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Abstract: Nitro group reduction is a reaction of a considerable importance for the preparation of bulk
chemicals and in organic synthesis. There are reports in the literature showing that incorporation
of metal nanoparticles (MNPs) inside metal–organic frameworks (MOFs) is a suitable strategy to
develop catalysts for these reactions. Some of the examples reported in the literature have shown
activity data confirming the superior performance of MNPs inside MOFs. In the present review, the
existing literature reports have been grouped depending on whether these MNPs correspond to a
single metal or they are alloys. The final section of this review summarizes the state of the art and
forecasts future developments in the field.
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1. Introduction

Metal–organic frameworks (MOFs) are solid porous crystalline materials constituted by metallic
nodes coordinated to rigid organic linkers, typically bi- or multipodal aromatic carboxylic acids or
nitrogenated heterocycles [1–9]. MOFs are currently under intense investigation as solid catalysts,
mainly due to the Lewis acidity of metal ions at the nodes [10–15], but also by possible acid [16] and
basic [17] groups present at organic linker (Figure 1). Another possibility to use MOFs in heterogeneous
catalysis is as support of metal nanoparticles (MNPs) and other types of guests that could act as active
sites in catalysis [18–32].

For the last application, MOFs are especially suited materials because they exhibit high surface
area, large porosity and the pore dimension can be tuned from micro to mesoporosity [3–5,33–37]. Of
special interest for the present review is the case of noble MNPs hosted inside the pores of MOFs [20].
In this case, MOFs are used as supports and can stabilize the incorporated MNPs by providing a
confined space that limits the growth of the MNPs by geometrical constraints [20,38–40]. These
materials composed by MNPs incorporated inside MOFs (MNPs@MOFs) exhibit the intrinsic catalytic
properties of the guest with some control in the accessibility to the site (shape selectivity) and some
possible synergy by the presence of metal ions or functional groups at the linker that can cooperate to
the catalysis [20,24].
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The field of catalysis by MNPs@MOFs has been extensively reviewed [18–31], paying attention to
various methodologies for preparation to ensure the internal location of the MNPs, characterization
techniques and the advantages in catalysis that derive from the encapsulation of the MNPs inside MOFs.
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In the present review, we will focus on these types of solid catalysts for the specific reduction of
nitro groups, particularly nitro aromatics. This reaction has considerable importance both from the
academic and industrial points of view for the preparation of anilines as well as in organic synthesis
combined with nitration of aromatic rings for the preparation of aniline derivatives [41–43].

The reduction of nitro groups to amino derivatives can be catalyzed by different metals depending
on the nature of the reducing agent. As a general rule, the activity of these metals increases when they
are prepared as MNPs. In this context, the activity and selectivity of MNPs for the specific case of nitro
reduction also benefit from the incorporation of these MNPs inside MOFs.

One issue that has to be carefully addressed when using MOFs in catalysis is their structural
stability. Although there are many MOFs that have limited thermal and chemical stability, there are
by now several examples including various MIL (MIL: Materials Institute Lavoisier) [2,44,45] based
materials and Zr4+-based MOFs [46,47] that have remarkable stability, both thermally and to chemical
reagents. For these reasons as well as their large porosity and surface area, these types of structurally
robust MOFs are the preferred hosts to incorporate MNPs.

Regarding the incorporation of MNPs inside MOFs, one of the general methodologies widely
used is adsorption of a metal salt precursor over MOFs and their subsequent reduction by metal
hydrides, hydrogen or other reducing agents to form MNPs@MOFs [18,20,21,28,31]. In this context,
one procedure that is becoming widely used since it generally leads to internal location of the NPs is
the so called “double solvent” method (DSM) in which the MOF is suspended in an apolar solvent
such as hexane and the metal precursor is dissolved in a small volume of water corresponding to the
internal porosity of the MOF [48,49]. This methodology relies on the hydrophilicity of the MOFs that
prefers the adsorption of the water against apolar solvents.

Regarding the location of the MNPs, it is obvious that to be considered as located within the
pores, the particle size of these MNPs should be smaller than the dimensions of the MOF cages and
cavities [18,20,21,31,50]. Therefore, small particle size is a prerequisite to admit the incorporation
of MNPs inside the pores. However, non-routine characterization techniques and particularly high
resolution electron tomography are necessary to provide convincing evidence that the NPs are
incorporated inside the pores [51]. Other measurements such as porosity and surface area and even
shape selectivity are only indirect ways to address this issue. These indirect evidences assume that the
decrease of porosity is due to the space occupied by MNPs. However, other possibilities such as pore
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blocking or location at the entrance of the pores could also result in decreased porosity of the materials
or even in the selective formation of the product with smallest dimension without having MNPs inside
the pores [18,20,21,28,31].

The as-prepared MNPs@MOFs should be characterized to provide evidence supporting the
existence of MNPs within the pores of MOFs. Powder XRD of pristine and MNPs@MOFs must be
compared to prove that the crystal structure of the MOF network is retained upon loading of metal
MNPs. Further, gas adsorption measurements would provide data concerning surface area and pore
volume before and after loading of MNPs. Brunauer–Emmett–Teller (BET) surface area and pore
volume of MOF should become reduced upon loading of MNPs within the pores of MOFs, but a
certain porosity should remain in MNPs@MOFs to exhibit efficient catalytic activity. In fact, a decrease
in the BET surface area is widely considered as one of the stronger evidences to confirm the internal
localization of MNPs within MOFs pores. X-ray photoelectron spectroscopy (XPS) reports on the
oxidation state of the MNPs loaded over MOFs. On other hand, transmission electron microscope
(TEM) images show information about the particle size distribution of MNPs inside the pores of
MOFs. TEM studies should be performed carefully to avoid damage of MOF matrix due to high
energy electron beam required in high resolution imaging. It is particularly important to characterize
by TEM the reused MNP@MOFs catalyst to ensure the retainment of particle size upon repeated
cycles. Comparison of the particle size between fresh and reused solid catalysts must be provided
as an evidence of catalyst stability. Scanning electron microscope (SEM) images show the structural
morphology of MOFs before and after loading of MNPs and after activity tests. In general, the
as-prepared hybrid solid must be characterized before and after catalytic reactions by any of these
techniques in order to ascertain the stability of MNPs during the course of a catalytic reaction.

The present review has been organized in two main sections. One of them describes the use
of single MNPs encapsulated inside MOFs as catalysts for nitro group reduction. The subsequent
section describes examples in where two metals forming alloys or even one example of a trimetallic
alloy have been prepared inside the MOFs and used as catalysts. In these examples, the preparation
procedure and the catalytic activity will be described, paying attention to show the superior catalytic
performance of these MNPs@MOFs composites in respect to other supported MNPs or homogeneous
catalysts. Reusability and catalyst stability is also sufficiently stressed. The final section provides a
brief summary of the current state of the art and the outlook for future development of the field.

2. Monometallic MNPs@MOFs

In this section, the use of monometallic MNPs supported on MOFs to effect the reduction of
nitro compounds will be described. Besides molecular H2, other reagents, such as formate and metal
hydrides have been used, each requiring a different metal catalyst. Table 1 summarizes the list of
various MNPs@MOFs as heterogeneous solid catalysts, particle size of MNPs, reducing agents and
corresponding catalytic reactions.

