/10.3389/fnana.2015.00068
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fnana.2015.00068
http://journal.frontiersin.org/article/10.3389/fnana.2015.00068/abstract
http://community.frontiersin.org/people/u/140518
http://community.frontiersin.org/people/u/219356
http://community.frontiersin.org/people/u/239011
http://community.frontiersin.org/people/u/218971
http://community.frontiersin.org/people/u/238492
http://community.frontiersin.org/people/u/197068
http://community.frontiersin.org/people/u/3102
http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Silvestri et al. Quantitative neuroanatomy of all Purkinje cells

methodological innovations always brought, sooner or later,
to deep biological insights, and to novel paradigms of
neuroanatomical investigation. The development and refinement
of imaging techniques, like electron microscopy (Gray, 1969),
fluorescence optical microscopy (Lichtman and Conchello, 2005)
and magnetic resonance imaging (Duyn and Koretsky, 2008),
allowed studying brain organization on different scales and
resolutions, leading to the definition and the study of different
anatomical structures, ranging from single synapses (Palay, 1956)
to entire neurons (Meinertzhagen et al., 2009), from cortical
columns (Rockland, 2010) to long-range fiber tracts (Tench et al.,
2002).

Imaging technology has thus played a crucial role in
the development of contemporary neuroscience; anyway, its
limitations can somehow distort the great picture of the brain
we are painting, providing us with partly biased representations
of the central nervous system. One traditional limitation
in neuroanatomical reconstructions is the relatively small
throughput: the imaged volume decreases as the resolution
increases. Thus, for instance, dendritic morphology is usually
investigated on the level of few neurons, while cell spatial
distribution is analyzed within single cortical columns (or
structures of similar size). The loss of resolution when zooming
out to large volumes hides to the researcher any possible long-
range correlation in the fine details of neuronal organization.
Furthermore, since high-resolution studies are limited to small
areas, one has usually to select the region of interest in advance,
usually based on previous literature, at the risk of neglecting
unexpected neuroanatomical features in other parts of the brain.
This exposes the analysis and thus the conclusions drawn upon it
to potential bias.

Recent advances in imaging technology can help
contemporary neuroanatomists to afford a more comprehensive
view of the brain cytoarchitecture. Indeed, nowadays there is a
clear trend toward high-throughput microscopy methodologies
(both optical and electronic), as larger and larger portion of tissue
can be imaged with higher and higher resolution (Briggman
and Denk, 2006; Osten and Margrie, 2013). On the one hand,
focused-ion-beam milling serial electron microscopy (Knott
et al., 2008) and multiple-beam scanning electron microscopy
(Keller et al., 2014) allows reconstructing small brain regions
with nanometric resolution, providing useful data for the
reconstruction of local connections. On the other hand, light
sheet microscopy (LSM; Dodt et al., 2007; Silvestri et al., 2012),
coupled with chemical clearing of the tissue (Becker et al., 2012;
Chung et al., 2013; Tomer et al., 2014) can be used to image
entire murine brains with micrometric resolution without the

need for physical sectioning. Optical methods based on serial
sectioning (Li et al., 2010; Ragan et al., 2012; Gong et al., 2013)
can as well-provide whole-brain μm-resolution images, although
at the cost of destroying the sample.

Anyhow, the impact of all these technical improvements on
XXIst century neuroanatomy has been very limited hitherto. In
fact, the amount of data produced by novel, high-throughput
imaging methods easily falls in the TeraByte range or beyond,
moving the throughput bottleneck from data production to
data analysis. Large-scale projects have benefit from the massive
contribution of human supervision in manual or semi-manual
data segmentation tool, either hiring dozens of students
(Briggman et al., 2011) or leaning on crowd contributions
via an interactive videogame (Kim et al., 2014). Nevertheless,
such brute-force approaches are out of the reach for most
laboratories worldwide, which have to cope with limited human
and financial resources. Automatic methods for management of
large images, for their visualization and annotation, and for cell
soma localization, have been recently described (Peng et al., 2010,
2014; Bria and Iannello, 2012; Frasconi et al., 2014). Since these
automatic methods are conceived to minimize the computational
resources needed (most of them can run even on high-end
workstations), they offer the possibility for neuroanatomists to
finally solve the data bottleneck and reach a real output from
high-throughput imaging methodologies.

