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B6.Sle1.Sle2.Sle3 (B6.TC) lupus-prone mice carrying the NZB allele of Cdkn2c, 
encoding for the cyclin-dependent kinase inhibitor P18INK4, accumulate B-1a cells due 
to a higher rate of proliferative self-renewal. However, it is unclear whether this affects 
primarily early-appearing B-1a cells of fetal origin or later-appearing B-1a cells that 
emerge from bone marrow. B-1a cells are the major source of natural autoantibodies, 
and it has been shown that their protective nature is associated with a germline-like 
sequence, which is characterized by few N-nucleotide insertions and a repertoire 
skewed toward rearrangements predominated during fetal life, VH11 and VH12. To 
determine the nature of B-1a cells expanded in B6.TC mice, we amplified immuno-
globulin genes by PCR from single cells in mice. Sequencing showed a significantly 
higher proportion of B-1a cell antibodies that display fewer N-additions in B6.TC mice 
than in B6 control mice. Following this lower number of N-insertions within the CDR-H3 
region, the B6.TC B-1a cells display shorter CDR-H3 length than B6 B-1a cells. The 
absence of N-additions is a surrogate for fetal origin, as TdT expression starts after 
birth in mice. Therefore, our results suggest that the B-1a cell population is not only 
expanded in autoimmune B6.TC mice but also qualitatively different with the majority 
of cells from fetal origin. Accordingly, our sequencing results also demonstrated the 
overuse of VH11 and VH12 in autoimmune B6.TC mice as compared to B6 controls. 
These results suggest that the development of lupus autoantibodies in these mice is 
coupled with skewing of the B-1a cell repertoire and possible retention of protective 
natural antibodies.

Keywords: B cells, B-1 cells, autoimmunity, lupus erythematosus, systemic, repertoire analysis, mouse model, 
natural antibodies

inTrODUcTiOn

Murine B-1a cells are a unique B-lymphocyte lineage characterized by phenotypic, functional, and 
ontologic characteristics (1, 2). B-1a cells are defined by surface marker expression of IgMhiIgDloC
D45RloCD5+CD43+CD19hi and are found in the peritoneal cavity, spleen, and bone marrow (3, 4). 
Functionally, B-1a cells exhibit unique signaling characteristics (4–6), are potent antigen-presenting 
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autoantibodies and development of autoimmunity. However, the 
origin of B-1a cell expansion in B6.TC, B6.Slec1, and p18−/− mice 
could be due to an increase in proliferation of early-appearing 
fetal-derived B-1a cells or heightened production of later-
appearing bone marrow-derived B-1a cells. As the repertoires of 
early- and later-appearing B-1a cells differ, these two possibilities 
can be distinguished. Herein, we investigated whether significant 
changes to the natural IgM repertoire occur in triple congenic 
B6.Sle1.Sle2.Sle3 (B6.TC) lupus-prone mice. These mice carry the 
Sle2c1 locus that drives B-1a cell expansion and present clinical 
autoimmune pathology that has been described for the NZM2410 
pathology (29). B6.TC mice carry the NZM2410 susceptibility loci 
on a B6 genetic background (>95%) that includes both heavy and 
light immunoglobulin chains, which allow to directly compare the 
lupus-prone B6.TC mice to the control B6 mice. Specifically, we 
found that the expansion of B-1a cells in B6.TC mice is associated 
with repertoire skewing toward VH11 and VH12 usage.

MaTerials anD MeThODs

Mice
B6.NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg/LmoJ (B6.TC) 
congenic mice have been previously described (29). B6.TC lupus-
prone and C57BL6/J (B6) control mice were cared for and handled 
in accordance with National Institutes of Health and institutional 
guidelines.

