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Abstract
Despite unprecedented advances in understanding the intestinal microbiome, its potential to improve fields such as vaccinol-
ogy has yet to be realized. This review briefly outlines the immunologic potential of the intestinal microbiome for vaccinology 
and highlights areas where the microbiome holds specific promise in vaccinology. Oral rotavirus vaccine effectiveness in low-
income countries is used as a case study to describe how the intestinal microbiome may be employed to improve a vaccine’s 
immunogenicity. A top-down, evidence-based approach is proposed to identify effective microbiota-based applications for 
vaccine improvement. Applying evidence from field studies in pertinent populations that correlate microbiome composition 
with vaccine effectiveness to appropriate experimental platforms will lead to the identification of safe, vaccine-supporting 
microbiota targets that are relevant to populations in need of improvement in vaccine-induced immunity.

Key Points 

The intestinal microbiome holds great promise for the 
field of vaccinology, but this potential has yet to be real-
ized.

Successful development of microbiota-targeted drugs 
to improve vaccine performance requires a top-down, 
reductive approach, translationally building on an 
evidence-base derived from relevant human populations.

1  Introduction

Application of culture-independent sequencing techniques to 
the characterization of microbial communities on and in the 
human body has revolutionized our understanding of human 
health. The human microbiome, or the genomic catalogue 

of the bacteria, archaea, viruses (including bacteriophages), 
fungi, protozoa and helminths that inhabit our body space, 
is increasingly recognized to intersect with human health 
and disease [1, 2]. The human intestine is the most densely 
colonized surface in the human body, with a microbiome 
biomass of more than an order of magnitude greater than all 
other body sites [3]. Among the many functions ascribed to 
the intestinal microbiome are its roles in shaping mucosal 
and systemic immunity and protecting the human host from 
pathogen expansion and invasion [4, 5]. There is expanding 
interest in exploiting the intestinal microbiome for therapeu-
tic goals, including improving vaccine-induced immunity. 
This review addresses the potential of the intestinal micro-
biome for vaccinology by providing a brief overview of 
evidence supporting a role for the intestinal microbiome in 
vaccine-induced immunity, and then uses rotavirus vaccines 
as a case study to outline how to move from a theoretical 
microbiome potential for vaccinology to an evidence-based 
application.

2 � The Relevance of the Intestinal 
Microbiome to Vaccination

Principles of evolutionary biology support a long co-evo-
lution between microbial consortia in the intestine and 
immune development in the human host. The intestinal 
tract in humans undergoes progressive, nonrandom, dynamic 
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colonization after birth [6, 7], and normal immune devel-
opment depends on this microbial colonization [8]. Germ-
free animal studies are the most commonly cited example 
of this phenomenon as a lack of microbial exposures results 
in several immunologic abnormalities [9]. The presence of 
the intestinal microbiota in early life is particularly impor-
tant for mucosal immunity and the normal maturation of 
gut-associated lymphoid tissues (GALT). Mice without 
microbial exposure have significantly fewer isolated lym-
phoid follicles (ILF) and smaller intestinal Peyer’s patches 
and mesenteric lymph nodes. These deficits result in dimin-
ished production of immunoglobulin (Ig) G1 and IgA by 
intestinal B cells. Furthermore, the absence of a microbiota 
in infancy results in deficits of intestinal T-cell subsets, as 
well as T-helper (Th) cell 2 skewing [8, 10, 11]. Robust 
adaptive immune responses to vaccination during infancy 
are possibly dependent on microbiota-mediated priming at 
the intestinal interface.

Intestinal homeostasis, reflecting a state where the human 
host tolerates the microbiota while still identifying poten-
tial pathogens, derives from a delicate interactive balance 
between intestinal microbiota, intestinal epithelium, and 
the host immune system [12]. Given this context, there are 
examples of how the intestinal microbiota can alter immune 
tone to potential pathogens and, by extension, may alter 
immune responses to vaccination. Depletion of the intesti-
nal commensal microbiota can alter innate immune tone to, 
for example, enteric viruses [13–15]. Specific consortia of 
commensal microbiota can also directly and indirectly alter 
adaptive immunity to pathogens, inducing, for example, the 
differentiation of IgA-producing B cells and expansion of 
the functional diversity and repertoire of T effector Th17 
and T-regulatory (Treg) cells [16]. Several reviews outline 
these interactions between the commensal microbiota and 
host immunity [4, 16–19].

