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Abstract: The Voronoi entropy for random patterns and patterns demonstrating various elements of
symmetry was calculated. The symmetric patterns were characterized by the values of the Voronoi
entropy being very close to those inherent to random ones. This contradicts the idea that the
Voronoi entropy quantifies the ordering of the seed points constituting the pattern. Extension of the
Shannon-like formula embracing symmetric patterns is suggested. Analysis of Voronoi diagrams
enables the elements of symmetry of the patterns to be revealed.
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1. Introduction

Symmetry considerations play a key role in modern science [1-3], giving rise to the conservation
laws in physics and being dominant in quantum theory [4], crystallography [5], condensed-matter
physics [6], thermodynamics, chemistry, and biology [1-3]. Moreover, symmetry considerations are of
fundamental importance in aesthetics and science-art relations [1,7,8]. The other fundamental value
playing a central role in modern science is the Shannon measure of information [9-14]. In the present
article, we demonstrate that the analysis of the Voronoi diagrams (or Voronoi tessellations) enables the
synthesis of symmetry and the Shannon measure of ordering considerations [15-18]. Voronoi diagrams
arise from problems involving patterns with a surface distribution of spots [19]. A Voronoi tessellation
(or diagram or mosaic) involves the partitioning of a plane into regions based on the distance to a
specified discrete set of points (called seeds, sites, nuclei, or generators) [17,18]. For each seed, there is
a corresponding region consisting of all points closer to that seed than to any other. The Voronoi
polyhedron of a point nucleus in space is the smallest polyhedron formed by perpendicularly bisecting
planes between a given nucleus and all the other nuclei. The Voronoi tessellation divides a region
into space-filling, non-overlapping convex polyhedrons [17-20]. The idea of what is now called the
Voronoi tessellation had already been proposed by Johannes Kepler and Rene Descartes in the 17th
century [16,18,21]. Kepler used it to study the densest sphere packing problem, whereas Descartes
employed these tessellations to verify that the distribution of matter in the Universe forms vortices
centered at fixed stars [21].

It is generally accepted that the Voronoi diagrams allow the orderliness of the 2D distribution
of points to be quantified with the so-called Voronoi entropy, defined according to the Shannon-like
formula as:

Svor = Z Pilnpi (1)
i

where P; is the fraction of polygons with k sides or edges (also called the coordination number of the
polygon) in a given Voronoi diagram [10-12]. The summation in Equation (1) is performed from i =1
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(corresponding to k = 3) to the largest coordination number of any available polygon, e.g., toi =4
(corresponding to k = 6) if a polygon with the largest number of edges is a hexagon. In our recent
paper, we demonstrated that the labeling of the value S,,, with the wording “Voronoi entropy” was
misleading and confusing [22]. In actuality, Equation (1) quantifies the average Shannon measure of
ordering of a given 2D pattern [9-14,22]. In the present article, we show that the situation becomes
even more complicated when the given pattern demonstrates elements of symmetry (centers, axes).
In this case, the Shannon measure of ordering calls for redefinition.

2. Results and Discussion

2.1. 2D Patterns Demonstrating Symmetry and Their Voronoi Tessellations

We analyzed Voronoi diagrams built for sets of points demonstrating different elements of
symmetry (namely centers and axes of symmetry, as well as rotational symmetry). In the first stage,
the random sets of 200 and 1000 points located inside a circle of a given diameter were generated by
the MATLAB software script. The Voronoi tessellation for the set of 200 random points is depicted
in Figure 1. The Voronoi entropy was calculated with the moduli of the software developed at
the Department of Physics and Astronomy at the University of California (Department of Physics
and Astronomy University of California, Irvine) (https://www.physics.uci.edu/~{}foams/do_all.html).
The procedure was repeated 20 times, and the average value of the Voronoi entropy and its standard
deviation was established as S;,, = 1.66 + 0.05 for the set of 200 and as S,y = 1.68 + 0.02 for the set of
1000 points (seeds). This value was close to the Voronoi entropy Syor = 1.71 reported for random point
patterns by other groups [23,24]. It is reasonable to attribute the difference between our calculations and
the reported results to the boundary effects occurring at the circumference of the pattern (see Figure 1).
These random patterns are herein called “initial patterns”.

Figure 1. The Voronoi tessellation for the set of 200 random points is depicted. The Voronoi entropy is

Svor = 1.65. (A) The initial set of points generating the Voronoi tessellation. (B) Colored Voronoi polygons.