single-cell sequencing and analysis
Peritoneal washout cells were obtained from 8-week-old wild-type 
B6 mice and 8-week-old B6.TC mice (two each). The cells were 
stained with fluorescence-labeled antibodies to CD45R/B220 
(clone RA3-6B2), CD5 (clone 53-7.3), and CD23 (clone B3B4) 
(BD Biosciences). B-1a cells (CD45Rlo/CD5+/CD23−) were then 
purified using an Influx cell sorter (BD Biosciences). Post-sort 
reanalysis of B cell populations showed them to be ≥98% pure. 
Peritoneal B-1a cells were sorted into a 96-well plate containing 
20 μl of lysis buffer per well (dH2O, RNase Out, 5× SuperScript III 
Buffer, DTT, IgePAL, and Carrier RNA). Reverse transcription 
was performed (42°C – 10 min, 25°C – 10 min, 50°C – 60 min, 
94°C – 5 min, hold at 4°C) after addition of random hexamers, 
dNTP mix, and SuperScript III reverse transcriptase. Semi-nested 
PCR was performed using the cDNA diluted 1:1. Using Qiagen’s 
HotStart Taq Plus, 2.5  μl of cDNA was used for the first PCR 
reaction with previously described primers (30). The product 
from this first PCR reaction was then diluted 1:100 and 2 μl of 
the diluted product was added to the second PCR reaction. The 
products were purified and then sequenced (Genewiz) using the 
forward primer. Sequences were then analyzed using an online 
sequence analysis tool for VDJ sequences (IMGT, the interna-
tional ImMunoGeneTics information system).

statistics
Comparisons were conducted between the pooled B6.TC and B6 
sequences and the two strains using Graphpad Prism 6.0 with 
two-tailed tests, as indicated in the figure legends.

cells (7), and spontaneously produce 80–90% of natural serum 
IgM in mice (8). Natural IgM is non-immune, low-affinity 
immunoglobulin (Ig) that is both polyreactive and autoreactive. 
It functions in infection, atherosclerosis, B  cell homeostasis, 
inflammation, and autoimmunity [reviewed in Ref. (9)]. Minimal 
N-region addition contributes to the germline-like nature of 
natural IgM. Furthermore, natural IgM manifests biased variable 
heavy chain (VH) gene usage in favor of VH11 and VH12, which 
are specific for phosphatidylcholine (PtC), a major component of 
cell membrane phospholipids (3, 10–13). This unique germline 
structure of natural IgM is established during the early fetal and 
neonatal development of B-1a cells (8).

The polyreactive nature of natural IgM provides initial 
defense against both bacterial and viral pathogens, which 
affords the organism protection during the period preceding 
generation of high-affinity antigen-specific antibodies produced 
by germinal center B-2 cells (3, 4, 14–17). The autoreactive 
quality of natural IgM has been shown to aid in the elimination 
of excess autoantigens through the removal of apoptotic cells 
and noxious molecular debris, thereby maintaining homeo-
stasis and preventing inflammation (9, 18). These autoreactive 
natural antibodies are often directed against cell membrane 
components, such as PtC and phosphorylcholine (PC), which 
is the polar head group of PtC and is a major microbial cell wall 
determinant (19). Interestingly, such components are closely 
related to those also present on pathogens, which suggest that 
the natural autoreactive repertoire also react with common 
pathogens (20).

While this cross-reactivity of natural autoreactive antibodies 
with pathogens is beneficial, it highlights the importance of regu-
lating B-1a cell expansion. Accumulation of B-1a cells has been 
shown in the NZM2410 (NZB × NZW F1 hybrid) mouse model 
of systemic lupus erythematosus (SLE) (21, 22). However, the 
role of B-1a cells in lupus is still unclear (23). Some studies have 
demonstrated a role for B-1a cells via production of IL-10 (22), 
increase in antigen presentation (22), or with overexpression of 
osteopontin, resulting in expansion of B-1a cells and increased 
anti-dsDNA antibody production (24). In other models, however, 
B-1a cells do not contribute to disease (25, 26).