The immunological basis for how the microbiome may 
hold specific promise for vaccination has been posited for 
many years [20, 21] and has recently been expanded upon 
[22–25]. The clearest demonstration of an effect of the 
intestinal microbiome on vaccination was in a study on 
inactivated influenza vaccine. Impaired antibody responses 
in germ-free and antibiotic-treated mice to the inactivated 
influenza vaccine could be restored by colonization with 
flagellated, but not aflagellated, Escherichia coli. TLR5 
sensing of flagellin appeared to adjuvant the influenza vac-
cine response, promoting plasma cell differentiation in mice 
[26]. The aggregate of these findings support the immuno-
logical capacity for the microbiota, its cell wall components, 
or its metabolites to act as ‘endogenous vaccine adjuvants’ 
[22], potentially capable of being harnessed to amplify adap-
tive immune responses to specific pathogens.

However, missing in discussions on the potential of the 
microbiome for vaccinology is how to move translationally 

from this potential, often contained in animal studies, to 
understanding mechanisms and identifying safe and effec-
tive microbiome targets in relevant human populations. The 
focus of this review is to outline a potential multidisciplinary 
approach to addressing this gap, using rotavirus vaccines as 
a case example.

A logical departure point for microbiome–vaccine inter-
actions is in the identification of vaccines with a high likeli-
hood of microbiome interaction. Identifying areas with the 
highest microbiome–vaccinology potential can be aided by 
pragmatically converging animal and human approaches. 
The first approach mines mechanistic, bottom-up evidence, 
focusing on pathogens that, in animal studies, have already 
been shown to interact with the intestinal microbiome. 
These are numerous and include enteric viruses [13, 27–29], 
enteric bacterial pathogens [30–34], systemic viruses, such 
as influenza viruses and HIV-1 [26, 35], and even proto-
zoa such as malaria [36]. The second approach is a human, 
epidemiologic, top-down approach, concentrating on those 
instances in which both vaccine performance and intestinal 
microbiome composition are divergent in different popula-
tions. An example of an area in which both these approaches 
converge are the poor efficacy and effectiveness of oral vac-
cines for enteric pathogens, such as rotavirus, in infants in 
low- and middle-income countries, which will be explored 
further as a case study in this review. Of note, numerous 
other areas in vaccinology exist with similar potential, 
including age-dependent differences in the duration of anti-
body responses, such as the diminished influenza vaccine 
efficacy observed in elderly populations [37] or the rapid 
decline in vaccine protection characterizing several early-life 
neonatal vaccines [38].

3 � Rotavirus Vaccines: A Case Study

Oral vaccines have significantly diminished efficacy in low- 
and middle-income country settings [39, 40]. This phenom-
enon is true for both live-attenuated and heat-killed licensed 
vaccines against viral pathogens, such as rotavirus and 
poliovirus, and bacterial enteric pathogens, such as cholera 
and typhoid. The etiology of this diminished efficacy is cer-
tainly multifactorial and possibly vaccine-specific [41–43]. 
In parallel, bacterial intestinal microbiome composition and 
functional profile segregates by geography across all ages, 
and the intestinal microbiome composition differs signifi-
cantly between high- and low-income country infants [44]. 
Other components of the intestinal microbiome share this 
divergence; the virome also differs significantly by geog-
raphy, with a higher abundance of eukaryotic viruses in 
low-income country settings [45–49]. These parallel sets of 
differences in vaccine performance and microbiome com-
position along geographic lines tempt the assumption of 
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microbiome-determined differences in oral vaccine perfor-
mance between high- and low-income country infants. As 
the microbiome may be a modifiable etiology of oral vac-
cine under-performance, it is an attractive target in efforts to 
improve the public health impact of essential oral vaccines.