Table 1. List of various MNPs@MOFs used as heterogeneous solid catalysts for reduction
of nitrobenzene.

Catalyst MNPs (Size, nm) Reducing
Agent Catalytic Reaction No. Reuses Ref.

Pd@MIL-101(Cr) Pd (2.5 ± 0.3) H2

Synthesis of
2-(4-aminophenyl)-

1H-benzimidazole from
4-nitrobenzaldehyde

3 [52]

Pd-DUT-67 Pd (3.5) H2
Hydrogenation of

nitrobenzene - [53]

PdC60@UiO-67(Zr) Pd (5 ± 2) H2
Synthesis of N-benzylaniline

from nitrobenzene 5 [54]
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Table 1. Cont.

Catalyst MNPs (Size, nm) Reducing
Agent Catalytic Reaction No. Reuses Ref.

Ru-UiO-66(Zr) Ru (1.07) HCOOH Hydrogenation of
nitrobenzene 6 [55]

Au@MOF-3 Au (1.85 ± 0.83) NaBH4 4-Nitrophenol reduction 5 [56]

Au@ZIF-8(Zn,Cu) Au nanoclusters
(<2) NaBH4 4-Nitrophenol reduction 10 [57]

Fe3O4@MIL-100(Fe)-Pt Pt (1.9 ± 0.2) NaBH4 4-Nitrophenol reduction 10 [58]

Ni@MesMOF-1 Ni (1.4) NaBH4
Hydrogenation of

nitrobenzene 3 [59]

AuPd@UiO-66(Zr)-NH2 Au-Pd0.03 (5.3) H2
Reductive amination of

nitrobenzene 5 [60]

PdAg@MIL-101(Cr) PdAg (1.5 ± 0.3) H2

Synthesis of secondary
arylamines by hydrogenation

of nitrobenzene
3 [52]

Pd7Ni3@UiO-67(Zr) PdNi (3–4) H2
Hydrogenation of

nitrobenzene 5 [61]

Pd1Pt1@UiO-66(Zr) PdPt (4.2 ± 0.8) H2
Hydrogenation of

nitrobenzene 3 [62]

Pt8Co1@UiO-66(Zr) PtCo (2) H2
Hydrogenation of

nitrobenzene 5 [63]

CuNi@MIL-101(Cr) CuNi (3) H2
Hydrogenation of

nitrobenzene 7 [64]

Cu@Co@Ni/MIL-101(Cr) Cu@Co@Ni (3.3) H2
Hydrogenation of

nitrobenzene 5 [65]

Traditionally, hydrogenation reactions have been promoted by using noble MNPs such as Pd or
Pt dispersed in a high surface area support. In this context, the higher surface area and porosity of
MOFs offer several advantages for the deposition of MNPs in its framework. One of the frequently
studied MOFs in catalysis is the MIL-101 MOFs due to their robust structure under reaction conditions.
The MIL-101(Cr) framework, Cr3X(H2O)2O(BDC)3·nH2O (BDC = benzene-1,4-dicarboxylate, X = F,
OH, n ≈ 25) exhibits a highly-stable three-dimensional network with two types of giant cages with
diameters of 2.9 and 3.4 nm accessed through smaller pentagonal (2.9 nm) and hexagonal (3.4 nm)
windows and large BET surface area (around 3600 m2/g). Hence, Pd NPs have been incorporated
within MIL-101(Cr) (Pd@MIL-101(Cr)) using DSM and are stabilized by van der Waals interactions. The
activity of Pd@MIL-101(Cr) was tested in a tandem reaction involving Lewis acidity from unsaturated
metal centers of MIL-101 and encapsulated Pd NPs as hydrogenation sites [52]. TEM images showed
that the Pd NPs in Pd@MIL-101(Cr) are highly dispersed with the mean diameters of 2.5 ± 0.3 nm.
This average particle is compatible with these Pd NPs being located within the pores of MIL-101
since they are smaller than the pore size. The catalytic performance of Pd@MIL-101(Cr) was tested in
the synthesis of 2-(4-aminophenyl)-1H-benzimidazole by cyclocondensation of o-phenylenediamine
and 4-nitrobenzaldehyde via tandem reaction involving acid catalysis and catalytic hydrogenation
steps (Figure 2). A complete conversion of 4-nitrobenzaldehyde was achieved with Pd@MIL-101(Cr),
reaching >99% yield of the final desired product after tandem catalysis. In contrast, homogeneous
catalysts such as palladium acetate together with CuI gave lower yields around 80% and, in addition,
this homogeneous catalytic system requires a tedious purification procedure [66]. A control experiment
in the absence of catalyst gave only 30% conversion to an intermediate product of the tandem
reaction. Also, commercial Pd/C catalyst resulted in 50% conversion to afford the intermediate product
corresponding to the first step of the tandem process and the reaction could not proceed further due
to the lack of acidity. In another control experiment with MIL-101(Cr), the reaction was terminated
by affording intermediate product due to the lack of Pd NPs. Furthermore, reusability tests using
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Pd@MIL-101(Cr) indicated that the activity and selectivity remained stable for three cycles. TEM
images of the reused Pd@MIL-101(Cr) have shown that the sizes of Pd NPs are still retained after
three runs. These results clearly illustrate the synergistic effect between Lewis acidity provided by the
MIL-101(Cr) metal nodes and the confinement effect of MIL-101(Cr) lattice embedding Pd NPs to reach
superior activity of the Pd@MIL-101(Cr) composite in the synthesis of heterocyclic compounds.Molecules 2019, 24, x 5 of 24 
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Zirconium-based MOFs frequently exhibit high thermal and chemical stability together with
porosity and, therefore, are good candidates for their use as catalysts. In one study, Pd NPs
supported in DUT-67(Zr) were employed as catalysts for the hydrogenation of nitrobenzene under
mild reaction conditions [53]. DUT-67(Zr) is a MOF constituted by Zr6O4(OH)4 metal nodes connected
by thiophenedicarboxylic acid leading to the formation of a porous 3D structure with one cuboctahedra
cage (1.16 nm) and another octahedral (1.16 nm) cavity. Pd NPs supported in DUT-67(Zr) were
prepared by mixing PdCl2 as precursor with previously formed DUT-67 both in DMF and, then, adding
NaBH4 as reducing agent leading to the formation of Pd NPs. This methodology, however, resulted in
the formation of Pd NPs with particle sizes (3.5 nm average, Figure 3) larger than the MOF cages. Thus,
Pd NPs are mostly located on the crystal planes of the MOF with a small proportion inside the porous
matrix, but they are stabilized by van der Waals forces. The Pd(0.5 wt%)-DUT-67 catalyst was able to
promote the selective hydrogenation of nitrobenzene to aniline using ethanol as solvent at 60 ◦C, while
maintaining its stability as revealed by powder X-ray diffraction (PXRD). Regardless, the ability of the
Pd-DUT-67 material to act as hydrogenation catalyst indicates that further efforts should be done to
prepare a material with all Pd NPs encapsulated inside the MOF lattice with the aim of increasing their
overall catalytic activity and, particularly, the stability of encapsulated MNPs.