The expansion of B-1a cells in the NZM2410 model was traced 
to the Sle2c1 lupus susceptibility locus, which contains Ckdn2c 
(27, 28). The Ckdn2c gene encodes for p18INK4c, which is a cyclin-
dependent kinase inhibitor that controls progression through 
G1 of the cell cycle (28). These studies demonstrated that the 
expansion of B-1a cells is intrinsic. B6.Sle2c1 B-1a cells showed 
increased proliferation at rest, as well as increased resistance to 
cell death. In addition, B-1a cell reconstitution from fetal liver, 
adult bone marrow, and adult spleen was higher in B6.Sle2c1 than 
in control C57/BL6 (B6) mice following lethal irradiation (21). 
Furthermore, comparison of p18−/− mice with B6.Sle2c1 mice 
demonstrated that both produced autoantibodies; however, the 
amount produced by p18−/− mice was greater. This demonstrates 
that the control of the B-1a cell population depends on the amount 
of p18. B6.Sle2c1 mouse B  cells have fourfold less Ckdn2c than 
normal mice, whereas p18−/− mice completely lack Ckdn2c (28). 
Together, these results demonstrate an important role for p18 
in B-1a cell numbers, which in turn affects the production of 
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TaBle 1 | Duplicate sequences.

sample cDr3 aa sequence Vh Dh Jh number of duplicate sequences Percent of duplicates

B6 AGDSHGYWYFDV IGHV12-3*01 IGHD1-1*02 IGHJ1*03 2
AGDVTGYWYFDV IGHV12-3*01 IGHD4-1*01 IGHJ1*02 2
ARFYYYGSSYAMDY IGHV1-55*01 IGHD1-1*01 IGHJ4*01 7
ARRDYGSSYWYFDV IGHV1-55*01 IGHD1-1*01 IGHJ1*02 22
ARHYYGSSYYFDY IGHV5-6*01 IGHD1-1*01 IGHJ2*01 4
MRYGNYWYFDV IGHV11-2*01 IGHD2-1*01 IGHJ1*03 7
MRYSNYWYFDV IGHV11-2*01 IGHD2-5*01 IGHJ1*03 3
TREDYYYYGSSYYAMDY IGHV5-9-1*02 IGHD1-1*01 IGHJ4*01 3

50 48

B6.TC AGDNDGYWYFDV IGHV12-3*01 IGHD2-3*01 IGHJ1*03 3
AGDNDGYYGFAY IGHV12-3*01 IGHD2-3*01 IGHJ3*01 2
AGDYDGYWYFDV IGHV12-3*01 IGHD2-3*01 IGHJ1*03 37
AGDYYGYWYFDV IGHV12-3*01 IGHD1-1*02 IGHJ1*03 4
ARDYYGSSHYFDY IGHV1-82*01 IGHD1-1*01 IGHJ2*01 2
ARELIYYGNYGYFDV IGHV1-72*01 IGHD2-1*01 IGHJ1*03 2
ARPYYSNYYAMDY IGHV2-9-1*01 IGHD2-5*01 IGHJ4*01 2
ARYYYGSSYAMDY IGHV7-3*01 IGHD1-1*01 IGHJ4*01 2
MRYGNYWYFDV IGHV11-2*01 IGHD2-1*01 IGHJ1*03 39
MRYGSSYWYFDV IGHV11-2*01 IGHD1-1*01 IGHJ1*03 3
MRYSNYWYFDV IGHV11-2*01 IGHD2-5*01 IGHJ1*03 8
TRTSGYFDY IGHV6-6*01 IGHD1-3*01 IGHJ2*01 2
VRHYGSSYFDY IGHV10-1*01 IGHD1-1*01 IGHJ2*01 2

108 74

Peritoneal B-1a cells were single-cell sorted from 8-week-old C57BL/6 mice (B6) and B6.Sle1.Sle2.Sle3 (triple congenic, B6.TC) lupus-prone mice. IgM was amplified and sequenced 
as detailed in the Section “Materials and Methods.” Sequencing analysis revealed a number of sequences with identical CDR-H3 regions, which we refer to as duplicate sequences.
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resUlTs

