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Abstract: Three-dimensional (3D) printing has been recently employed in the design and formulation
of various dosage forms with the aim of on-demand manufacturing and personalized medicine.
In this study, we formulated a floating sustained release system using fused deposition modeling
(FDM). Filaments were prepared using hypromellose acetate succinate (HPMCAS), polyethylene
glycol (PEG 400) and pregabalin as the active ingredient. Cylindrical tablets with infill percentages
of 25%, 50% and 75% were designed and printed with the FDM printer. An optimized formulation
(F6) was designed with a closed bottom layer and a partially opened top layer. Filaments and
tablets were characterized by means of fourier-transform infrared spectroscopy (FTIR), differential
scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and thermogravimetric analysis (TGA).
The results show that the processing condition did not have a significant effect on the stability of the
drug and the crystallinity of the drug remained even after printing. A dissolution study revealed that
drug release is faster in an open system with low infill percentage compared to closed systems and
open systems with a high infill ratio. The optimized formulation (F6) with partially opened top layer
showed zero-order drug release. The results show that FDM printing is suitable for the formulation
of floating dosage form with the desired drug release profile.
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1. Introduction

The concept of three-dimensional (3D) printing has been flourishing since the 1980s and has
been applied to various fields as a tool for rapid prototyping, custom manufacturing and complex
manufacturing [1]. Contrasting conventional manufacturing technique, 3D printing involves the
fabrication of a 3D structure layer-by-layer from the bottom using a digital design, hence, it is also
known as additive manufacturing [2,3]. From products as simple as hearing aids to high-tech parts of
military jets, the scope of 3D printing is growing rapidly [4–6]. Furthermore, the excellence of this
technology is not new in the medical and pharmaceutical sectors. From educational tools to surgical
instruments to printed organs for transplantation, 3D printing is evolving as a new tool in the medical
sector [7]. Likewise, FDA approval of the first 3D printed medicine in 2016 for the treatment of epilepsy
has led to confidence that this technology can cause a paradigm shift in the field of pharmaceutics [3].
Several studies have been conducted and proven to show the suitability of using printing technology
to develop different dosage forms with variable drug release profiles [4]. In recent years, numerous 3D
printing technologies have been introduced and have been exploited for their respective advantages
and disadvantages. Stereolithography was the first technology to be developed as a rapid prototyping
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technique [1], followed by fused deposition modeling (FDM), selective laser sintering (SLS) [8–11], and
binder jet printing. Binder jet printing or inkjet printing was one of the first 3D printing technologies to
be used in the preparation of drug delivery devices and one of the most widely studied technologies to
date [12]. Most of the technologies involve a high temperature, which is one of the major drawbacks of
these processes, especially in the case of pharmaceuticals. Nevertheless, this technology has provided
a new method for the preparation of personalized medicine with an accurate and adjustable dose
and customized drug release profiles. Moreover, complex formulations such as combined dosage
forms with mixed release kinetics and complex designs have been carried out to achieve better patient
compliance and better therapeutic outcomes. FDM, a technology developed in the late 1980s, is also
one of the most widely studied technologies in pharmaceutics. This technology, based on material
extrusion, involves melting of filaments and deposition of the melted materials in layers where
they fuse together to fabricate a 3D structure [4,13]. For this method, the materials used should be
thermostable, non-volatile and non-aerosolizing [14]. Commercially used polymers include polylactic
acid or polylactide (PLA), polyvinyl alcohol (PVA) and acrylonitrile butadiene styrene (ABS) [3,15];
however, in the case of pharmaceuticals, polymers like Eudragit®, hydroxypropyl cellulose (HPC),
and hypromellose® (HPMC) have been studied [16,17]. Initial studies also involved drug-loaded PVA
filaments prepared by soaking commercial filaments in alcoholic drug solutions [18–21]. These studies
proved the suitability of preparing various modified dosage forms using FDM technology, after which
several pharmaceutical polymers along with suitable plasticizers were used to prepare filaments.
Recently, a modification of fused deposition modeling has been introduced, known as direct powder
extrusion, which works on a similar principle, minimizing the need to prepare filaments [22]. However,
FDM technology is still being extensively studied in the field of drug delivery and dosage forms
design [23,24]. One of the major advantages of this technology is its cost-effectiveness, along with its
availability compared to other 3D printing technology. In contrast, FDM incorporates the deposition of
materials vertically layer by layer, resulting in a step-like surface which appears relatively rougher
compared to other technologies. Nevertheless, the resolution of printing does not affect the drug
release mechanism; hence, it is suitable for the fabrication of desired dosage forms.