Here, we present a complete experimental pipeline, integrating
recent innovations in the fields of imaging technology and
computer science, to extract quantitative information about the
three-dimensional distribution of a selected neuronal population.
The approach we describe, summarized in Figure 1, encompasses
specimen clearing with organic solvents, imaging with confocal
LSM, image stitching and automatic soma detection, and
eventually allows localizing each individual fluorescent neuronal
soma across a large brain region. We demonstrate this pipeline
by reconstructing the full neuroanatomy of the Purkinje cells
(PCs) layer which are known to be the most important inhibitory
neurons that carry the only output of the cerebellar cortex.
To this aim, we imaged the whole cerebellum of a B6C3Fe-
L7-EGFP (L7-GFP) mouse (Oberdick et al., 1990). Starting
from the point cloud representing the position of single PCs,
we are able to clusterize the PCs in groups based on their
representation in the 3D space, which might delineate some
significant neuroanatomical parcellation and reveal isolated
neurons. Finally, by locally unwrapping the two-dimensional
lamellar structure of the Purkinje layer, we can locate empty
spaces within the layer, known as gaps. Such gaps are thought to
play a significant role in autism spectrum disorders (McKimm

FIGURE 1 | Experimental pipeline for large-volumes quantitative
neuroanatomy. After animal fixation, the brain is render transparent and
imaged with high-throughput light sheet microscopy. Raw image stacks are

then stitched together, and a software for automatic cell localization applied.
The resulting cloud of points representing the position of labeled cells can be
the starting point for many different quantitative neuroanatomical analysis.
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et al., 2014). With the high-output comprehensive approach
described here, we are able to draw a map of Purkinje gaps in the
whole cerebellum and highlight their spatial organization, which
would be hardly accessible with conventional techniques.

Materials and Methods

Sample Preparation
The whole cerebellum from a young male L7-GFP mouse was
cleared following a protocol based on the one reported by Dodt
et al. (2007). A post-natal day (PND) 10 mouse was deeply
anesthetized by hypothermia and intraperitoneal injection of
tribromoethanol (220 mg/kg), and transcardially perfused with
0.1 M PBS (pH 7.4) followed by 4% paraformaldehyde (PFA)
in 0.1 M PBS for fixation. The brain was then removed from
the skull, post-fixed in 4% PFA overnight at 4◦C and stored
in PBS at 4◦C. Afterward, the cerebellum was dissected out
and embedded in a 0.5% (w/w) low melting point agarose gel,
prepared in 10 mM sodium borate buffer (pH 8). The embedded
sample was dehydrated in a graded ethanol series (30, 50, 80,
96% 2 h each, 100% overnight). The ethanol was diluted in
sodium borate buffer to avoid considerable pH variations that
would possibly decrease EGFP fluorescence. After dehydration,
we incubated the specimens in freshly prepared clearing solution
(Benzyl Alcohol/Benzyl Benzoate 1:2, BABB) for ∼36 h. All
dehydration/clearing steps were performed at room temperature
(18–22◦C). The dehydration and clearing procedure led to a
linear shrinkage of the tissue of about 25% (Silvestri et al.,
2014), so the volume is reduced to about 42% of its original
size.

All experimental protocols involving animals were designed in
accordance with the regulations of the Italian Ministry of Health.

Confocal Light Sheet Microscopy
In LSM, the sample is illuminated with a thin sheet of light,
confining fluorescence excitation in the focal plane of detection
optics (Keller andDodt, 2012). In this way, optical sectioning (i.e.,
3-dimensional resolution) is afforded in a wide-field detection
scheme, where millions of pixels are collected simultaneously by
a camera instead of sequentially as in point-scanning techniques
(as standard confocal or two-photon microscopy). This high
imaging throughput with high 3-dimensional resolution makes
LSM an ideal technique to reconstruct the anatomy of large
specimens, as murine brains.