lupus-Prone Triple congenic Mice Display 
an increase in Duplicate sequences
The B-1a cell repertoire of B6.TC mice was compared to control 
B6 mice. Repertoire analysis was performed by PCR amplifica-
tion of the VHDJH region from individual peritoneal B-1a cells, 
which were previously shown to accumulate in B6.TC mice 
(21, 28). Interestingly, the B-1a cells from B6.TC mice had a 
significantly larger number of IgM sequences with identical 
VH, DH, and JH segments as well as identical CDR3 regions 
than B6 mice (Table 1, B6.TC: 108 out of 146 total sequences; 
B6: 50 out of 105 total sequences; p = 0.0335, Mann–Whitney 
test). As stated in previously published work (30), it cannot be 
determined whether these sequences containing identical VH, 
DH, JH, and CDR3 regions result from a single clonal expansion 
or from analysis of independent cells with identical rearrange-
ments. Therefore, we will refer to such sequences as duplicate 
sequences instead of clones. Furthermore, VH usage within 
the duplicate sequences differed significantly between B6 and 
B6.TC mice. As shown in Table  1, the duplicate sequences 
with the highest frequency in B6 mice utilized VH1–55 (58%), 
whereas the most frequent duplicate sequences in B6.TC mice 
utilized VH11 and VH12 (43 and 46%, respectively). While 
both VH11 and VH12 utilization (20 and 8%, respectively) was 
observed in B6 mice, this percentage of duplicate sequences 
was significantly less than that seen in B6.TC mice (Figure 1). 
These results suggest that the accumulation of peritoneal B-1a 
cells seen in B6.TC mice might be influenced by autoantigen 
since there is an expansion of B-1a cells utilizing VH11 and 

VH12, which are specific for PtC, a major component of cell 
membrane phospholipids.

Vh–Dh–Jh Usage shows Differences 
between B6 and B6.Tc Mouse repertoires
For analysis of VH, DH, and JH usage, we evaluated the repertoire 
in two ways. First, we analyzed only sequences with unique CDR-
H3 regions by removing all duplicate sequences. In the second 
method, we analyzed all sequences, which included the duplicate 
sequences.

When analyzing only sequences with unique CDR-H3 regions, 
we found overall similarity in DH and JH usage with only one major 
significant difference in VH usage. Among VH gene segments, VH1 
was expressed significantly less frequently by B6.TC B-1a cells 
(26%) as compared to B6 B-1a cells (48%) (p = 0.0034, chi-square 
test) (Figure 2A).

We found numerous differences in VH–DH–JH usage when 
analyzing all sequences, including the duplicate sequences 
(Figure  2B). VH1 and VH5 were expressed significantly less 
frequently by B6.TC B-1a cells (10 and 3%, respectively), as 
compared to B6 B-1a cells (55 and 9%, respectively) (p < 0.0001 
and p  =  0.0397, chi-square test). Conversely, VH11 and VH12 
were utilized significantly more frequently by B6.TC B-1a 
cells (35 and 34%, respectively), as compared to B6 B-1a cells  
(11 and 10%, respectively) (p < 0.0001 and p < 0.0001, chi-square 
test). Among DH gene segments, no difference was observed 
for the unique sequences between strains (Figure  3A). When 
all sequences were compared, DFL16.1 was expressed less fre-
quently, and DSP was expressed more frequently by B6.TC B-1a 
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B-1a cells (p  <  0.0001). We further examined CDR-H3 length 
and found, consistent with the differences in N-addition between 
B6.TC and B6 B-1a cells, the average CDR-H3 lengths differed 
significantly when analyzing all sequences (p = 0.0044), but did 
not differ when analyzing only sequences with unique CDR-H3 
regions (Table 2). These results demonstrate that the B6.TC B-1a 
cell population expresses immunoglobulin that is less diverse due 
to fewer N-region additions as compared to the B6 peritoneal 
B-1a cell population.