As noted above, interactions between viral and bacte-
rial enteric pathogens, the intestinal microbiome, and host 
immunity have been extensively described in mouse models, 
and therefore provide in vivo support for the notion that the 
microbiome could influence enteric viral vaccine immuno-
genicity. The intestinal microbiome has been implicated in 
poliovirus, reovirus, mouse mammary tumor virus, rotavi-
rus, and norovirus pathogenicity and immunity [13, 27–29, 
50–52]. Importantly, the mechanisms underlying these inter-
actions are multiple, ranging from direct effects, such as LPS 
stabilizing poliovirus and facilitating host cell entry [29], 
to indirect effects, such as antibiotic treatment permitting 
sterilizing innate immunity to persistent norovirus infection 
in mice. These viral-bacterial-immune pathways or ‘trans-
kingdom interactions’ have been previously reviewed [53].

3.1 � From Empiricism to Correlation

These mechanistic studies suggest that in addition to exploit-
ing a more general ‘endogenous adjuvanting potential’ [22] 
of the microbiome, finding effective microbiome-based 
solutions for the improvement of oral vaccines may depend 
on pathogen-specific strategies. This approach is in oppo-
sition to empiric probiotic strategies, which have been the 
most commonly tested microbiota-targeted interventions 
to improve oral vaccine immunogenicity in humans [54]. 
Empiric probiotics such as Bifidobacterium and Lactobacil-
lus are theorized to reduce intestinal mucosal inflammation, 
decrease pathogen mucosal binding, and increase adaptive 
antibody responses to pathogens [55, 56]. Three studies have 
tested the effect of these probiotics on oral vaccine perfor-
mance in infants, with mixed results. Lactobacillus rham-
nosus strain GG demonstrated modest and nonsignificant 
effects on rotavirus vaccine immunogenicity in Finnish [57] 
and Indian infants [58], respectively, and Bifidobacterium 
breve significantly lowered vaccine-specific antibodies to 
the oral cholera vaccine [54, 59]. An alternative empiric 
approach has been to use antibiotics to alter infants’ micro-
biome and improve vaccine immunogenicity. Theorizing that 
an increased enteropathogen burden in low-income countries 
may diminish oral vaccine immunogenicity, Indian infants 
received 3 days of azithromycin prior to oral polio vaccina-
tion. Despite reducing bacterial enteropathogens, there were 
no differences in polio vaccine immunogenicity between 
the two groups [60]. While these results are disappointing, 
they also underscore the limitations of an empiric approach, 
where known probiotics and antibiotics with general effects 
are applied to specific vaccines without effect. In order to 

fully assess whether the microbiome alterations can improve 
vaccine immunogenicity, a more targeted evidence-based 
approach is likely required where novel microbiota-based 
targets are identified for specific vaccines. The first step in 
this approach is to identify microbiome targets correlating 
with vaccine immunogenicity from the microbiota of low-
income country infants themselves.

Rotavirus vaccines can be used as a case study to dem-
onstrate such an approach. Currently licensed rotavirus 
vaccines are oral, live-attenuated vaccines, delivered in two 
or three doses 1 month apart, beginning at 6–10 weeks of 
age [61]. The vaccines have excellent effectiveness against 
severe rotavirus gastroenteritis in high-income countries 
(84%), however in low-income and some middle-income 
countries with high child mortality, their effectiveness is 
only between 45 and 57% [62]. Explanations for this differ-
ence in effectiveness often invoke microbiome differences 
related to malnutrition or a high pathogen burden [21, 39]; 
however, these associations have not been corroborated. 
Malnutrition has surprisingly little or no effect on most vac-
cine responses [63]. Studies correlating malnutrition indexes 
to rotavirus vaccine immunogenicity or efficacy have, with 
the exception of one study [64], predominantly not shown 
a correlation [65–67]. One study evaluating enteropatho-
gen burden in relation to rotavirus immunogenicity in India 
showed that responders were actually more likely to harbor 
bacterial enteropathogens than nonresponders [68]. These 
data suggest that existing hypotheses triangulating microbi-
ome composition with bacterial enteropathogen burden or 
malnutrition and rotavirus vaccine immunogenicity in low-
income countries may not be valid.