The custom made confocal LSM used here has been described
in detail in Silvestri et al. (2012). Briefly, planar illumination is
achieved by fast scanning of a line inside the specimen (Keller
et al., 2008), and a de-scanning system in the detection path
is used to create a fixed image of the scanning excitation line.
At the position of this fixed image a linear spatial filter (slit)
is used to block out-of-focus and scattered light. This confocal
line detection affords a contrast enhancement of 100% in cleared
specimens (Silvestri et al., 2012). A third scanning system re-
creates a 2-dimensional image onto the chip of an electron-
multiplying charge-coupled device (EM-CCD), which collects
the photons producing a digital image. The objective used to

collect the data analyzed here was a Nikon Plan SLWD 20×
(NA 0.35), with long working distance (24 mm) and designed
to work in air; slit width was set to 1 μm (in object space).
During imaging, the specimen was kept immersed in clearing
solution inside a custom chamber. The chamber was mounted
on a XYZθ stage, assembled using three linear stages and a
rotation one (M-122.2DD and M-116.DG, Physik Instrumente,
Germany).

To collect a full optical tomography of the cerebellum, many
parallel adjacent image stacks were acquired to cover the entire
volume. A partial overlap of about 10% of the field of view
was introduced to allow subsequent stitching of image tiles (see
below). A custom-made software written in LabVIEW (National
Instruments, Austin, TX, USA) orchestrated all the hardware
components of the microscope to perform automated imaging of
the volume.

Image Stitching
To stitch the tiled raw image, the TeraStitcher tool (Bria and
Iannello, 2012) has been used. TeraStitcher is a free and fully
automated 3D stitching tool specifically designed to match
the special requirements coming out of teravoxel-sized tiled
microscopy images. It is able to stitch such images in a reasonable
time even on machines with limited resources. It can be freely
downloaded from https://github.com/abria/TeraStitcher.

TeraStitcher consists of a pipeline of six stages. After the
import stage, in which the raw data are scanned to reconstruct
the nominal position of every tile in the instrument space,
the alignment between every pair of adjacent tile is computed.
The alignment stage is based on the MIP-NCC algorithm, i.e.,
an alignment strategy based on using 2D Normalized Cross-
Correlation on Maximum Intensity Projections in each direction
of the two volumes to be aligned. MIP-NCC is applied to
multiple homologous sub-stacks of any pair of adjacent tiles,
so as multiple alignments for each tiles pair are computed.
An index measuring the reliability of each alignment is also
computed and used in the third stage to select the most
reliable alignment for each tiles pair. In the fourth stage,
alignments between tiles pairs with reliability below a given
threshold are discarded. Indeed, these alignments should not
affect final image stitching, since they correspond with high
probability to adjacent tiles that share only empty sub-volumes.
In the fifth stage, the remaining reliable and possible redundant
alignments are given as an input to an optimization algorithm
that uses alignment reliabilities to find the tile positions that
minimizes the global alignment error. Finally, in the last
stage, according to the output alignments of the fifth stage,
overlapping tiles are merged, and the final stitched image
generated.

It is worth noting that the above strategy is computationally
cheap, greatly limits memory occupancy, and requires only two
reads and one write of the whole image data. The size of the raw
data corresponding to the whole mouse cerebellum was 198,78
Gbytes. On a workstation with 96 GB of RAM, 9 TB of disk space,
2 quad-core CPUs at 2.26 GHz, TeraStitcher took 771 min to
stitch the whole volume, 539 of which spent in I/O operations.
The peak memory occupancy was only 1.13 Gbyte.
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Automatic Cell Localization
We proceed in separate stages to identify the 3D coordinates all
Purkinje somata in the cerebellum image. The method is detailed
in Frasconi et al. (2014) and briefly summarized here. Since the
image is large (1.2 × 1011 voxels), it is not practical to process it
as a whole. We therefore split it into 9000 overlapping substacks
of size 280 × 282 × 246. This approach has other advantages,
including the ability to exploit data parallelism in a computer
cluster.