We then focused the analysis of N-addition on sequences 
utilizing VH11 and VH12, which are overrepresented in the 
B6.TC B-1a cells when considering all sequences, including the 
duplicate sequences. Interestingly, the number of B6.TC B-1a cell 
sequences lacking N-additions at both junctions in cells utilizing 
VH11 and VH12 (98 and 100%, respectively) was significantly 
different than B6 B-1a cell sequences (92 and 10%, respectively) 
(p  =  0.0381 and p  <  0.0001, respectively, by chi-square test), 
particularly with respect to VH12, although the number of B6 
VH11/VH12 sequences was small (n = 12/n = 10). These results 
are summarized in Figure 5.

cDr-h3s are More charged in B6.Tc than 
B6 B-1a cells
Autoreactive antibodies, and in particular anti-dsDNA antibodies, 
are often enriched for charged amino acids in their CDR-H3 loop 
region (32–34). This region normally contains neutral, hydrophilic 
amino acids, which is due partly to usage of certain DH and JH 
sequences and use of the D reading frame I (32, 35). Amino acid 
changes within the loop region are also affected by N-region inser-
tions (32). Upon evaluation of B6.TC B-1a cell CDR-H3 charge, 
we found that the average charge was increased in B6.TC B-1a cells 
(−0.213) over B6 B-1a cells (−0.142); however, this difference did not 
reach significance in the analysis of unique sequences (Figure 6A). 
When analyzing all sequences (including the duplicates), again 
the average charge of the CDR-H3 loop region was increased in 
B6.TC B-1a cells (−0.298) over B6 B-1a cells (−0.201) (p = 0.0015) 
(Figure  6B). Furthermore, comparing the average charge of the 
CDR-H3 loop region of B-1a cells utilizing VH11 and VH12 also 
demonstrated a greater charge in B6.TC B-1a cells (−0.362) than 
B6 B-1a cells (−0.290) (p = 0.0197) (Figure 6C). These results cor-
relate with the differences observed in N-region addition between 
B6.TC and B6 B-1a cells utilizing VH11 and VH12.

DiscUssiOn

Primary repertoire analysis of B-1a cells from 8-week-old B6.Sle1.
Sle2.Sle3 (B6.TC) lupus-prone mice demonstrated a large number 
of sequences that express identical CDR-H3 regions as compared 
to B-1a cells from healthy 8-week-old C57BL/6 (B6). This analysis 
demonstrates a significant increase in identical VH, DH, JH usage in 
B6.TC mice. Although it is not possible to determine whether the 
duplicate sequences observed herein result from a single clonal 
expansion or from analysis of multiple cells with identical rear-
rangements, it has been well-documented over the years that B-1 
cells have a limited repertoire (11, 14, 36–38), can undergo clonal 
expansion (39–42), and are self-replenishing (8). Therefore, these 

cells (17 and 74%, respectively) as compared to B6 B-1a cells (54 
and 32%, respectively) (p < 0.0001 and p < 0.0001, chi-square 
test) (Figure 3B). As for JH segments, no difference was observed 
between strains among JH gene segments in unique sequences 
(Figure 4A). However, when all sequences were compared, JH1 
was expressed more frequently (74%) (p < 0.0001), and JH2 and 
JH4 were expressed less frequently (11 and 8%, respectively) 
(p  =  0.0293 and p  <  0.0001, respectively) by B6.TC B-1a cells 
as compared to B6 B-1a cells (45, 21, and 28%, respectively) 
(Figure 4B). Thus, distinct VH, DH, and JH gene segment usage 
separated B6.TC from B6 peritoneal B-1a cells across all sequences.

The B-1a cell repertoire is less Diverse 
in B6.Tc Mice as compared to B6 Mice
N-region addition provides diversity to the CDR-H3 region of 
antibodies via random insertion of nucleotides at the V–D and 
D–J junctions by the enzyme TdT. It is well-documented that peri-
toneal B-1a cells have limited N-addition due to the lack of TdT 
expression during fetal development (31). We analyzed N-addition 
at the D–J and V–D junctions and determined CDR3 length. No 
significant differences were found when analyzing sequences with 
only unique CDR-H3 regions (Table 2). In contrast, analysis of 
all sequences, including the duplicates, demonstrated significant 
differences between B-1a cells from B6.TC and B6 mice. We 
found that the number of N-additions at the D–J or V–D junc-
tions of B6.TC B-1a cells was significantly less than B6 B-1a cells 
(p < 0.0001 and p = 0.0120, respectively) (Table 2). B6.TC B-1a 
cells were also found to contain significantly fewer N-additions 
when analyzing the sum of the two junctions as compared to B6 