However, emerging evidence does support a bilateral 
correlation between microbiome composition and rotavi-
rus vaccine immunogenicity (Table 1). Three studies have 
compared the pre-vaccination fecal bacterial microbiome 
composition between infants with and without rotavirus vac-
cine immune response (anti-RV IgA > 20 IU/mL). A study 
in India demonstrated no significant differences in microbi-
ome composition between rotavirus vaccine responders and 
nonresponders, however responders had a higher abundance 
of bacterial enteropathogens, as described above [68]. Two 
studies, one in rural Ghana and one in Pakistan, did dem-
onstrate geography-specific differences in pre-vaccination 
fecal microbiome composition between matched rotavirus 
vaccine responders and nonresponders [69, 70]. In Ghana, 
rotavirus vaccine immunogenicity correlated with a low 
abundance of bacteria from the Bacteroidetes phylum and a 
high abundance of bacteria related to Streptococcus bovis. 
In Pakistan, rotavirus vaccine immunogenicity correlated 
with an increased abundance of Proteobacteria, (such as 
bacteria related to Escherichia coli and Serratia). In aggre-
gate, these results suggest that if the microbiome correlates 
with rotavirus vaccine immunogenicity, this correlation may 
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Table 1   Known correlations between rotavirus and oral polio vaccine immunogenicity and microbiome composition

Vaccine Population Vaccine response 
outcome

Commensal micro-
biota correlation with 
response, FDR < 0.15, 
(Phylum)

Commensal micro-
biota correlation 
with nonresponse, 
FDR < 0.15, (Phylum)

Methods References

Rotavirus (Rotarix) India, pre-vaccination 
6 weeksa

Seroconversion (anti-
RV IgA > 20 IU/mL)

No commensal micro-
biota correlations

16S rRNA [68]

Rotavirus (Rotarix) India, pre-vaccination 
6 weeksa

Shedding (RT-PCR) Higher diversity 
(#OTU)

Higher Proteobacteria 
diversity (#OTU)

No taxonomic correla-
tions

16S rRNA [68]
[98]

Rotavirus (Rotarix) Pakistan, pre-vaccina-
tion 6 weeks

Seroconversion (anti-
RV IgA > 20 IU/mL)

Higher diversity 
(Shannon index)

Eshcerichia coli et relb 
(Proteobacteria)

Bacteroides fragilis et 
rel (Bacteroidetes)

Parabacteroides 
distasonis et rel 
(Bacteroidetes)

Clostridium difficile et 
rel (Firmicutes)

Uncultured Sele-
nomonadaceaeb 
(Firmicutes)

Megasphaera elsdenii 
et relb (Firmicutes)

HitChip [69]

Rotavirus (Rotarix) Ghana, pre-vaccination 
6 weeks

Seroconversion (anti-
RV IgA > 20 IU/mL)

No difference in 
diversity

Streptococcus bovis et 
relb (Bacilli)

Allistepes et relb (Bac-
teroidetes)

Bacteroidetes ovatus et 
relb (Bacteroidetes)

Bacteroides uniformis 
et relb (Bacteroi-
detes)

Parabacteroides 
distasonis et relb 
(Bacteroidetes)

Prevotella melani-
nogenica et relb 
(Bacteroidetes)

Prevotella oralis et 
relb (Bacteroidetes)

Tannerella et relb 
(Bacteroidetes)

Coprococcus eutactus 
et relb (Firmicutes)

Eubacterium hallii et 
relb (Firmicutes)

Ruminococcus obeum 
et relb (Firmicutes)

HitChip [70]

Polio India pre-vaccination, 
6 weeksa

Type 3 OPV serocon-
version

Higher diversity 
(#OTU)

Epsilonproteobacteria 
class (Proteobac-
teria)

Betaproteobacteria 
class (Proteobac-
teria)

Verrucomicrobiae 
class

16S rRNA [98]

Polio India pre-vaccination, 
6 weeksa

Shedding (RT-
PCR, ≥ 1 Sabin 
strain)

No taxonomic correla-
tions

Higher diversity 
(#OTU)

16S rRNA [98]
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depend on location. Yet the overarching data also suggest 
that immune-stimulatory bacteria, such as bacterial enter-
opathogens in India, Gamma Proteobacteria in Pakistan, 
and bacteria related to Streptococcus bovis (known to have 
pathogenic potential) correlate with vaccine immunogenicity 
across populations. These results are hypothesis-generating, 
signifying a possible ‘adjuvanting’ capacity of the cell mem-
brane components of the endogenous microbiota in low- and 
middle-income country infants to effect vaccine immune 
response.