Pregabalin, a chemical analogue of neurotransmitter gamma-aminobutyric acid (GABA), is an
α2δ receptor agonist which has analgesic, anticonvulsant and anxiolytic activities [25,26]. Immediate
release formulations of pregabalin, available in different dosage strength, are approved by the FDA
for the management of diabetic peripheral neuropathy, fibromyalgia, post-herpetic neuralgia, and
also as adjunctive therapy for partial seizures [27]. However, pregabalin has a short elimination
half-life of approximately 6 h [28]. Due to this reason, a commercial immediate release form must be
administered 2–3 times a day. In 2017, the US FDA approved a sustained release of once daily tablets
for the management of diabetic peripheral neuropathy and fibromyalgia. Controlled release pregabalin
was found to be effective in reducing pain with a similar safety profile to that of immediate release
pregabalin [29]. According to the biopharmaceutics classification system (BCS), pregabalin is a class
I compound with high solubility and high permeability. Moreover, the drug has been proven to be
mainly absorbed in the stomach and upper gastrointestinal tract [30]. Thus, one of the ways to decrease
the frequency of administration has been to increase the gastric retention of the formulation. Among
the various approaches for increasing the gastric retention time of the dosage form, only floating and
swelling mechanisms have shown clinical evidence for prolonged gastric residence time at fed state.
Floating gastro-retentive formulations can effectively minimize the risk of premature gastric emptying
of swellable systems by floating above gastric juice and being away from the pylorus [27]. Previously,
an intragastric floating tablets of domperidone was formulated using 3D technology. As FDM 3D
technology requires filaments as the main material, hydroxy-propyl cellulose filaments loaded with
domperidone were prepared using hot melt extruder and hollow tablets were made using a 3D printer.
Printed tablets were studied for in vitro and in vivo floating time and drug release profile, which
demonstrated a promising application of FDM technology to reduce the frequency of administration
and improve patient compliance [31]. Moreover, various pharmaceutical grade filaments have been
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prepared in previous studies [17]. In this study, by combining these studies, we aimed to design a
floating tablet of pregabalin with a controlled drug delivery profile using 3D printing. To the best of
our knowledge, this is the first study to employ FDM technology to formulate a floating controlled
release system using a novel shape of a tablet and pregabalin as a model drug.

2. Materials and Methods

2.1. Materials

Pregabalin and hypromellose (HPMC E4) were kindly donated from GL PharrmTech, Republic
of Korea. Hot melt extrudable (HME) grade hypromellose (HPMC HME 15LV) was purchased from
Colorcon, Seoul, Korea. Polyethylene glycol (PEG 400) was purchased from Yakuri pure chemicals
Co., Ltd. (Kyoto, Japan). And hypromellose acetate succinate (HPMCAS, AQUOT AS-HG) was
purchased from Shin-Etsu chemical Co., Ltd., Tokyo, Japan. Ammonium phosphate dibasic, sodium
1-octanesulfonate and polyvinyl alcohol (PVA) were purchased from Sigma-aldrich, Seoul, Republic of
Korea. HPLC grade methanol and acetonitrile were purchased from Duksan chemicals, Seoul, Korea.
Commercially available Lyrica® CR165 (Pfizer Inc., New York, NY, USA) was used as the reference
product for the in vitro release study.

2.2. Preparation of Pregabalin-Loaded Filaments

Pregabalin-loaded filaments were prepared using Process 11 twin screw Hot Melt Extruder
(Thermo scientific, Waltham, MA, USA) with nozzle diameter of 1.5 mm. Physical blends of active
pharmaceutical ingredient (API) and polymers were prepared in a mixer and filaments were extruded
at a temperature of 125 ◦C at a rotational speed of 10–20 rpm with a torque of 50–60 nm and used for
the preparation of tablets.