More recently, Pd NPs coordinated to fullerene C60 have been incorporated in the large
pores of UiO-67(Zr) (1.2 to 2.3 nm; 1575 m2 g−1) and, then, employed as a multifunctional
heterogeneous catalyst for the synthesis of secondary arylamines via tandem hydrogenation reaction
of nitrobenzene and reductive amination of benzaldehyde (Figure 4) [54]. UiO-67(Zr) is constituted by
4,4′-biphenyldicarboxylate ligands coordinated to Zr6O4(OH)4 clusters. Previous studies have reported
the use of C60 molecules to support MNPs [67], such as PdC60 [68,69] for hydrogenation of nitro
compounds and acetylene derivatives. Other studies have also shown that C60 alone can be employed
as catalyst for the photocatalytic hydrogenation at room temperature of aromatic nitro compounds
to their corresponding amino derivatives at 1 bar H2 [70]. The PdC60@UiO-67(Zr) (~1 wt% Pd and
~19 wt% C60) was characterized by the presence of homogeneously dispersed Pd NPs of 5 ± 2 nm
size [50]. Regardless the attribution of the decrease of the measured surface area and pore volume
in the series of UiO-67(Zr) (1739 m2 g−1, 0.99 cm3 g−1), C60@UiO-67(Zr) (1488 m2 g−1, 0.58 cm3 g−1),
PdC60@UiO-67(Zr) (506 m2 g−1, 0.35 cm3 g−1) to the internal location of C60 and/or C60Pd counterparts,
it is clear that the size of some Pd NPs larger than the diameter of the UiO-67(Zr) cavities should result
in their partial location on the outer part of the MOF particles. It has to be considered that external
deposition of Pd NPs on the UiO-67 crystallites can also result in a decrease of the N2 adsorption by
partial blocking of the pore entrances. XPS measurements of the PdC60@UiO-67(Zr) and the reference
PdC60 material showed a shift of the peaks corresponding to Pd to higher binding energies in respect
to those of Pd NPs supported on UiO-67(Zr) sample. This observation was attributed to the partial
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charge transfer from Pd NPs coordinated to C60. The activity of PdC60@UiO-67(Zr) was higher in
terms of conversion (100%) and selectivity (76% to N-benzylaniline, product A in Figure 4; and 24% to
benzyl alcohol, byproduct C in Figure 4) in respect to the use of PdC60 or Pd/C as reference catalysts.
The higher activity of PdC60 incorporated within UiO-67(Zr) is probably due to the Lewis acidity of
the metal nodes, even though they are not strong, and the coordination of Pd NPs with C60. The
low activity obtained with the use of Pd@UiO-67(Zr) or a physical-mixture of C60Pd and UiO-67(Zr),
indirectly demonstrates the cooperative effects of the different components in C60Pd@UiO-67(Zr). The
catalyst was reused five times without significant decrease in its catalytic activity while maintaining
its initial structure as revealed by chemical analysis of the used catalyst, powder XRD, HRTEM and
isothermal N2 adsorption measurements.
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In the last decade several authors have proposed the use of formic acid as a green and sustainable
hydrogen source, as an alternative in some applications to molecular H2. Some of the advantages
of the use of formic acid or its derivatives such as ammonium formate or sodium formate in respect
to H2 include their easy storage, transportation and manipulation. In this context, ruthenium NPs
supported on the robust UiO-66(Zr) material have shown to be an appropriate catalyst for the reduction
of nitroarenes to their corresponding amines using formic acid as a hydrogen source [55]. Small
ruthenium NPs (1.07 nm) were incorporated into the cavities of UiO-66(Zr) (pore sizes from 0.6 to
1 nm) [71] by adsorption of RuCl3 in UiO-66(Zr) using ethyl acetate as solvent and, then, reduction
of Ru3+ to Ru0 using NaBH4 [55]. Isothermal N2 adsorption measurements confirm the decrease of
BET and pore volume values of Ru-UiO-66(Zr) (876 m2 g−1, 0.39 cm3 g−1) in respect to the parent
UiO-66(Zr) (1276 m2 g−1, 0.53 cm3 g−1), presumably due to the location of Ru NPs into the pores of
UiO-66(Zr) solid. XPS measurements evidence the co-existence of Ru0, RuO2 and RuO2.xH2O in the
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Ru-UiO-66(Zr) material. The Ru-UiO-66(Zr) hybrid stabilized by van der Waals forces was employed
as catalyst for the complete nitrobenzene reduction to aniline by formic acid under optimized reaction
conditions. The benefits of water in the reaction medium were ascribed to dissociation of formic acid
into H+ and HCOO−. Interestingly, the 2-propanol and H2O mixture (9:1 volume ratio) is close to
its azeotropic composition and, therefore, it allows easy solvent recycling. The heterogeneity of the
reaction was confirmed by hot-filtration test. The catalyst can be reused six times without observing
decrease of catalytic activity. Characterization of the used catalyst by TEM revealed a slight increase
of the ruthenium particle size in respect to the fresh sample (1.27 vs. 1.07 nm), while XPS of the
used sample confirmed that the oxidation state of ruthenium NPs is almost the same as that of the
fresh sample. Also, inductively coupled plasma atomic emission spectrometry (ICP-AES) revealed
the almost complete absence of metal leaching during the reaction. The scope of the reaction was
studied using a series of nitrobenzene compounds substituted with electron donating or withdrawing
groups, observing in all cases quantitative conversions with complete selectivities, except in the case of
p-nitrobenzaldehyde or nitrocyclohexane where the formation of oligomers or unidentified compounds
was observed.
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Metal hydrides have been traditionally employed as reducing agents. In the last few decades,
stable and easily-handled hydrides such as NaBH4 have been employed together with a catalyst
to promote reduction reactions. In this line, MNPs supported on MOFs have been employed as
heterogeneous catalysts for the reduction of aromatic nitro compounds to their corresponding aromatic
amines using NaBH4 as reducing agent. One of the challenges in the area of heterogeneous catalysis
using MOFs together with MNPs is to develop reliable procedures for the preparation of well-dispersed
small MNPs encapsulated into the framework cavities [18,20–22,26,29,31,72]. In general, one of the
important parameters to control the MNP size distribution is the metal loading. The use of low metal
loadings allows obtaining small MNPs (<5 nm) with high catalytic activity. However, as the metal
loading into the MOF increases beyond 20 wt% the average particle size and standard deviation
of the loaded MNPs increase considerably resulting in a catalyst with decreased catalytic activity.
Particularly, a decrease in the values of turn over numbers (TON) and frequencies (TOF) is observed
upon metal loading increase [38]. In this sense, several studies have focused on developing new
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methodologies to increase the metal loading into the MOF cavities, while preserving the internal
location of the NPs and, therefore, maintaining small particle size of the MNPs. In one example,
exceptionally high loading of Au NPs into the cavities of three MOFs functionalized with alkyne
moieties has been achieved [56]. The 3D MOFs were prepared by solvothermal conditions using
5-(prop-2-yn-1-yloxy)isophthalic acid and 4,4′-bipyridyl derivatives as organic ligands and Zn(NO3)2

as the metal source (Figure 5). This strategy takes advantage of the high alkynophilicity of Au3+