3.2 � From Correlation to Causation

The most simple extrapolation from these field studies is to 
hypothesize that differentially-abundant taxa between rota-
virus vaccine seroconverters and non-seroconverters could 
be employed to improve rotavirus vaccine performance in 
developing countries; however, there are two major chal-
lenges to such an extrapolation. First, all microbiome cor-
relations to date have been made with immunogenicity and 
not efficacy outcomes. Anti-RV IgA seroconversion is an 
imperfect correlate of protection from severe RV gastro-
enteritis, particularly in low-income settings [71]. There is 
therefore a risk that altering the microbiome to effect an 
immune response to vaccination may have little effect on 
the clinical outcome of interest, i.e. severe gastroenteritis. 
Conversely, anti-RV IgA is the best correlate of clinical pro-
tection currently available [71].

The second challenge is one that is shared by much of 
the microbiome research, i.e. how to distinguish correlation 
from causation and identify evidence-based mechanisms to 
rationally improve vaccine performance [72]. Identification 
of potential mechanisms mediating oral vaccine–micro-
biota interactions requires a top-down, stepwise, reductive 
approach. A useful example of how such a top-down strategy 

has been successful is in the Clostridium difficile field. 
Buffie et al. used longitudinal patient microbiota data to 
identify bacterial taxa correlating with resistance to C. diffi-
cile infection. Adoptive transfer of one of the protective taxa 
to mice correlated with C. difficile infection resistance. Sub-
sequently, predictive gene functional profiling and metabo-
lite analysis demonstrated that this taxa conferred infection 
resistance by synthesizing C. difficile-inhibiting metabolites 
from host-derived bile salts [30]. Similar approaches can be 
applied to the rotavirus and vaccinology fields (Fig. 1). The 
first step in this process is to test the capacity of microbial 
taxa derived from population-level and geography-specific 
correlations to actually alter vaccine immunogenicity in 
appropriate in vitro and in vivo experimental systems, as 
described below. Assuming that they do, the second step is 
to identify how. Population-level microbiome correlations 
could be a consequence of species membership, gene func-
tional profiles, transcript or protein expression, metabolite 
profiles, or a combination of these effects [73, 74]. While 
risking a correlation with immunogenicity and not disease 
protection, employing a top-down approach ensures that 
microbiota-based therapeutic candidates remain relevant to 
the infant populations they are intended to serve. Simultane-
ously, a top-down approach capitalizes on human-derived 
high throughput genomic data, enabling unbiased identifica-
tion of microbiome-vaccine interactions and thereby novel 
hypothesis generation.

3.3 � Experimental Platforms

Numerous in vivo and in vitro experimental models can be 
employed to test potential microbiota–oral vaccine interac-
tions, and their potential and limitations, using rotavirus 
vaccines as a case study, are explored below. A working 
model for rotavirus infection of adult mice was developed 

Pre-vaccination 6-week microbiome composition correlations, unless otherwise indicated
Correlations with an FDR < 0.15 used, unless otherwise indicated. Phylum is indicated in parentheses
Ig immunoglobulin, OPV oral polio vaccine, rRNA ribosomal ribonucleic acid, RT-PCR reverse transcriptase-polymerase chain reaction, RV 
rotavirus
a Studies where microbiota was evaluated at time points other than 6 weeks but not described in the table
b Correlations that were corroborated when infant microbiota was compared with healthy European infants with assumed high-vaccine immuno-
genicity

Table 1   (continued)

Vaccine Population Vaccine response 
outcome

Commensal micro-
biota correlation with 
response, FDR < 0.15, 
(Phylum)

Commensal micro-
biota correlation 
with nonresponse, 
FDR < 0.15, (Phylum)

Methods References

Polio Bangladesh Composite 
of 6, 11, 15 week 
stool

Height of anti-OPV 
IgG

Acinetobacter genus 
(Proteobacteria)

[p < 0.05, not cor-
rected]