FigUre 1 | Percent of Vh11 and Vh12 representation. Peritoneal B-1a 
cells were single-cell sorted from 8-week-old B6 control mice and B6.TC 
lupus-prone mice. IgM was amplified and sequenced as detailed in the 
Section “Materials and Methods.” The percent of sequences that utilized 
VH11 and VH12 are shown for all unique sequences (left, B6 n = 62; B6.TC 
n = 47), and all sequences obtained, including the duplicates (right, B6 
n = 105; B6.TC n = 146). Statistical analysis was performed using chi-square 
analysis (2 × 2 using the VH of interest and all others as the two categories), 
VH11/VH12 with duplicate sequences ****p < 0.0001.
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Yang et al’s most common CDR3 in peritoneal B-1a cells from their 
normal healthy 2-month old B6 mice, it is ARFYYYGSSYAMDY, 
(VH1-55, DH1-1, JH4), which does not share the exact same CDR3 
as ours but does share the same VH and DH region. Our second 
most common CDR3 sequences (two are tied for second place) 
are identical to Yang et al’s first and second most common CDR3 
sequences ARFYYYGSSYAMDY and MRYGNYWYFDV (VH11-
2, D2-8, JH1), respectively. The rank order of the sequences we 
identified is very similar to that of Yang et  al. with only minor 
differences. Together, these results indicate that the B-1a cell 
repertoire in B6.TC mice reflects fetal rearrangements to a much 
greater extent than the B6 B-1a cell repertoire.

The mechanism for this selection toward fetal rearrangements 
in B6.TC mice is unknown; however, it can be speculated that 
the Sle2c1 lupus susceptibility locus, which contains Ckdn2c 
and results in less p18 expression, could lead to a difference in 

FigUre 2 | Vh analysis of igM from c57Bl/6 and triple congenic peritoneal B-1a cells. Immunoglobulins were amplified by PCR from single-cell sorted 
peritoneal B-1a cells obtained from B6 and B6.TC mice and evaluated for the variable (V) segment heavy chain usage. The percent of cells (sequences) expressing 
the V segment usage is displayed. Chi-squared test was used to determine significance. (a) Analysis of sequences with only unique CDR-H3 regions (B6, n = 62; 
B6.TC n = 47). (B) Analysis of all sequences obtained, including the duplicate sequences (B6, n = 105; B6.TC n = 146).

duplicate sequences are most likely due to expansion of single 
B-1a cells. Further analysis, including the duplicate sequences, 
reveals that the B6.TC B-1a cell repertoire displays early fetal/
neonatal-like characteristics, which consists of an increase in use 
of JH1 [Figure 4B; Ref. (43)], few N-additions at both the V–D and 
D–J junctions, and a shorter average CDR-H3 length (Table 2). In 
addition, the B6.TC repertoire overused VH11 and VH12 as com-
pared to B6 (Figures 1 and 2). Interestingly, VH11 and VH12 rear-
rangements are utilized almost exclusively by B-1a cells and target 
the cell membrane component PtC (19). Studies have shown VH11 
in particular is a VH gene utilized during fetal development but 
not during adult development (44, 45). More recently, Yang et al. 
have shown overuse of VH11 in the normal healthy peritoneal B-1a 
cell pool (38). Our results demonstrate the most common CDR3 
in peritoneal B-1a cells from our normal healthy 2-month old B6 
mice is ARRDYGSSYWYFDV (VH1-55, DH1-1, JH1). Examining 
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expansion of B-1a cells with different BCR signaling require-
ments. It is possible the VH11 and VH12 specificities require a 
different level of BCR signaling, which the reduced level of p18 
might provide, thereby allowing for increased proliferation of 
VH11 and VH12 expressing B-1a cells. In this view, Ckdn2c does 
not encode B-1a cell expansion on its own but does so in collabo-
ration with BCR signals of requisite intensity. Our data suggest 

that such signals might be provided by self-antigen binding of 
PtC-specific immunoglobulins in preference to other elements 
of the B-1a cell repertoire.