ions that allows the high dispersion of this ion in the interior of the material and, as consequence,
the resulting Au NPs into the MOF cavities as small NPs (1.85 ± 0.85 nm)) at high metal loadings
(~50 wt%). To further validate the role of the ethynyl groups into the MOF structure for the formation
of small Au NPs at high loading, an analogous MOF functionalized with phenyl moiety, instead
of the ethynyl group was also prepared as a control. In this case, a gold metal loading of 5 wt%
resulted in the formation of gold agglomerates with particle sizes larger than 12 nm located on the
outer surface of the MOF particles. Au NPs supported on the ethynyl-based MOF by electrostatic
interaction resulted in being a stable and reusable catalyst to perform the reduction of 4-nitrophenol
or 2,4-dinitrophenol to their corresponding amino derivatives by using NaBH4 in aqueous media.
The activity of this catalyst for the 4-nitrophenol reduction by NaBH4 was more than one order of
magnitude (rate constant 6.64 × 10−2 s−1) greater or comparable than analogous Au catalysts supported
on Nano ActiveTM Mg [59], meso-HAP (HAP: hydroxyapatite) [73], PAMAM G3 (PAMAM G3: 3rd

generation poly(amidoamine)) [74], SiO2 [75], SiO2@Yne (Yne: alkynyl carbamate moieties) [76],
Au-SiO2@AeThio (AeThio: amino-sulfide branches) [77], CeO2-NT (NT: nanotubes) [78], PPy-NTs
(PPy: polypyrrole) [79], MIL-100(Fe) [80], or hm-ZrO2 (hm: hollow-mesoporous) [81]. Interestingly, if
the reduction of 4-nitrophenol takes place using ethanol as solvent the resulting product was its azo
derivative. It was proposed that ethanol as solvent favors the accumulation of nitroso intermediate
that reacts further with the amino product leading to the formation of the azo compound. The scope of
the azo compound formation was validated for a series of nitrobenzene derivatives containing electron
donor or withdrawing groups.

In addition to the importance of obtaining high metal loading with small particle size, the electronic
structure of MNPs can determine its catalytic activity. Recently, gold nanoclusters (3 wt%, <2 nm)
encapsulated in a Cu-doped ZIF-8 nanorod arrays (Au@ZIF-8(Zn,Cu), 0.7 and 1.2 nm pore diameters)
on supported Ni foam (Figure 6) have been employed as catalyst with enhanced activity to promote the
4-nitrophenol reduction to 4-aminophenol using NaBH4 as reducing agent [57]. It has been proposed
that doping of Cu2+ ions in the ZIF-8(Zn) framework modifies the electronic structure of encapsulated
gold nanoclusters favoring the formation of gold hydride intermediates and, in this way, Cu2+ increases
indirectly the catalytic activity of Au NPs. XPS measurements allow the characterization of Au0

nanoclusters with a positive 0.4 eV shift in the binding energy of the Au 4f peak in respect to the
standard value of metallic Au NPs. The observation of the electropositivity of Au nanoclusters in
Au@ZIF-8(Zn,Cu) was attributed to their interaction with electrophilic coordinatively unsaturated
Cu Nx (x < 4) ions. In support of this proposal, the Cu K-edge in synchrotron X-ray absorption
near-edge structure (XANES) of Au@ZIF-8(Cu) confirmed the presence of Cu2+ ions with a slight
electronegativity. Fourier-transformed k3-weighted extended XAFS (FT-EXAFS) confirms the presence
of coordinatively unsaturated Cu–N sites (3.5 coordination number) in the Au@ZIF-8(Cu) solid, while
Au L3-edge in XANES reveals the presence of Au–Cu coordination in the first shell of gold centers.
The Au@ZIF-8(Zn,Cu) material exhibited higher catalytic activity than that of either Au@ZIF-8(Zn),
unsupported Au NPs, ZIF-8(Zn,Cu) or ZnO. Importantly, the higher the Cu2+ doping in Au@ZIF-8(Cu),
the higher the catalytic activity. The catalyst was reused for ten times without observing decrease in its
catalytic activity and maintaining its structure according to SEM, TEM and XPS analyses. The scope of
the catalyst was confirmed by performing the catalytic reduction of o- and m-nitrophenol as well as
several nitrobenzene derivatives having electron donor or electron withdrawing substituents to their
corresponding amino derivatives.



Molecules 2019, 24, 3050 9 of 23Molecules 2019, 24, x 9 of 24 

 

 
Figure 5. (a) Schematic illustration of MNPs synthesis on ethynyl-based MOFs. (b) Chemical 
structure of the ligands employed for the preparation of the MOFs, (c) STEM bright field image of the 
Au@MOF-3. (d) HRTEM image showing lattice spacing (d = 2.4 Å) corresponding to (111) plane of fcc 
Au. Reproduced with permission from [56]. 

In addition to the importance of obtaining high metal loading with small particle size, the 
electronic structure of MNPs can determine its catalytic activity. Recently, gold nanoclusters (3 wt%, 
<2 nm) encapsulated in a Cu-doped ZIF-8 nanorod arrays (Au@ZIF-8(Zn,Cu), 0.7 and 1.2 nm pore 
diameters) on supported Ni foam (Figure 6) have been employed as catalyst with enhanced activity 
to promote the 4-nitrophenol reduction to 4-aminophenol using NaBH4 as reducing agent [57]. It has 
been proposed that doping of Cu2+ ions in the ZIF-8(Zn) framework modifies the electronic structure 
of encapsulated gold nanoclusters favoring the formation of gold hydride intermediates and, in this 
way, Cu2+ increases indirectly the catalytic activity of Au NPs. XPS measurements allow the 
characterization of Au0 nanoclusters with a positive 0.4 eV shift in the binding energy of the Au 4f 
peak in respect to the standard value of metallic Au NPs. The observation of the electropositivity of 
Au nanoclusters in Au@ZIF-8(Zn,Cu) was attributed to their interaction with electrophilic 
coordinatively unsaturated Cu Nx (x < 4) ions. In support of this proposal, the Cu K-edge in 
synchrotron X-ray absorption near-edge structure (XANES) of Au@ZIF-8(Cu) confirmed the 
presence of Cu2+ ions with a slight electronegativity. Fourier-transformed k3-weighted extended 
XAFS (FT-EXAFS) confirms the presence of coordinatively unsaturated Cu–N sites (3.5 coordination 
number) in the Au@ZIF-8(Cu) solid, while Au L3-edge in XANES reveals the presence of Au–Cu 
coordination in the first shell of gold centers. The Au@ZIF-8(Zn,Cu) material exhibited higher 
catalytic activity than that of either Au@ZIF-8(Zn), unsupported Au NPs, ZIF-8(Zn,Cu) or ZnO. 
Importantly, the higher the Cu2+ doping in Au@ZIF-8(Cu), the higher the catalytic activity. The 
catalyst was reused for ten times without observing decrease in its catalytic activity and maintaining 
its structure according to SEM, TEM and XPS analyses. The scope of the catalyst was confirmed by 

Figure 5. (a) Schematic illustration of MNPs synthesis on ethynyl-based MOFs. (b) Chemical structure
of the ligands employed for the preparation of the MOFs, (c) STEM bright field image of the Au@MOF-3.
(d) HRTEM image showing lattice spacing (d = 2.4 Å) corresponding to (111) plane of fcc Au. Reproduced
with permission from [56].