16S rRNA [99]
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as early as the 1990s [75], and has broadly been employed 
to test rotavirus immunology. Mice with antibiotic-depleted 
microbiota and gnotobiotic mice have decreased rotavirus 
shedding and increased late anti-RV antibody responses 
following homologous rotavirus infection [76]. However, 
murine models have several disadvantages. Mice have signif-
icantly different intestinal physiology and microbiota from 
humans, and markedly decreased susceptibility to infection 
with human rotavirus strains. Neonatal mice, the best rota-
virus infection model since the animals develop diarrhea 
[77], are challenging to manipulate in experimental settings, 
particularly in the context of microbiome manipulation or 
human fecal microbiome transfer. Murine immunity also 
differs considerably from humans, and divergence in toll-
like receptor (TLR) recognition and innate immunity may 
have considerable relevance for microbiome–host immune 
interactions [78–80].

Gnotobiotic and neonatal pigs with humanized micro-
biota are alternative robust models by which to study human 
rotavirus vaccine strain interaction with microbiota [81–83]. 
Pigs are immunologically closer to humans, with long gesta-
tions and development of immunocompetence in the neo-
nate [84]. They can be infected with human rotavirus strains, 
and also develop diarrhea upon infection [83]. Gnotobiotic 
pigs can be transplanted with human fecal microbiota [85, 
86] and can thereby be used to interrogate how specific 
alterations in microbiota composition may affect immune 
responses to rotavirus vaccines [82, 87]. Gnotobiotic pigs 
with defined or humanized microbiota have been employed 
to study the immune effect of empiric probiotics on human 
rotavirus infection [87, 88]. Alternatively, gnotobiotic pigs 
transplanted with feces from infants with and without bio-
markers of environmental enteropathy have been used to 
interrogate a possible effect of enteropathy on immunity 
to rotavirus infection [82]. The primary limitations of this 
model are cost and time, with relatively few facilities able 
to perform gnotobiotic studies. While mice are likely more 
evolutionarily divergent, pigs also diverge anatomically (spi-
ral colon) and immunologically from humans, especially in 
their lymphoid tissue structure and trafficking [89]. Addi-
tionally, there is considerable difference between the com-
position of the initial human fecal inoculum and colonization 
in the gnotobiotic pig with alteration of composition over 
time, reflecting limitations in the efficacy and stability of 
microbiota transfer [82, 86].

An emerging and as yet underutilized platform for study-
ing enteric pathogen-microbiome interactions is the human 
intestinal enteroid model. Derived from donated human 
intestinal cells, human intestinal enteroids are three-dimen-
sional cultures that contain all existing differentiated epi-
thelial cell types [90]. Enteroids can support replication of 
human rotavirus strains [91] and have also been success-
fully used to culture norovirus [92]. They are also slowly 

becoming robust enough to survive the addition of simple 
bacterial cultures or their supernatants [93]. While missing 
adaptive immunity, lymphatics, and complex microbiota, the 
system permits elegant and simplified examination of rotavi-
rus–bacterial–innate immune interactions [94].

A final platform, more frequently used in vaccine devel-
opment than in proof-of-principle or mechanistic studies, 
is the human clinical trial. Clinical studies in infants have 
already evaluated the effect of empiric probiotics (with 
known safety profiles [54, 58]) and short-course antibiotic 
regimens (such as azithromycin) on oral vaccine immuno-
genicity [60]. However, testing of novel probiotics with 
unknown safety profiles or longer courses of antibiotics with 
more dramatic, potentially durable alterations in microbiome 
composition in vulnerable infant populations is ethically 
untenable. Adult volunteer studies may make these trials 
possible and could support detection of a causal relationship 
between microbiome alteration and oral vaccine immuno-
genicity and the bandwidth of a potential effect.