The first stage of the identification pipeline is called semantic
deconvolution and aims at addressing the high variability in
quality and contrast found in confocal LSM images. Semantic
deconvolution is performed by training a deep neural network
to clean-up small (13 × 13 × 13 voxels) image patches so that
cell somata ideally appear as small white spheres in a black
background. The neural network has an input layer of 2197 units,
two hidden layers of 500 and 200 sigmoidal units, respectively,
and a linear output layer of 2197 units that are supervised with a
clean version of the input image patch. The network is run in a
convolutional fashion throughout whole substacks, using a stride
of 4 voxels.

Such an approach allows us to obtain a significant speedup
over the naive approach where a network with a single output
was trained to predict the conditional probability that the central
voxel of the patch belongs to a cell soma. Processing the whole
cerebellum image takes about 2 days on a small cluster with 32
Xeon cores (compared to an estimated 2 months running time
for the naive approach). The effect of semantic deconvolution is
illustrated in Figure 2.

The second stage identifies somata coordinates using a variant
of the mean shift algorithm (Comaniciu and Meer, 2002) a non-
parametric clustering algorithm that takes as input a data set of
points L (described in our case by their 3D coordinates x, y, z,
and the corresponding gray-level intensity), and a set of seed
points S. It partitions L into k subsets, each representing the
voxels in a given soma. More precisely, L contains all foreground
voxels in a given substack, where the foreground threshold t is
determined by a two-levels maximum entropy algorithm (Sahoo
et al., 1988). A voxel is included in the seed set S if the following
two conditions hold true simultaneously: (1) the voxel is a local
maximum in the 3D image, and (2) the average intensity in a

FIGURE 2 | Semantic deconvolution. A small volume from the cerebellum
of an L7-GFP mouse before (A) and after (B) semantic deconvolution. On the
final image is much easier to run a reliable automatic localization algorithm.

sphere of radius r around the voxels is above the foreground
threshold t. Subsequently, for each seed s in S, the mean shift
algorithm iterates the following two steps until convergence: (1)
place a spherical kernel or radius R around s and compute the
center of mass of the points falling within the kernel (using voxel
intensities as the “masses”); (2) replace s by the center of mass.
Overall, the two parameters controlling the algorithm behavior
are the radius r of the seed ball and the radius R of the mean shift
kernel. Both are interpretable in terms of geometrical properties
of the image contents and, in facts, best results tend to be obtained
when r and R are set to values close to the expected Purkinje
radius (6 voxels at the micron image resolution used in this
study). Note, however, that smaller values of r favor higher recall1
(at the expense of precision).

The third stage aims at further reducing the false positive
rate by exploiting domain knowledge about the cerebellum
cytoarchitecture. In particular, the cerebellum cortex folds into
folia that can be modeled as two-dimensional manifolds. As it
turns out, most of the false positives detected by mean shift
actually correspond to fragments of axon bundles or various
other fragments of neurites where GFP was expressed. Since
these false detections are very often found far away from the
Purkinje layer the precision can be significantly improved by
estimating the distance between any predicted soma center
and the manifold formed by the nearby predicted centers. For
this purpose, we used a combination of manifold learning (via
the Isomap algorithm Tenenbaum et al., 2000) and locally
weighted regression (Cleveland and Devlin, 1988). Significant
improvements can be obtained by discarding all predictions
whose estimated manifold distance exceed a certain threshold.

The software for automatic cell localization, and the results
shown in this paper, can be downloaded from http://bcfind.dinfo.
unifi.it/. Developers can found extensive documentation on the
same website.