2.3. Design and Printing of Tablets

Tablets were designed using Autodesk® 123D® design software version 1.1.4. (Autodesk,
San Rafael, CA, USA) Cylindrical tablets were designed for preliminary studies and a novel shape
of tablets was designed for optimized formulation. Printed tablets were then sliced using a slicing
software Repetier host version 2.1.3 (Hot-World GmbH & Co. Willich, Germany) with an in-built slicer
Cura engine. Finally, the tablets were printed using a Good bot 4025-MP FDM printer (3D Korea,
Yongsin-ri, Republic of Korea) with a brass nozzle with a diameter of 0.2 mm. The printing temperature
was 180 ◦C and the bed temperature was 50 ◦C, which remained constant for all the formulations.
Various tablets were printed with different infill percentages as open or closed system. Open system
tablets did not have a top and bottom layer, whereas closed system tablets had top and bottom layers
of a thickness of 0.4 mm (Figure 1). Shell thickness was kept at 0.4 mm for open systems and 0.4 mm
for closed systems. Tablet print speed including infill print speed and outer perimeter print speed
were all maintained at 30 mm/s.

2.4. Characterization of Filaments and Tablets

2.4.1. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of pure pregabalin, HPMCAS-HG, PEG-400, physical mixture, filament and
tablet were obtained using Nicolet iS10 (Thermo scientific, Waltham, MA, USA). The scan’s frequency
range was recorded as 400–4000 cm−1.

2.4.2. X-ray Powder Diffractometry (XRPD)

The crystallinity of pure pregabalin and formulated filaments and tablets was characterized
by X-ray diffraction using X-ray diffractometer D/Max-2500 (Rigaku, Japan) operating at 40 kV and
200 mA. The samples were analyzed from 2θ = 3 to 45◦ at a step of 0.02◦ and a scan speed of 0.5◦/min.
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2.4.3. Differential Scanning Calorimetry (DSC)

Pure pregabalin, physical mixture, filament and tablet were analyzed using DSC 4000
(Perkin–Elmer, Waltham, MA, USA) apparatus to study the effect of temperature. Samples were heated
from 25 to 250 ◦C with a heating rate of 10 ◦C /min. Nitrogen gas was used as a purge gas with a flow
rate of 20 mL/min. The degree of crystallinity (DOC) was calculated using the following Equation
(1) [32]:

DOC(%) =
∆Hs

∆Hp×W
× 100 (1)

where ∆Hs and ∆Hp are the melting enthalpy of the test samples and pure pregabalin respectively. W
is the mass fraction of pregabalin in the formulation.

2.4.4. Thermogravimetric Analysis (TGA)

The thermal decomposition of API and formulations was carried by thermogravimetric analysis
using a TA Q500 Auto-thermogravimetric analyzer (TA instruments, New Castle, DE, USA). Samples
were heated from 25 to 250 ◦C with heating rate of 10 ◦C /min. Nitrogen gas was used as a purge gas
with a flow rate of 40 mL/min.

2.4.5. Scanning Electronic Microscopy (SEM)

The surface morphology of filaments and tablets was studied by taking photographs using S-4800
SEM (Hitachi, Japan).

2.4.6. In Vitro Floating and Release Study

In vitro floating and in vitro release studies were conduction using the USP apparatus II paddle.
Release study was carried out in accordance with the dissolution test of Korean pharmacopoeia.
An amount of 500 mL of 0.06 N HCl buffer was used as dissolution media and temperature was set
at 37 ± 0.5 ◦C with a rotational speed of 50 rpm. Samples were collected at predetermined times of
1, 2, 4, 6, 8, 12, and 24 h. Collected samples were filtered using 0.45 µm syringe filter and analysis
was done using HPLC at 210 nm. The composition of the mobile phase was 0.04 M ammonium
phosphate ((NH4)2HPO4) buffer solution: acetonitrile: methanol = 84:5:11 containing 5 mM sodium
1-octanesulfonate, and a flow rate was adjusted (0.7 min/mL) so that the retention time of pregabalin
was about 6.66 min. A column was a stainless-steel column with an internal diameter of about 4.6 mm
and a length of about 250 mm, packed with 5 µm-octadecylsilyl silica gel for liquid chromatography.
The release study results were fitted to various kinetic models such as Zero-order [33], First-order [34,35],
Higuchi [36], and Hixon-Crowell [37]. Finally, the statistical analysis for comparison of the release
profiles of optimized formulation (F6) and marketed formulation Lyrica® CR was done using a model
independent approach: fit factor [38]. Moore and Flanner developed two equations to calculate the
similarity and differences in the percentage (%) of drug dissolved per unit time between two dissolution
profiles [39]. The similarity factor (f2) gives the similarity in the percent (%) dissolution between the
two curves, which is calculated as a logarithmic reciprocal of the square root transformation of the
sum of the squared error as shown in Equation 2.