Molecules 2019, 24, x 10 of 24 

 

performing the catalytic reduction of o- and m-nitrophenol as well as several nitrobenzene 
derivatives having electron donor or electron withdrawing substituents to their corresponding 
amino derivatives. 

 

Figure 6. (a) Schematic diagram illustrating the synthetic procedures of the catalyst samples. (b) The 
SEM image of ZnO NRs. (c) The SEM image of ZIF-8(Cu) nanorod arrays (NRAs). (d) The TEM 
image of ZIF-8(Cu) NRAs. (e) The SEM image of AuNC@ZIF-8(Cu) NRAs (NC: nanoclusters). (f) The 
TEM image of AuNC@ZIF-8(Cu) NRAs. (g) The HRTEM image of AuNC@ZIF-8(Cu) NRAs. (h) The 
element mapping of Zn, Cu and Au of AuNC@ZIF-8(Cu) NRAs. Reproduced with permission from 
[57]. 

Catalyst recovery and recycling is one of the important issues in the development of 
heterogeneous catalysts for industrial applications. Traditionally, filtration or centrifugation are the 
most widely used methodologies for the separation of the catalyst from batch reactors. Other 
possibility consists in the preparation of a magnetic catalyst that can be easily recovered by applying 
weak magnetic fields. In one example of this strategy, a core–shell material composed by magnetite 
NPs (core) surrounded by MIL-100(Fe) solid (shell) loaded with noble NPs has been prepared and 
employed as magnetically recoverable catalyst to effect the reduction of aromatic nitro compounds 
to their corresponding amines by using NaBH4 as reducing agent [58]. Figure 7 shows the 
preparation of the catalyst by obtaining in a first step the Fe3O4 core (~250 nm) functionalized with 
mercaptoacetic acid (MAA) and, then, a MIL-100(Fe) shell was prepared via layer-by-layer assembly 
process that allows to control the shell thickness from about 25 to 100 nm. By means of the 
deposition-reduction method with NaBH4, Au (2.0 ± 0.2 nm), Pd (2.2 ± 0.2 nm) or Pt (1.9 ± 0.2 nm) 
NPs were incorporated within the mesopores of the MIL-100(Fe) shell in the Fe3O4@MIL-100(Fe) 
composite. Fe3O4@MIL-100(Fe)-Pt material exhibited the highest activity for 4-nitrophenol reduction 
to 4-nitroaniline by NaBH4 with an apparent first-order rate constant of 2.58 min−1. This value is 
higher than those previously reported for other noble metal-based catalysts such as 
AucoreAgshell-ZIF-8 [82], MIL-100(Fe) [80], or magnetic double-shell Fe3O4@TiO2/Au@Pd@TiO2 
microsphere (Fe3O4 core and double TiO2 shells with Au and Pd NPs) [83]. The scope of the reaction 
was studied by reducing a variety of nitrophenol derivatives (TOF 450–3573 h−1), nitroaniline 
compounds (1297–2091 h−1) and p-nitrophenylhydrazine (TOF 563 h−1). The most active 
Fe3O4@MIL-100(Fe)-Pt catalyst was reused ten consecutive times without loss of the catalytic 
activity. It should be noted that after each catalytic reaction the catalyst recovery was done using a 
magnet and, then, washed with ethanol and dried before a new catalytic cycle. ICP-AES analysis of 
the liquid phase did not detect the presence of Pt, while nearly 80% of the initial Pt content was 
maintained in Fe3O4@MIL-100(Fe)-Pt after ten cycles. 

Figure 6. (a) Schematic diagram illustrating the synthetic procedures of the catalyst samples. (b) The
SEM image of ZnO NRs. (c) The SEM image of ZIF-8(Cu) nanorod arrays (NRAs). (d) The TEM image
of ZIF-8(Cu) NRAs. (e) The SEM image of AuNC@ZIF-8(Cu) NRAs (NC: nanoclusters). (f) The TEM
image of AuNC@ZIF-8(Cu) NRAs. (g) The HRTEM image of AuNC@ZIF-8(Cu) NRAs. (h) The element
mapping of Zn, Cu and Au of AuNC@ZIF-8(Cu) NRAs. Reproduced with permission from [57].
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Catalyst recovery and recycling is one of the important issues in the development of heterogeneous
catalysts for industrial applications. Traditionally, filtration or centrifugation are the most widely
used methodologies for the separation of the catalyst from batch reactors. Other possibility consists
in the preparation of a magnetic catalyst that can be easily recovered by applying weak magnetic
fields. In one example of this strategy, a core–shell material composed by magnetite NPs (core)
surrounded by MIL-100(Fe) solid (shell) loaded with noble NPs has been prepared and employed
as magnetically recoverable catalyst to effect the reduction of aromatic nitro compounds to their
corresponding amines by using NaBH4 as reducing agent [58]. Figure 7 shows the preparation of the
catalyst by obtaining in a first step the Fe3O4 core (~250 nm) functionalized with mercaptoacetic acid
(MAA) and, then, a MIL-100(Fe) shell was prepared via layer-by-layer assembly process that allows to
control the shell thickness from about 25 to 100 nm. By means of the deposition-reduction method
with NaBH4, Au (2.0 ± 0.2 nm), Pd (2.2 ± 0.2 nm) or Pt (1.9 ± 0.2 nm) NPs were incorporated within
the mesopores of the MIL-100(Fe) shell in the Fe3O4@MIL-100(Fe) composite. Fe3O4@MIL-100(Fe)-Pt
material exhibited the highest activity for 4-nitrophenol reduction to 4-nitroaniline by NaBH4 with an
apparent first-order rate constant of 2.58 min−1. This value is higher than those previously reported
for other noble metal-based catalysts such as AucoreAgshell-ZIF-8 [82], MIL-100(Fe) [80], or magnetic
double-shell Fe3O4@TiO2/Au@Pd@TiO2 microsphere (Fe3O4 core and double TiO2 shells with Au
and Pd NPs) [83]. The scope of the reaction was studied by reducing a variety of nitrophenol
derivatives (TOF 450–3573 h−1), nitroaniline compounds (1297–2091 h−1) and p-nitrophenylhydrazine
(TOF 563 h−1). The most active Fe3O4@MIL-100(Fe)-Pt catalyst was reused ten consecutive times
without loss of the catalytic activity. It should be noted that after each catalytic reaction the catalyst
recovery was done using a magnet and, then, washed with ethanol and dried before a new catalytic
cycle. ICP-AES analysis of the liquid phase did not detect the presence of Pt, while nearly 80% of the
initial Pt content was maintained in Fe3O4@MIL-100(Fe)-Pt after ten cycles.Molecules 2019, 24, x 11 of 24 
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Figure 7. (a) Route followed for the fabrication of Fe3O4@M/MIL-100 (Fe) (M = Au, Pt, Pd) microspheres.
MAA, mercaptoacetic acid; H3btc, 1,3,5-benzenetricarboxylic acid. (b) Magnetic separation–redispersion
process of Fe3O4@Pt/MIL-100(Fe) microspheres. (c) TEM images of individual Fe3O4@MIL-100 (Fe)
core–shell nanospheres after 60 assembly cycles. Reproduced with permission from [58].
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MNPs of base transition metals such as nickel or iron can be employed as cost-effective alternatives
to noble metals to promote NaBH4 activation in the reduction of nitro aromatics. In one example,
Ni NPs encapsulated into the cavities of a mesoporous MOF have been prepared and tested for the
nitrobenzene reduction using NaBH4 [59]. With the aim to avoid MNP agglomeration on the crystal
surface, Ni NPs have been immobilized into the MOF framework by gas-phase adsorption and, then,
a reduction step using H2 (Figure 8). The mesoporous MOF used in the study is constituted by
triazine-1,3,5-tribenzoate organic ligands connected to terbium ions leading to the formation of a 3D
structure with two types of mesocages (3.9 and 4.7 nm in diameter), connected through pentagonal
and hexagonal windows of 1.5 and 1.7 nm diameters, respectively. Interestingly, it was possible to
achieve the incorporation of Ni NPs into the mesocages of the MOF at loadings as high as 20, 30 and
35 wt% without compromising the particle size that remained between 1.4 to 1.9 nm. The Ni NPs are
well-dispersed and uniformly distributed without observation of random aggregates. The Ni-MOF
material was employed as a reusable heterogeneous catalyst (three uses) for the complete conversion
with full selectivity of nitrobenzene to aniline in methanol as solvent. The higher activity obtained
using the Ni-MOF at 20 wt% loading in respect to that at 35 wt% was attributed to the higher surface
area and pore volume of the former (470 m2/g and 0.28 cm3/g vs. 300 m2/g and 0.17 cm3/g).
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3. Bimetallic and Trimetallic MNPs@MOFs