Cell Clustering
The algorithm used to compute the clusters of connected somas
from the cell cloud uses the notion of k-nearest neighbors (kNNs;
Cover and Hart, 1967) and it works as follows. Given two cells ci
and cj we introduce the relation:

ci
k←→ cj

If ci ∈ kNN(cj) ∧ cj ∈ kNN(ci), the connected clusters are the

equivalence classes of the transitive closure of relation k←→.
In practice, for each cell ci (with i = 1, 2, . . ., m) of the cloud,

the algorithm searches its kNNs somas that are collected in the set
si = {c(i)j }, with j= 0, 1, . . ., p and p≤ k. Next, the algorithm runs
again a kNNs search for each element of si in order to determine
if c(i)j is a neighbor of ci. If this is the case, the somas ci and

c(i)j are correlated and assigned to the same cluster nn. Now, the

1Recall, precision and F1 measure are standard performance measures in
information retrieval. Recall (R) is defined as TP

TP+FN , Precision (P) is defined as
TP

TP+FP , and F1 = 2PR
P+R . TP means True Positives, FP False Positives, FN False

Negatives.
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aforementioned operations are repeated for all cells assigned to
nn, i.e., the algorithm tries to expand the net nn looking for new
connections. The growing phase of the cluster nn ends when the
kNNs search return an empty set or a set which members are
all already in nn, and the algorithm picks a new cell ci (which
does not belong to any nn estimated so far) from the cloud and
executes again all the previous computations. Note that, when a
cell ci does not belong to any cluster, i.e., it is not in the set si of
any of its kNNs, ci is said to be an isolated cell.

The result of this algorithm is a list of clusters composed of
somas that are mutually kNN-connected in the space and a list of
isolated cells. In general, k is chosen to be a small integer. Indeed,
small values of k fragment the cloud of somas in relatively small
clusters. Conversely, due to the observed spatial distribution of
PCs, the higher the value of k, the larger the number of cells
assigned to the same cluster. Note also that clustering with higher
k values is less sensitive to possible errors in cell localization.
Multiple analysis with different values of k may highlight the
presence of clearly defined and stable neuronal clusters, which
might have a direct neuroanatomical significance.

The software used for cell clustering can be downloaded
from https://bitbucket.org/paolosoda/manifold-cluster-cell.
Developers can found extensive documentation on the same
website.

Gap Localization
We employed a semi-automatic approach to identify regions in
the Purkinje layer where the spatial distribution of cell somata
shows rarefactions. We started from the set of automatically
detected soma centers as described above, but omitting the last
processing stage to avoid as many false negatives as possible.
Furthermore, we set the r parameter in the above procedure
to 3 in order to achieve a recall as high as 0.98 measured on
the 56 ground truth substacks. The point cloud was split into
15 overlapping slices with cuts perpendicular to the sagittal
plane (each slice was about 2000 voxels high, with an overlap
of 120 voxels). Each slice was manually cleaned up using the
CloudCompare software2. In particular we removed obvious false
positives (i.e., somata excessively delaminated with respect to the
Purkinje layer), resulting in a set of 221107 soma centers for the
whole cerebellum. Finally, from all the slices, we manually cut a
total of 89 charts containing between 292 and 6023 soma centers
each. We cut each slice along regions of minimal curvature and
keeping a reasonable overlap between adjacent charts to prevent
border effects in the subsequent analysis. Figure 3 shows some
examples of the extracted charts, each corresponding to a portion
of the PC layer.

Each chart was then automatically analyzed to identify the
presence of gaps in the cell layout. We define gaps as large convex
areas in the layer containing no cells. Finding holes or void
regions in point clouds has been investigated in various forms
in the literature. For example (Boyce et al., 1985) studied the
problems of finding maximum perimeter and maximum area
convex k-gons for given k. Unlike those previous studies, here

2http://www.danielgm.net/cc/, Open Source Project managed by Daniel
Girardeau-Monteaut.

we formally define the problem as follows: given a point in the
surface described by the cell layer, we want to determine the
largest surface portion containing that point and no cells. As a
first step, our algorithm uses Isomap to embed 3D coordinates
(x, y, z) of soma centers into the 2D space, with coordinates
(u, v), corresponding to the manifold describing a Purkinje
layer folium. We subsequently seek convex polygons of maximal
area in the 2D space. For this purpose, we first compute a
Delaunay triangulation of the set of soma centers in the 2D
space. Since the triangulation can produce artifacts, i.e., very
large triangles connecting distant points, we delete them with
an iterative approach, discarding at each iteration boundary
triangles with perimeter above a threshold. For every triangle in
the triangulation, we finally grow a region by adding adjacent
triangles if the polygon resulting from an addition remains
convex. Clearly, the convex regions created in this way do not
contain any cell in their interiors. At the end, the algorithm
returns, for every triangle, the area of the convex region grown
around it. The steps described in this paragraph are illustrated in
Figure 4.