In the second stage, the mirror images of the 20 initial patterns were built and placed on the initial
patterns, as shown in Figure 2. Then, their Voronoi entropy was calculated (the number of points in the
new diagrams was twice that of the initial ones, while the area remained the same). The average value
of the Voronoi entropy was established as Sy, = 1.64 £ 0.05 for a set of 200 and as Syor = 1.68 + 0.01 for
a set of 1000 seed points. The difference between the values of the Voronoi entropy of the initial and
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“mirror reflected” images was within the statistical uncertainty of the calculation. Thus, we concluded
that the mirror reflection of the initial patterns did not change their Voronoi entropy.

(A) (B)

Figure 2. The mirror image of the Voronoi diagram depicted in Figure 1 is shown. The value of the
Voronoi entropy is Syor = 1.68. (A) Set of points generating the Voronoi construction. (B) Colored

Voronoi polygons.

In the third stage, the point symmetry (inverse) images of the 20 initial patterns were built and put
on the initial patterns, and their Voronoi entropy was calculated (again, the entire number of points in
the new Voronoi mosaics was twice that of the initial ones). The average value of the Voronoi entropy
inherent to patterns similar to those depicted in Figure 3 was established as Sy,r = 1.66 + 0.06 for a set
of 200 and as Syor = 1.67 +0.02 for a set of 1000 points.

(A) (B)

Figure 3. The point symmetry (inverse) image of the pattern depicted in Figure 1 is shown. The value
of the Voronoi entropy is Syor = 1.69. (A) Set of points generating the Voronoi tessellation. (B) Colored
Voronoi polygons.
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In the fourth stage, the initial images were rotated for the angles %, %”, T, %’T, and %” rad,

as shown in Figure 4, and the pattern built of 1200 points and demonstrating the six-fold symmetry was
created. The average value of the Voronoi entropy of these mosaics was established as Sy, = 1.65 +0.07
for a set of 200 and as Syor = 1.67 +0.02 for a set of 1000 points.

(A) (B)

Figure 4. The six-fold symmetry pattern obtained by the rotation of the initial pattern shown in Figure 1
is depicted. The value of the Voronoi entropy is Syor = 1.57. (A) Set of points generating the Voronoi
tessellation. (B) Colored Voronoi polygons.

Hence, we conclude that the studied symmetry transformations did not change the Voronoi value
of the patterns. This was true for the inversion, mirror reflection, and rotational symmetry operations.
This result was quite trivial, as summarized in Table 1. Indeed, the ratio of n-polygons in the initial
patterns and in the transformed ones remained the same. Thus, the value of the Voronoi entropy,
calculated according to Equation (1), was also expected to be the same, as demonstrated in Figure 5.
However, the patterns depicted in Figures 2—4 definitely appeared much more “ordered” than that of
the initial random pattern shown in Figure 1. If we adopt the notion that the Voronoi entropy is a true
measure of ordering 2D patterns, its value established for symmetric, “ordered” patterns, depicted
in Figures 2—4, would be expected to be much lower than the Voronoi entropy of the initial random
mosaic shown in Figure 1. The paradox could not be resolved by the suggestion that the symmetric
mosaics shown in Figures 2—4 contain a larger number of points. Recall that the Voronoi entropy
is the intensive parameter of the regular pattern, and it is independent of the number of points or
their density (when the “boundary effects” were neglected). For example, the Voronoi entropy of the
pattern built only of squares (or other identical polygons) was equal to zero, whatever the number
(or density) of points constituting the pattern. The Voronoi entropy of the random pattern tended to be
1.71, whatever the number/density of seed points.
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Table 1. Voronoi entropy with its standard deviation calculated for different sets of points.

Sample Voronoi  Standard Random Voronoi  Standard
P Entropy  Deviation Sample Entropy  Deviation
Initial set of points (200 random points) 1.66 +0.05 200 random 1.66 +0.05
points set
Mirror reflection (400 points) 1.64 +0.05 400 random 1.66 +0.04
Point reflection (400 points) 1.66 +0.06 points set ) -
Six-fold rotational symmetry (1200 points) 1.65 +0.07 1200‘ random 1.68 +0.02
points set
Initial set of points (1000 random points) 1.68 +0.02 1000 random 1.68 +0.02
points set
Mirror reflection (2000 points) 1.68 +0.01 2000 random 167 001
Point reflection (2000 points) 1.67 +0.02 points set ’ -
Six-fold rotational symmetry (6000 points) 1.67 +0.02 6000. random 1.68 +0.01
points set
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Figure 5. The ratios of different kinds of polygons in the initial (random) and inverse patterns are shown.