Alloying two or more different transition metals allows the catalytic activity of the MNPs to be
tuned. In one of the examples, alloyed Au–Pd NPs were loaded into UiO-66-NH2 MOF catalyst via
adsorption/reduction method to obtain AuPd@UiO-66(Zr)-NH2 and their activity was examined in
the reductive amination with nitroarenes [60]. Powder XRD indicated no changes in the crystallinity
of UiO-66(Zr)-NH2 during the loading of these NPs. TEM images clearly showed that the average
particle diameter of Au-Pd0.03 in Au-Pd0.03@UiO-66(Zr)-NH2 was 5.3 nm and further Pd and Au NPs
existed with uniform dispersion and nearly consistent distribution of bright spots (Figure 9). The
presence of accessible Pd atoms on the sample of the alloy NPs was revealed by IR spectroscopy using
CO as a probe molecule. The catalytic performance of Au-Pdx@UiO-66(Zr)-NH2 was studied in the
reductive amination of nitrobenzene to N-phenylbenzylamine. Au-Pd0.03@UiO-66(Zr)-NH2 afforded
complete conversion of nitrobenzene with 98% selectivity towards the desired N-phenylbenzylamine
product at 90 ◦C under hydrogen atmosphere. Under identical conditions Au@UiO-66(Zr)-NH2

showed only 7% conversion of nitrobenzene with 75% selectivity to the wanted product. Similarly,
Pd0.03@UiO-66(Zr)-NH2 afforded 10% conversion with 72% selectivity of the coupling product. Further,
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the physical mixture of Au@UiO-66(Zr)-NH2 and Pd0.03@UiO-66(Zr)-NH2 gave 29% conversion with
64% selectivity. These results clearly indicate that Au-Pd0.03@UiO-66(Zr)-NH2 exhibits superior activity
than the related control catalysts, showing the beneficial effects of Au–Pd alloy NPs. In contrast,
Au-Pd0.03@UiO-66(Zr) showed 29% conversion of nitrobenzene with 92% selectivity of the final
product. This result suggests the importance of a suitable functionalization of the terephthalate linker
in UiO-66(Zr) to boost the activity for this reaction under these conditions. Further, leaching tests
by ICP-AES indicated the presence of a negligible amount of Au in the solution. Reusability test
showed nearly 20% decrease of conversion after the first run and this was believed to be due to the
poisoning of the alloy NPs during the reaction. Further studies are required to prove these claims with
appropriate evidences.Molecules 2019, 24, x 13 of 24 
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Recently, bimetallic PdAg@MIL-101(Cr) catalysts with different Pd/Ag ratios were prepared
using the DSM and their activity was studied in the one-pot conversion of nitroarenes to secondary
amines [52]. Powder XRD indicated that the crystallinity of MIL-101(Cr) is retained upon loading Pd/Ag
species. XPS showed that both Pd and Ag atoms are in the metallic state. TEM and high-angle annular
dark field scanning transmission electron microscopy (HAADF-STEM) has shown tiny PdAg NPs
with the average size of 1.5 ± 0.3 nm. The activity of PdAg@MIL-101(Cr) was studied in the synthesis
of secondary amines from nitroarenes via tandem reaction involving nitroarene hydrogenation,
reductive amination of aldehydes or ketones, and selective hydrogenation to secondary arylamines
(Figure 10). Pd@MIL-101(Cr) was efficient in rapidly completing the conversion of nitrobenzene with
56% selectivity to the wanted product after 3 h. On other hand, the alloying of Pd with Ag required
a longer time to reach complete conversion, but it provided higher selectivity. Among the various
catalysts tested, Pd2Ag1@MIL-101(Cr) showed complete conversion of nitrobenzene with the final
85% product selectivity. Further, the experimental results have shown that Pd NPs exhibit intrinsic
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hydrogenation activity, while Ag plays the role of greatly improving selectivity of the target product. On
other hand, Pd/Al2O3 provided 67% conversion with 53% selectivity to the final product, which is lower
than Pd@MIL-101(Cr). In addition, the physical mixture of Pd@MIL-101(Cr) and Ag@MIL-101(Cr)
exhibited lower catalytic activity (70%) and lower selectivity (61%) compared to PdAg@MIL-101(Cr).
This catalytic data provide indirect support for the possible formation of Pd-Ag bimetallic NPs in
MIL-101(Cr). This likely possibility is, however, difficult to prove by electron microscopy analysis
due to the similarity between Pd and Ag. On the other hand, commercial Pd/C exhibited comparable
activity to Pd@MIL-101(Cr) catalyst, but with lower selectivity (30%), suggesting the critical role of
acidity in the tandem process. The catalytic activity and selectivity of Pd2Ag1@MIL-101(Cr) was
retained for three cycles, suggesting its good recyclability and durability. Powder XRD showed no loss
of crystallinity after three runs. Further, no notable changes were seen for the distribution of PdAg
NPs between fresh and three times used catalysts.
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Figure 10. Synthesis of secondary arylamines through hydrogenation of nitrobenzene and reductive
amination of benzaldehyde.