The software used for gap localization can be downloaded
from https://bitbucket.org/marco_paciscopi/manifold-find-holes.
Developers can found extensive documentation on the same
website.

Image Visualization and Further Analysis
3D volume renderings of the original microscopy images were
obtained with VAA3D3; meshes representing the layer folia were
visualized with MeshLab4, while point clouds representing PCs
were visualized using CloudCompare. Statistical analysis of the
distribution of inter-cellular areas was performed using Matlab
R2014b (MathWorks Inc., USA).

Results

All the results shown below, as well as the raw image
data, are available for download at https://dataverse.harvard.edu/
dataverse/mouse_cerebellum.

Clustering of Purkinje Cells
The refined version of the point cloud obtained with additional
manual removal of false positives was processed according to
the clustering algorithm discussed above (Figure 5). Setting the
number k of nearest neighbors equal to 3, we found that most
identified PCs (207190 out of 221107, almost 94%) cluster in a
big class spanning the whole cerebellum, with the exclusion of
the two side lobes (Figure 5B). The rest of the neurons, with the
exception of two bigger clusters located in the lobes, is divided
in small groups (Figures 5C,D). 1131 clusters are made by less
than 100 cells, and 1389 isolated neurons are found. Smaller
clusters and isolated cells seem to be distributed almost uniformly
across the whole sample, although preferentially on the external
regions of the cerebellum. If bigger values of k are used, the

3http://home.penglab.com/proj/vaa3d/Vaa3D/About_Vaa3D.html
4http://meshlab.sourceforge.net/
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FIGURE 3 | Extracted charts from the Purkinje layer. Examples of manually cleaned charts. Pseudo-colors (based on Fiedler vectors) are associated with points
representing Purkinje somata in order to suggest their 3D arrangement.

biggest component becomes the only significant one: for k = 5,
almost 99.9% of PCs belong to this component, and the number
of smaller clusters and of isolated neurons are reduced to 41 and
204, respectively. For k= 8, no isolated cells are found, and more
than 99.9% of cells belong the biggest component.

The kNN clustering of the cerebellum seems thus to
be more effective when the number of nearest neighbors
considered is small. In this regime, clustering is more selective
and smaller classes are preserved. For bigger k almost all
PCs are clustered in a single component, highlighting their
compact spatial organization. The parcellation of the sample
we obtained using kNN clustering with k = 3 does not
have a straightforward interpretation in terms of traditional
neuroanatomy or physiology (i.e., being in the same cluster is
unrelated to structural and functional connectivity). However, it
could be a fine anatomical signature useful to compare subjects of
different ages or in presence of a disease.

Distributions of Gaps in the Purkinje Cells
Layer
The distribution of gaps in the PC layer can be inferred by the
presence of large convex polygons in the 2D manifolds locally
describing the layer folia. In Figure 6A, a complete view of the

cerebellum is shown where all these polygons are remapped to
the 3D space and colored according to their area. If the whole
dataset is sliced along the medio-lateral axis, the distribution of
gaps in the complete lamellar structure becomes more evident
(Figure 6B). In the Figure, three areas can be identified where
inter-cellular distances are particularly large (in red): one in the
middle and two close to the side lobes. However, from visual
inspection of the original data, it turns out that in these regions
the sample was partially cracked during clearing (Figure 7A). The
large intercellular distance in these areas is therefore due to some
artifact during tissue preparation, and not to the real distribution
of gaps in the layer (Figures 7B,C).