Various studies have shown that B-1a cell-derived natural 
IgM provides protection against not only infection but also 
autoimmunity (9, 18, 46). The role of IgM in protection against 
autoimmunity was recently demonstrated in a mouse model 
lacking secretory IgM. This study demonstrated that natural IgM 
is required to control the accumulation of autoantibodies via its 
ability to regulate B cell development and selection (46). In mice 
lacking secretory IgM, the number of peritoneal B-1a cells was 

FigUre 3 | Dh analysis of igM from c57Bl/6 and triple congenic 
mouse peritoneal B-1a cells. Immunoglobulins were amplified by PCR 
from single-cell sorted peritoneal B-1a cells obtained from B6 and B6.TC 
mice and evaluated for the diversity (D) segment heavy chain usage. The 
percent of cells (sequences) expressing the D segment usage is displayed. 
Chi-squared test was used to determine significance. (a) Analysis of 
sequences with only unique CDR-H3 regions (B6, n = 62; B6.TC n = 47).  
(B) Analysis of all sequences obtained, including the duplicate sequences 
(B6, n = 105; B6.TC n = 146).

FigUre 4 | Jh analysis of igM from c57Bl/6 and triple congenic 
mouse peritoneal B-1a cells. Immunoglobulins were amplified by PCR 
from single-cell sorted peritoneal B-1a cells obtained from B6 and B6.TC 
mice and evaluated for the junction (J) segment heavy chain usage. The 
percent of cells (sequences) expressing the J segment usage is displayed. 
Chi-squared test was used to determine significance. (a) Analysis of 
sequences with only unique CDR-H3 regions (B6, n = 62; B6.TC n = 47).  
(B) Analysis of all sequences obtained, including the duplicate sequences 
(B6, n = 105; B6.TC n = 146).

TaBle 2 | n-region addition and cDr3 length analysis of igM from c57Bl/6 and triple congenic mouse peritoneal B-1a cells.

cDr-h3 length V–D D–J sum

B6 11.9 (±0.295) 1.74 (±0.265) 0.89 (±0.203) 2.63 (±0.338)
B6.TC 12.0 (±0.680) 1.57 (±0.322) 2.34 (±1.81) 3.92 (±1.80)

With duplicate sequences cDr-h3 length V–D D–J sum

B6 12.5 (±0.208) 2.07 (±0.215) 0.533 (±0.127) 2.60 (±0.244)
B6.TC 11.7 (±0.224) 0.63 (±0.129) 0.329 (±0.148) 0.959 (±0.204)

Immunoglobulins were amplified by PCR from single-cell sorted peritoneal B-1a cells obtained from B6 and B6.TC mice and evaluated for N-region additions and CDR3 lengths.  

The average number of N-additions at each junction or sum of the two junctions is displayed (± SEM).
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FigUre 5 | n-region addition analysis of igM from c57Bl/6 and triple 
congenic mouse peritoneal B-1a cells utilizing Vh11 and Vh12. 
Immunoglobulins were amplified by PCR from single-cell sorted peritoneal B-1a 
cells obtained from B6 and B6.TC mice and evaluated for N-region additions. 
The percent of sequences with 0 N-additions at both junctions, one or more 
N-additions at both junctions, 0 N-additions at V–D and one or more at D–J 
junctions, or 0 N-additions at D–J and one or more at V–D junctions is shown. 
(a) N-addition analysis of B-1a cells utilizing VH11 (B6 n = 12; B6.TC n = 51). 
(B) N-addition analysis of B-1a cells utilizing VH12 (B6 n = 10; B6.TC n = 49).