The Voronoi entropy did not change dramatically under the symmetry transformations because
almost all of the random patterns already appeared over the initial 2D distribution of points shown in
Figure 1. Mirroring or other symmetry operations which did not change the ratio of polygons would
keep the entropy almost constant. This was not exactly constant due to the “boundary effects”.

In order to resolve the puzzle and to quantify ordering appearing in various patterns, we propose
to redefine the generalized Voronoi entropy for all kinds of patterns (symmetric and non-symmetric

ones) as follows:
g8en _ Sovor _ Svor @)

vor T N n+1

where Sy, is calculated according to Equation (1), N is the total number of the symmetry elements
inherent to the pattern, including the trivial symmetry operation (in other words the rotation of the
pattern to 27 rad), and 7 is the number of the non-trivial symmetry operations inherent to the pattern.
Equation (2) contains Equation (1) as a particular case. Indeed when N =1 and n = 0, the 2D pattern
has the trivial axis of symmetry only and we return to Equation (1), namely: S, = Syor = Y; P;InP;.
However, for the symmetric patterns, such as those depicted in Figures 2—4, the generalized Voronoi
entropy supplied by Equation (2) is half (N = 2) of that calculated for the random mosaics shown in
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Figure 1. Hence, the suggested Equation (2) better quantifies the “ordering” of 2D patterns than the
“standard” Equation (1).

2.2. Revealing Symmetry in 2D Patterns with Voronoi Diagrams

Now consider the arbitrary 2D pattern containing p points and the following question: Does it
demonstrate the elements of symmetry? We show that the Voronoi tessellation may help answer this
question. In the first stage, we constructed the Voronoi diagram of the pattern. Edges and vortices of
the diagram formed the simply connected graph. The number of edges E of the graph is given by the
Euler formula:

E=P+V-yx (©)]

where P is the number of Voronoi polygons, V is the number of the vertices of the graph (in other
words of the Voronoi diagram), and y = 2 is the Euler characteristics of the surface. Now, we sort the
edges of the graph according to their length L. The number of edges (say # of them) may have the
same length L. Thus, the probability to find the edge with the length L is given by: Py = % Let us
define the Voronoi entropy of the graph as follows:

h
Shor = - Z PpilnPy;. 4)
i

If all of the edges constituting the graph are of different lengths, its Voronoi entropy equals
Sst - InE, meaning that the pattern demonstrates no symmetry. However, when the Voronoi
diagram demonstrates the elements of symmetry, edges of the same length appear at the Voronoi
tessellation, and the Voronoi entropy of the graph, given by Equation (4), are necessarily decreased.
For example, if the Voronoi diagram has the mirror symmetry (in other words it has the axis of
S8 — Ik,

‘vor 2
The formula is easily generalized for the single axis of symmetry with an order of m, namely:

ng?ph = ln% ;m = Eexp(=S5y," h). Thus, we can conclude that the Voronoi entropy of the graph is

symmetry of the second order), the simple calculation according to Equation (4) yields:

sensitive to the symmetry of the initial pattern, and enables the disclosure of the elements of symmetry
of the pattern (or their absence), making possible the establishment of the number N appearing in
Equation (2). The procedure enabling the finding of elements of symmetry is presented in Figure 6.
However, consider that the suggested procedure does not enable the establishment of N, defined as the
total number of the symmetry elements inherent to the pattern appearing in Equation (2).

Construction of the Voronoi diagram

/

Establishment of E, Calculation SZ%" = — ¥, P,.InP;;
n
Syor” " = InE; no symmetry SITPM < InE; symmetry is present

Figure 6. The algorithm enabling the finding of elements of symmetry for a given pattern of seed points.
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3. Conclusions

It is generally agreed that the Shannon-shaped Voronoi entropy quantifies the ordering of 2D
point patterns [17,25]. We have already mentioned that the labeling of the average Shannon measure
of ordering by the notion of Voronoi entropy was confusing due to the fact that it had no relation to the
thermodynamic entropy [22]. In the present paper, we demonstrated that involving the traditional
Shannon-like formula for the characterization of ordering in symmetric patterns resulted in misleading
estimations. It turns out that the Voronoi entropy of random patterns is equal to that of symmetric ones
possessing centers or axes of symmetry, which are apparently more ordered than random mosaics.
The traditional expression for the Voronoi entropy works well for non-symmetric patterns. In order
to quantify the ordering inherent to all kind of patterns, we suggest an expression applicable to
symmetrical and non-symmetrical point patterns. Analysis of the Voronoi tessellations enables the
elements of symmetry of the patterns to be found.
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