On the other hand, from closer analysis of single slices it
appears that (real) larger inter-cellular gaps are mostly localized
in correspondence to the internal curvatures of the lamellar
structure (Figure 6B). This is confirmed by visual inspection
of the original data (Figures 7D,E). Considering the young age
of the mouse (PND 10), this could be due to the incomplete
migration or topographically localized apoptotic death of the PCs
(Dusart et al., 2006; Castagna et al., 2014).

The area of the largest convex polygon tangent to each cell
show amono-modal distribution, withmean value 2950μm2 and
standard deviation 2583 μm2 (Figure 8). This distribution can
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FIGURE 4 | Gap size estimation. 3D cloud point of a single chart (A) and
associated 2D embedding (B); pseudo-colors (from Fiedler vector) are only
used to identify points. Triangulation with colors proportional to void area (red
highest) in the 2D embedding space is shown in (C) and corresponding mesh
back in the 3D space in (D).

be well-fitted by a log-normal curve, with μ = 7.779 ± 0.003
and σ = 0.488 ± 0.002 (99% confidence intervals). This kind
of probability distributions is quite common in neuroscience
(Buzsaki and Mizuseki, 2014). Thus, although many different
measurements from different animals would be needed to
validate it, the findings that inter-cellular areas between PCs are
distributed in a log-normal fashion seems at least plausible. In
perspective, the distribution parameters can also be used as global
fingerprints to compare different mice.

Discussion

Contemporary neuroscience is in urgent need of a new
generation of neuroanatomical techniques allowing scalable,

reliable, specific, and quantitative analysis of macroscopic
portions of brain tissue with cellular or sub-cellular resolution.
Such a technical advance requires the integration of recent efforts
in terms of transgenic animal development, sample clearing and
staining, high-throughput imaging, and image analysis. Here, we
presented a proof-of-principles of such combined approach on
the cerebellum of an L7-GFP mouse. The sample was cleared
with organic solvents and imaged with a confocal LSM; raw
images produced by the apparatus were stitched together and
subsequently analyzed to localize all PCs. Starting from the
cloud of points representing all the Purkinje neurons in the
cerebellum, further analysis was performed, highlighting both the
clusterization properties of the point cloud and the distribution of
gaps in the layer. Although we showed this experimental pipeline
on a single sample, all themethods used (with the exception of cell
clustering and gap localization) have been already demonstrated
elsewhere (Becker et al., 2012; Silvestri et al., 2012; Frasconi et al.,
2014), and a further validation of their capabilities is out of the
scope of this work. The growing amount of papers exploiting
sample clearing, LSM and the software tools described here,
e.g. (Jahrling et al., 2010; Mertz and Kim, 2010; Erturk et al.,
2012; Silvestri et al., 2014; Tomer et al., 2014), demonstrates the
reliability of each single component of our workflow, paving the
way to its application on a larger number of samples.

When repeated on a significantly cohort of mice, the
measurements shown here can provide robust and bias-free
insights into the distribution of PCs under different physiological
or pathological conditions. For instance PCs loss can be
quantified in heterozygous reeler (rl/+) mice, an animal model
that has been used for studying the interplay of reelin deficiency
with environmental factors during early development (Biamonte
et al., 2014). Indeed, it has been reported that adult male rl/+
mice have reduced numbers of PCs, in comparison to female rl/+
mice and wild-type mice of either sex (Biamonte et al., 2009). The
pipeline described in this paper can shine a new light in previous
findings, allowing a more comprehensive characterization of the
effect of reelin deficiency not only on the average number of
PCs, but also on their spatial arrangement. The non-biased global

FIGURE 5 | k-Nearest neighbor clustering of Purkinje cells (k = 3).
The whole Purkinje cells point cloud (A) and the largest cluster of
kNN-connected cells (B). The 20 biggest clusters after the first are shown
with different colors in (C), while in (D) all the remaining clusters and

isolated cells are shown in red. The dashed red square depicted in (A) is
shown at higher magnification in (E), using a similar color scheme as the
one used in (B–D). All results for k = 3. In (B–D) a profile of the
cerebellum is added to help the reader.
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FIGURE 6 | Distribution of gaps in the Purkinje cells layer. The full 3D mesh representing the Purkinje layer (A), colored according to the size of empty areas
between the cells (blue smallest, red largest). To help visualize the internal structure of the mesh, single slices (according to the numeration in A) are reported (B).

analysis presented here can easily reveal if the reduction in the
number of PCs reported previously is due to cell death or rather
to ectopic cell migration.