FigUre 6 | average charge of cDr-h3 loop region of igM from 
c57Bl/6 and triple congenic mouse peritoneal B-1a cells. 
Immunoglobulins were amplified by PCR from single-cell sorted peritoneal 
B-1a cells obtained from B6 and B6.TC mice. IgM was amplified and 
sequenced as detailed in the Section “Materials and Methods.” The average 
charge of the CDR-H3 loop region of IgM is shown. (a) Analysis of 
sequences with only unique CDR-H3 regions (B6, n = 62; B6.TC n = 47). (B) 
Analysis of all sequences obtained, including the duplicate sequences (B6, 
n = 105; B6.TC n = 146). (c) Analysis of all VH11 and VH12 sequences, 
including the duplicate sequences (B6, n = 22; B6.TC n = 100).

susceptibility locus have an expansion of peritoneal B-1a cells and 
yet they develop autoimmunity (28). Furthermore, results pre-
sented herein reveal that the B-1a cell repertoire in B6.TC mice is 
significantly more skewed toward VH11 and VH12 than control B6 
mice (Figures 1 and 2). Together, these studies raise the question 
as to why the B6.TC mice are not protected against autoimmun-
ity if they have an expansion of B-1a cells producing protective 
natural IgM. As demonstrated by Nguyen et al., selection of the 
B cell repertoire is affected by the presence of IgM (46). Herein, we 
demonstrate the expanded B-1a cells in mice carrying the Sle2c1 
lupus susceptibility locus are skewed toward a different specificity 
than control B6 mice. Together, these studies suggest that altering 
the pool of natural IgM disrupts the balance of antibodies, which 
enable selection of a healthy non-autoreactive repertoire. In other 
words, alteration of the natural IgM repertoire in the TC.B6 mice 
could then lead to selection of an autoreactive repertoire instead 
of a non-autoreactive repertoire, despite natural IgM being pre-
sent. Furthermore, the role of B-1a cells in autoimmunity may not 
be limited to the antibodies they produce. B-1a cells have been 
shown to be potent antigen-presenting cells, which could also 
contribute to autoimmunity (7, 47, 48). In addition, B-1a cells 
have immunoregulatory functions through the secretion of IL-10 
(49), ability to produce adenosine (50, 51), and ability to class 
switch in sites of inflammation (52).

The greater expansion/overuse of VH11 and VH12 might not 
help in the regulation of autoimmunity; however, it might afford 
increased protection from sepsis. It has been shown that the mice 

significantly decreased and of the B-1a cells present, there was lit-
tle VH11 expression, which correlated with a lack of PtC-binding 
B-1a cells (46). These findings would seem to be at odds with 
previous studies demonstrating that mice with the Sle2c1 lupus 
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lacking secretory IgM are more susceptible to sepsis induced by 
cecal ligation and puncture (53). Interestingly, these mice could 
be rescued by injection of anti-PtC antibody, but not anti-PC 
antibody (53). Future studies could provide insight into whether 
the B6.TC lupus-prone mice might be more protected against 
bacterial sepsis. Such resistance to bacteria has been shown for 
mice with the Sle3 lupus susceptibility locus (54); however, a role 
for B cells in such resistance has yet to be investigated.

The results presented herein demonstrate that the available 
B-1a cell repertoire present in 8-week-old B6.TC lupus-prone 
mice is more characteristic of an early fetal/neonatal B  cell 
repertoire than that of B-1a cells from healthy aged-matched B6 
mice. Thus, B6.TC-enhanced B-1a cell expansion is established 
early on and affects developing B-1a cells in a BCR-specific man-
ner. Nonetheless, further analysis is required to determine the 
mechanism of B-1a cell expansion, and in particular, whether 
certain BCR specificities have a growth advantage in B6.TC 
mice. Overall, our results together with previous studies suggest 
the development of natural IgM that is protective against both 
bacterial infections and autoimmunity might require a balance of 
repertoire specificities. Previously published studies suggest this 
balance is greatly influenced by the IgM repertoire present (46). 

Further repertoire analyses of healthy and autoimmune models 
will help uncover factors that might affect this balance of protec-
tion against both infection and autoimmunity.
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