Pd@UiO-67(Zr), Ni@UiO-67(Zr) and PdNi@UiO-67(Zr) were prepared as shown in Figure 11 and
their catalytic performance was tested in the hydrogenation of nitrobenzene (Figure 12) [61]. Powder
XRD confirmed that the crystalline nature of UiO-67(Zr) is retained after incorporation of these MNPs.
The BET surface area values were 2212, 1801, 1683 and 1700 m2 g−1 for UiO-67(Zr), Pd@UiO-67(Zr),
Ni@UiO-67(Zr), and Pd7Ni3@UiO-67(Zr), respectively. This decrease in BET surface area was taken as
an indirect evidence of the internal loading of MNPs within the pores of UiO-67. TEM images indicated
that the average particle size of Pd, Ni and PdNi was around 3–4 nm. XPS analysis showed the metallic
state of Pd and Ni in Pd7Ni3@UiO-67(Zr). The catalytic activity of Ni@UiO-67(Zr) was studied in the
hydrogenation of nitrobenzene at room temperature using hydrogen, but no activity was observed. In
contrast, Pd@UiO-67(Zr) exhibited a complete conversion of nitrobenzene within 18 h. Interestingly,
among the bimetallic PdxNiy@UiO-67(Zr) catalysts studied for this reaction under similar conditions,
Pd7Ni3@UiO-67(Zr) provided the best catalytic performance affording quantitative nitrobenzene
conversion within 3 h. These results were interpreted as indicating a synergistic effect in the Pd-Ni
alloy as compared to monometallic MNPs. No appreciable decay in activity was observed in the five
cycles of reusability test. Powder XRD of the recycled catalyst supports that the structural integrity of
the MOF is mostly retained under the reaction conditions. Further, no metal leaching was observed
and chemical analysis of the reused catalyst showed identical metal loading as the fresh catalyst.
Furthermore, a different Pd7Ni3/UiO-67(Zr) sample was prepared following a two-step procedure
consisting in the prior preparation of Pd before deposition of Ni. This different Pd7Ni3/UiO-67(Zr)
exhibited an activity under identical conditions of 84% of nitrobenzene after 2 h. Besides, the activity
of this Pd7Ni3/UiO-67(Zr) sample prepared in two steps dropped significantly during reusability test,
showing 51% conversion in the fifth cycle. These catalytic data clearly demonstrate that the preparation
procedure of MNPs within the pores of MOFs is a crucial factor to achieve optimal activity. This could
be related to the statistical distribution of the different metal atoms in the NPs.
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Preformed core–shell PdPt and RuPt NPs have been embedded into chemically robust UiO-66(Zr)
MOFs and their activity was tested in the hydrogenation of nitrobenzene [62]. Powder XRD indicated
the crystallinity of the UiO-66(Zr) sample upon loading these MNPs. The preformed core Pd NPs
size was of 3.4 ± 0.6 nm and the addition of a Pt shell leads to an increase of the particle size. TEM
images showed the average NPs sizes of 4.2 ± 0.8 nm for Pd1Pt1@UiO-66(Zr) and 4.8 ± 0.7 nm for
Pd1Pt2@UiO-66(Zr). Size selective reduction of nitrobenzene and 3,5-dimethylnitrobenzene was
performed with these catalysts using hydrogen as reducing agent at room temperature. No conversion
of these substrates was observed with UiO-66(Zr) even after 24 h. The conversion of nitrobenzene was
higher with Pd1Pt1@UiO-66(Zr) as catalyst than for Pt@UiO-66(Zr) and the value is comparable to Pt/C
(Figure 13). This result indicates synergetic effects between Pd and Pt atoms in the bimetallic NPs to
promote the reduction effectively. For instance, Pd1Pt1@UiO-66(Zr) was able to reduce quantitatively
nitrobenzene to aniline within 2 h at room temperature.
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Figure 13. Time–conversion plot of (a) nitrobenzene and (b) 3,5-dimethylnitrobenzene using
Pd1Pt1@UiO-66(Zr), Pt@UiO-66(Zr) and Pt/C as catalysts. Reproduced with permission from [62].

In addition, catalysis by Pd1Pt1@UiO-66(Zr) exhibits shape selectivity. Thus, while Pt/C exhibited a
similar temporal conversion profile for 3,5-dimethylnitrobenzene and nitrobenzene, Pd1Pt1@UiO-66(Zr)
and Pt@UiO-66(Zr) were almost inert for 3,5-dimethylnitrobenzene reduction under identical conditions
(Figure 13). Comparison of the initial reaction rate indicates that more than 99% conversion of
nitrobenzene and 3,5-dimethylnitrobenzene was achieved with Pt/C featuring easy accessibility to Pt
NPs located on the surface. In contrast, mono- or bimetallic NPs incorporated within UiO-66 exhibited
a conversion as low as 0.2% (Pd1Pt1@UiO-66(Zr)) and 0.5% (Pt@UiO-66(Zr)) for this trisubstituted
benzene. These catalytic tests strongly support the complete encapsulation of the MNPs within the
UiO-66(Zr) pores as the diffusion of 3,5-dimethylnitrobenzene into the MOF voids is not feasible due
to its large molecule size, thus showing the operation of size selective catalysis. Pd1Pt1@UiO-66(Zr)
was reused for three cycles with no loss in its activity and size selectivity. Powder XRD measurements
confirmed the structural integrity of the UiO-66(Zr) lattice after three runs, without observing any
decrease in the intensity of the encapsulated MNPs. TEM images of three-times used PdPt@UiO-66(Zr)
sample did not show measurable changes in the particle size.

Ultrafine and uniform Pt–Co alloy NPs were encapsulated within the UiO-66(Zr) pores without
the assistance of any surfactant and their activity was studied in the hydrogenation of nitrobenzene [63].
Powder XRD showed that the crystal structure of UiO-66(Zr) is not affected during the loading of PtCo
NPs. BET surface area values for the as-synthesized UiO-66(Zr), Pt@UiO-66(Zr), Pt14Co1@UiO-66(Zr),
Pt8Co1@UiO-66(Zr), Pt4Co1@UiO-66(Zr) and Pt1Co1@UiO-66(Zr) were 1148, 930, 1011, 1043, 1055 and
1083 m2g−1, respectively. The TEM images of Pt8Co8@UiO-66(Zr) indicated homogeneous distribution
of MNPs with an average size around 2 nm, suggesting the internal localization of these NPs. Further,
HAADF-STEM and EDX elemental mapping confirmed that Pt and Co were evenly dispersed within
the UiO-66(Zr) framework. XPS has also confirmed that Pt and Co exist in the metallic state within
the pores of UiO-66(Zr). In order to demonstrate the confinement of PtCo within the pores of
UiO-66(Zr), an additional catalyst containing 2 wt% PtCo catalyst deposited on the external surface of
UiO-66 obtained by the impregnation method (PtCo/UiO-66(Zr)) was also prepared. TEM images of
PtCo/UiO-66(Zr) revealed that most of NPs in this sample are located on the external surface with
large particle size around 7–8 nm. It was proposed that the difference in particle size distribution
between Pt1Co1@UiO-66(Zr) and PtCo/UiO-66(Zr) reflects the effect of the MOF structure impeding
particle growth. The activity of these two solids was tested in the hydrogenation of nitrobenzene using
hydrogen as reducing agent. Pt8Co1@UiO-66(Zr) exhibited the highest catalytic activity, providing
quantitative conversion under atmospheric hydrogen pressure at 25 ◦C within 45 min. On other hand,
under identical conditions, Pt@UiO-66(Zr) reached 85% conversion after 60 min. These results indicate
that Pt8Co1@UiO-66(Zr) outperforms Pt@UiO-66(Zr). This superior activity of Pt8Co1@UiO-66(Zr) was
attributed to the effect of Co doping. On other hand, PtCo/UiO-66(Zr) (with 8:1 Pt/Co) gave remarkably
inferior activity in the hydrogenation of nitrobenzene thus, showing the benefits of the confinement
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of the NPs to achieve small particle size. Reusability experiments did not reveal a significant loss in
the activity up to five cycles (Figure 14). Further, powder XRD and TEM measurements indicated no
changes in crystallinity and particle size, respectively (Figure 14). In contrast, PtCo/UiO-66 showed
poor reusability due to the severe aggregation of NPs under reaction conditions (Figure 14).Molecules 2019, 24, x 17 of 24 
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Figure 14. Reusability of the Pt8Co1@UiO-66(Zr) (a) and PtCo/UiO-66(Zr) (8:1) (b) in the hydrogenation
of nitrobenzene. TEM images and corresponding particle-size distribution histograms of the recycled
Pt8Co1@UiO-66(Zr) (c,e) and PtCo/UiO-66(Zr) (d,f) after being used five times. Reproduced with
permission from [63].