f2 = 50× log ◦{[1 + (
1
n
)

n∑
t=1

(Rt − Tt)
2]

−0.5

× 100} (2)

where Rt and Tt are the cumulative percentage of drug dissolved at each of the selected ‘n’ time points
of the commercial and optimized formulation, respectively. In this study, we used similarity factor (f 2)
to compare the dissolution profiles of optimized formulation and commercial product. The dissolution
profiles are considered similar when f 2 is between 50 and 100.
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3. Results and Discussion

3D printing with FDM technology requires filaments as the starting material, which have the
desired composition of raw materials required to print the final object. Various commercial filament
makers are available for this process. However, in our study, HME technology was used to prepare
pregabalin-loaded filaments. HME technology has widely been used in pharmaceutics to prepare solid
dispersions of drugs with poor solubility [40]. Nevertheless, HME has also been extensively used and
studied to prepare various pharmaceutical grade filaments [17,41]. Different batches of filaments were
prepared with various compositions, as mentioned in Table 1, and filaments were accepted based on
the feasibility of extrusion during the HME process and printing, as mentioned in Table 2.

Table 1. Composition of filaments prepared.

Filaments Pregabalin
(%)

HPMCAS HG
(%)

PEG 400
(%)

PVA
(%)

HPMC E4
(%)

HPMC HME 15 LV
(%)

FIL-1 - - - - 100 -

FIL-2 - - - 10 90 -

FIL-3 - - 10 - 90 -

FIL-4 25 - 10 - - 65

FIL-5 25 5 - - 70

FIL-6 50 20 10 - - 20

FIL-7 25 65 10 - - -

FIL-8 50 40 10 - - -

Table 2. Properties of filaments obtained from the hot melt extruder.

Filaments Result Remarks

FIL-1 Difficulty in extrusion High viscosity of polymer clogged
extruder nozzle

FIL-2 Difficulty in printing Filaments clogged print head due to
gluey consistency after melting

FIL-3 Difficulty in printing Filaments hardened with elevated
temperature while printing

FIL-4 Difficulty in printing Very flexible filaments

FIL-5 Difficulty in extrusion Low concentration of plasticizer

FIL-6 Difficulty in printing Very flexible filaments

FIL-7 Suitable for extrusion and printing Filaments of enough strength and flow

FIL-8 Suitable for extrusion and printing Filaments of enough strength and flow

Filament preparation and printing involves various process parameters that determine the result
of the object to be printed. One of the variables that had a significant effect on the final printed object
was the uniformity of the filament diameter. Commercially prepared filaments are available in 1.75 mm
and 3 mm of diameters with deviations of ± 0.05 mm. However, prepared filaments were found to have
a diameter of 1.5 mm, which is thinner than the commercially available and recommended filament
size. Nevertheless, a slight change of print setting with filament diameter and flow rate of the filament
from 100% to 120% made it possible to print out the tablets [42]. However, it is still important to
have the filaments of a uniform diameter, as this will result in serious complications during extrusion.
Under- or over-extrusion of the materials due to an inconsistent diameter of filaments is one of the
major problems, along with difficulties associated with gripping of the filaments in the extruder, which
causes coiling and breaking of the filament. Therefore, it is suggested to keep filament tolerance
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under ± 0.05 mm. For uniformity of the optimized filaments, we checked the thickness every 5-cm
distance and the deviation was found to be ± 0.023. Another important parameter is the stiffness of the
filaments. Filaments should have enough mechanical strength to not break in the feeding gear [41].
However, extremely flexible filaments also possess complications similar to an inconsistent diameter,
such as under- or over-extrusion and coiling, along with stringing or oozing of extruded materials and
weak infill.