As a proof-of-principle, targeted antibiotics can be used 
in adult volunteers to confirm that specific microbiota phe-
notypes from field studies correlate with vaccine immuno-
genicity. Rotavirus vaccine seroconversion, for example, 
correlates with an increased abundance of specific Proteo-
bacteria in Pakistan and a decreased abundance of Bacte-
roidetes in Ghana. Vancomycin can diminish Bacteroidetes 
abundance but is also known to result in a simultaneous 
bloom of Proteobacteria [95, 96]. A proof-of-principle 
clinical trial is therefore currently underway evaluating the 
effect of vancomycin on rotavirus vaccine immunogenicity 
in an adult volunteer model (ClinicalTrials.gov identifier: 
NCT02154061). The use of such a model is also not without 
limitations. The adult microbiota is significantly different 
from the infant microbiota [44]. Additionally, adults undergo 
multiple asymptomatic rotavirus infections over their life-
time, therefore adult rotavirus vaccination likely results in an 
anamnestic boosting response, and not a priming response 
that is needed in infants in low-income settings. Neverthe-
less, successful alteration of rotavirus vaccine immuno-
genicity through targeted antibiotics would support a more 
causal role for the intestinal microbiome in determining 
vaccine immunogenicity, help corroborate microbiota com-
ponents with the highest potential for vaccine improvement 
in infants, and build hypotheses for subsequent mechanistic 
evaluations.

Thus, upon identifying specific microbiota components 
or their metabolites in field studies or adult volunteer stud-
ies that differentiate vaccine responders from nonresponders, 
these components can be tested for mechanism, efficacy, and 
safety in in vitro and in vivo models, as any potential drug 
target would (Fig. 1). Rather than depending on known pro-
biotics, deriving microbiota targets from an evidence base of 
relevant field studies and then working towards application is 
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classically translational, but has not yet been fully applied to 
vaccinology. Yet such applications are not without risk. The 
endogenous intestinal microbiota can support host immune 
responses against enteric pathogens but they are also active 
participants in the induction of immune tolerance and main-
tenance of mutualism [24]. Alteration of the microbiota at 
an early age risks disruption of these roles with the potential 
induction of (auto)inflammation. The microbiota and their 
components straddle a complicated regulatory zone between 
classical drugs, requiring Investigational New Drug (IND) 

applications, and food or dietary supplements [97]. However, 
specific application of microbiome components to vaccinol-
ogy, which assumes widespread dissemination of an effective 
product among infants, demands an especially evidence-based 
approach, with mechanistic underpinning, clear efficacy and 
safety outcomes, and strong regulatory rigor.

16S rRNA
Whole metagenome  
shotgun sequencing

Community composition

responder non-responder

vaccine

Community function 
transcriptomics 
proteomics 
metabolomics 50 100 150 200

Epidemiologic studies in relevant settings 

Experimental platforms

A

B

C

D

Fig. 1   Schematic overview of a top-down approach to identifying 
microbiota-derived targets for oral vaccines. a Well-conducted studies 
in appropriate low- and middle-income country settings can identify 
infants with and without adequate responses to vaccination. b Iden-
tification of differences in microbiota composition and community 
function between responder and nonresponder infants. c Differen-

tially-abundant taxa, gene products, proteins, or metabolites can be 
tested for alteration of vaccine response and mechanism in appropri-
ate experimental models: murine, gnotobiotic pig, human intestinal 
enteroid, and adult volunteers. d In parallel, microbiota differences 
distinguishing adult volunteer vaccine responders and nonresponders 
can be defined and tested in appropriate experimental models
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4 � Conclusion

The rapid expansion of knowledge on the intestinal micro-
biome holds great promise for human health, and certainly 
for vaccinology. This review outlines the immunologic 
potential for the application of the intestinal microbiota 
to vaccines, focusing on improving the immunogenicity 
of specific enteric vaccines in the very young in low- and 
middle-income countries. Oral enteric vaccines, specifi-
cally rotavirus vaccines, provide a case study for how 
the immunogenic potential of the microbiome could be 
exploited to improve vaccine performance. Employing a 
top-down approach—studying differences in microbiome 
composition between vaccine responders and nonrespond-
ers in relevant populations and then moving to appropri-
ate in vitro and in vivo experimental platforms—ensures 
that microbiota targets will remain relevant to both spe-
cific vaccines and patient populations. An adult volunteer 
model is perhaps an underutilized study model to bridge 
questions of correlation and causation in vaccines. Ulti-
mately, a strong epidemiologic evidence-base with mecha-
nistic underpinning and rigorous safety testing provides 
hope that effective microbiota-based drug targets can 
improve the protection elicited by vaccines and the pro-
tection of human health.
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