Although our proof-of-principle was on a single specific
cell population (Purkinje neurons) and in a portion of the
mouse brain (the cerebellum), the integrative approach we
describe can be extended to different animal models (highlighting
other cell types) and to larger specimens (as whole murine
brains). In fact, recent advances in tissue clearing, as CLARITY
(Chung et al., 2013) or CUBIC (Susaki et al., 2014), and in
LSM (Tomer et al., 2014) are leading to a next generation of
imaging protocols capable of producing high-resolution and
high-contrast reconstructions of cm-wide samples. Furthermore,
the ability of CLARITY of immunostaining macroscopic tissue

portions can pave the way for quantitative large-volume
neuroanatomy in humans as well as in non-human primates.

High-throughput imaging methods with improved contrast
and resolution would both benefit and challenge computational
tools. On the one hand, better images will increase the robustness
and reliability of software: image stitching will be more precise
since the cross-correlation will have a sharper peak, and cell
localization will bemore accurate because of the improved signal-
to-noise ratio. On the other hand, the size of data is going to
go well-beyond the TeraByte threshold, as soon as one is able to
collect high-quality data from larger samples. Therefore, existing
software tools should be adapted to cope with larger datasets,
exploiting parallel architectures for both data processing and
storage.
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FIGURE 7 | Visual confirmation of gaps distribution map. 3D rendering of
the central region of the cerebellum, where a crack caused by tissue clearing
(indicated by red arrows) is clearly visible (A). This crack gives rise to large
“pseudo-gaps” in the 3D mesh: a 3D rendering of a smaller volume with the
mesh superimposed is reported in (B). The same volume without mesh is in (C).

In absence of macroscopic cracks, the triangular mesh correctly highlights
regions with smaller planar density of Purkinje cells, which are commonly found
at the folium curvature: a representative volume with and without mesh is
reported in (D,E), respectively. Mesh triangles are colored according to their
areas (blue smallest, red largest).

FIGURE 8 | Distribution of inter-cellular areas. The histogram of empty
areas in the Purkinje layer (in blue) and its fit with a log-normal distribution (in
red).

Beyond improving single technical aspects, as microscopy
or image analysis, special efforts should be devoted to the
integration of all those methodologies in a common and well-
coordinated experimental pipeline. In this respect, it is crucial
to have visualization and annotation tools designed for large

images (Peng et al., 2014) that can be used to tune the
protocols and for quality check. For instance, the comparison
with original data was crucial to interpret the results found
here, in particular to identify artifacts due to specimen cracking.
Furthermore, since large-scale quantitative neuroanatomy is
still in its infancy, a lot of trial and error will be needed to
find out the best analysis methods and to properly use and
interpret them. As an example, removal of localized points too
far from the Purkinje layer significantly improves the quality
of results (Frasconi et al., 2014), but may lead to biased
analysis when cells are located quite out of the specimen –
for instance in very early development stages (Larouche et al.,
2008; Miyata et al., 2010). Manual inspection of images is also
recommended to check the consistency of image stitching, which
might fail when image quality is very low (Bria and Iannello,
2012).

Conclusion

We demonstrated that when state-of-the-art methodologies from
various fields are properly combined they can produce data
that would have been out of the neuroanatomists’ reach only
a few years ago. If this integrated approach will be kept
updated with the most recent advances in each field, in the next
decades researchers can gain further and further insight into the
complexity of brain anatomy, chasing the ultimate dreams of
Golgi and Ramòn y Cajal.
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