Bimetallic CuNi NPs were confined inside MIL-101(Cr) to obtain CuNi@MIL-101(Cr) using DSM
and their catalytic performance was investigated in the cascade reactions of NH3BH3 dehydrogenation
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and nitroarene reduction under mild conditions (Figure 15) [64]. Powder XRD indicated no loss of
crystallinity upon loading CuNi NPs. TEM images revealed that CuNi NPs exist with the particle size
around 3 nm and the HRTEM image with a lattice fringe distance of 0.206 nm indicates that the CuNi
NPs form an alloy. Further, Cu and Ni loading was found to be 1.09 wt% and 2.65 wt%, respectively as
determined by ICP-AES. The BET surface areas of MIL-101(Cr) and CuNi@MIL-101(Cr) were 3660 and
1983 m2g−1, respectively. Interestingly, the TOF achieved for the hydrogenation of nitrobenzene using
CuNi@MIL-101(Cr) at room temperature was around 99 molnitrobenzene molNi

−1 h−1 which is much
better than those cascade reactions reported on the use of MNPs@MOFs with noble metals [52,84–86].
Various nitroarenes with electron-donating substituents were reduced to their respective amines under
identical conditions. In contrast, the aniline yield was around 2% after 19 h with hydrogen as reducing
agent, indicating that the limited hydrogen gas dissolved in the solution significantly affected the
rate of the reaction. The activity of CuNi@MIL-101(Cr) was maintained for twenty consecutive cycles
without any activation treatment, thus showing superior nature of the catalyst. Further, the size
and morphology of CuNi NPs were also not affected after the twenty runs, thus showing the robust
nature of these NPs within the pores of MIL-101(Cr). In contrast, CuNi/MIL-101(Cr) prepared by wet
impregnation maintained its activity for four consecutive cycles and its activity gradually decreased to
85, 81 and 79% for the subsequent 5th–7th cycles, respectively. This gradual activity loss was due to the
lack of stability of CuNi NPs located outside of MIL-101(Cr) pores.
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Figure 15. Preparation procedure of CuNi@MIL-101(Cr) by the DSM and its use as catalyst for a cascade
reaction involving dehydrogenation of NH3BH3 and hydrogenation of nitroarenes. Reproduced with
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Tiny Cu@Co@Ni core–shell NPs comprising of Cu core, Co middle shell and Ni outer shell stabilized
inside MIL-101(Cr) MOF (Cu@Co@Ni/MIL-101(Cr)) were synthesized and their catalytic activity tested
for the in situ hydrogenation of nitroarenes using hydrogen generated by the decomposition of NH3BH3

under mild conditions (Figure 16) [65]. TEM images of Cu@Co@Ni/MIL-101(Cr) indicated a uniform
dispersion of Cu@Co@Ni NPs with the average particle size around 3.3 nm (Cu/Co/Ni molar ratio of
0.33:0.33:0.33). BET surface area measurements indicated that the as-synthesized MIL-101(Cr) and
Cu@Co@Ni/MIL-101(Cr) have values of 3425 and 2148 m2 g−1, respectively. XPS analysis revealed
the presence of zero-valent copper, cobalt and nickel in Cu@Co@Ni/MIL-101(Cr) catalyst. Among the
various catalysts (monometallic Cu, Co, and Ni; bimetallic Cu@Co and Cu@Ni; and trimetallic CuCoNi
alloy NPs) compared for the decomposition of NH3BH3 to hydrogen, experimental data showed that
Cu@Co@Ni exhibits the highest activity, releasing the full theoretical amount of hydrogen in 14 min. In
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contrast, an analogous catalyst with identical metal loading and NP size, namely CuCoNi/ZIF-8 required
30 min for the decomposition of NH3BH3 under similar experimental conditions, which is much longer
than the time measured for Cu@Co@Ni/MIL-101(Cr). This superior activity of Cu@Co@Ni/MIL-101(Cr)
is due to the high population of active sites without the drastic diffusion limitations occurring in ZIF-8.
Interestingly, the Cu@Co@Ni/MIL-101(Cr) completed the reaction within 10 min at 25 ◦C and 5.5 min
at 30 ◦C with TOF values of 31 and 56 molH2 molcat−1 min−1 which are comparatively higher than the
TOF values reached by other catalysts including those based on noble metal catalysts [87–90]. Later, the
catalytic performance of Cu@Co@Ni/MIL-101(Cr) was examined in the cascade reaction of NH3BH3

decomposition to hydrogen and subsequent reduction of nitrobenzene. Conversion of nitrobenzene to
aniline with 99% yield was achieved using Cu@Co@Ni/MIL-101(Cr) as catalyst within 5 min at 20 ◦C.
The scope of this catalyst was further expanded to a series of diverse substituted aromatic nitroarenes
with electron donating and electron-withdrawing substituents affording in most of the cases > 99%
yields within 5 min at 20 ◦C. Reusability tests under similar experimental conditions showed identical
catalytic performance and maintenance of the framework integrity for Cu@Co@Ni/MIL-101(Cr) after
five consecutive uses. Furthermore, TEM images of the reused catalyst did not show any growth of the
particle size, thus supporting catalyst stability under the experimental conditions.
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4. Summary and Outlook

The present review has shown that the incorporation of MNPs inside structurally robust MOFs
is a general methodology to obtain highly efficient and frequently stable heterogeneous catalysts to
promote the reduction of nitro groups. Depending on the reducing agent, different transition metals
should be used as catalysts for this reaction as described in the review. Besides the transformation of
nitro to amino group, it has also been shown that MNPs inside MOFs can behave as multifunctional
catalysts that can promote tandem reactions in where more than one elementary step is combined in a
single process promoted by same catalyst. Tandem reactions represent a clear advantage of process
intensification avoiding intermediate workup and separation processes.

It has also been shown that there are possibilities to prepare nano alloys of more than one metal
inside MOF cavities. Bimetallic and trimetallic catalysts provide sites with unique catalytic activity
different from that of analogous catalysts having a single metal. The electronic density and the
generation of partial charges can play a remarkable role in catalysis by MNPs and these parameters
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can be tuned by forming alloys with the appropriate composition and morphology. In this regard, it
can be expected that the number of studies dealing with encapsulated alloys will grow in the near
future, including the influence of morphology either as core–shell or uniform atomic distribution.

It is also a current tendency to increase the number of studies in which the active sites of the
MNPs cooperate the activity of the MOFs. It is therefore expected that the field will continue growing
with further examples of different MOFs including two-dimensional and mixed-metal MOFs in the
near future.
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