In our case, these problems were solved by using direct a drive extruder instead of a bowden
extruder, using low print speed and heated bed and also controlling the feed tension, extrusion
temperature and retraction. Finally, the filament prepared with 40% HPMCAS, 50% API and 10%
PEG 400 (FIL-8) was used as optimized filament. Tablets were printed according to the design
shown in Figure 2. Tablets were found to have uniform weight with a deviation within the range
(Table 3). The uniformity of the diameter of the filament affected the weight variation as well. Tablets
prepared with uniform filaments resulted in uniform weight tablets. Printed tablets showed very high
mechanical strength and were impossible to test using a conventional hardness tester and the friability
was completely zero, which is common in case of various FDM printed formulations [37,38].

Figure 1. Design and internal structures of tablets. Design of preliminary cylindrical tablets (A) and
slicing of tablets with infill percentages of 25%, 50% and 75%, left to right (B).

Table 3. Characteristics and evaluation of printed tablets.

Formulation
Dimension

(mm)
Infill
(%)

Shell
Thickness

(mm)

Weight
(mg)

Density
(g/cm3)

Drug Content
(mg)

Drug Loading
(%)

F1 12 × 8 25 0.6 361.45 ± 0.35 0.40 ± 0.0003 168.22 ± 3.71 93.08 ± 1.54

F2 12 × 8 50 0.6 470.50 ± 8.48 0.52 ± 0.0091 227.75 ± 3.53 96.80 ± 1.26

F3 12 × 8 75 0.6 668.50 ± 27.57 0.74 ± 0.0304 322.75 ± 10.25 96.54 ± 3.22

F4 12 × 8 25 0.4 498.60 ± 4.52 0.55 ± 0.0050 235.95 ± 7.70 94.64 ± 3.03

F5 12 × 8 50 0.4 691.00 ± 14.14 0.76 ± 0.0156 335.47 ± 7.10 97.08 ± 2.06

F6 12 × 8 25 0.4 475.00 ± 2.57 - 234.90 ± 12.97 98.52 ± 5.40
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Figure 2. Prepared filaments and tablets. Drug loaded filaments (A), printed open system tablets with
25%, 50% and 75% infill left to right (B), and printed closed system tablet (C).

The FT-IR Spectrum of pure pregabalin and its physical mixture with polymers and different
excipients are shown in Figure 3A. Pure pregabalin showed peaks at 2954.13 cm−1 (C–H stretch),
1642.69 cm−1 (N–H bend, NH2 scissoring), 1544.23 cm−1 (N–O asymmetric stretch), 1469.62 cm−1 (C–H
bend), 1333.18 cm−1 (N–O symmetric stretch), 1277.44 cm−1 (C–O stretch), and 932.16 cm−1 (O–H bend)
which was similar to peaks found in previous study [43]. The physical mixture, prepared filament and
tablets had almost superimposed peaks, except for few small changes in peaks 1642 cm−1 to 1643 cm−1,
1544 cm−1 to 1546 cm−1 in the case of filament and 1545 cm−1 in the case of tablets, 1277 cm−1 to
1278 cm−1, and 1469 cm−1 to 1468 cm−1 in case of tablets. This shows that there was no significant
interaction between API and the polymers. To further study the interaction between polymers with API
and the effect of mechanical and thermal processes on drug crystallinity, XRPD and DSC were used.

The XRPD pattern of pure pregabalin at 2 θ shows characteristic peaks at 4.7, 9.4, 18.20, 19.04, 19.75,
22.15, and 35.58 (Figure 3B). The characteristic peaks were also seen in the physical mixture, which was
reduced in filaments and tablets. XRPD data reveals that pregabalin remained at least partly crystalline
upon extrusion and printing which is in consistent with the results of DSC. The DSC graph shows the
endothermic peak of pure pregabalin at 194.81 ◦C (Figure 3C). The endothermic had a negative shift
to 175.10 ◦C in the physical mixture which further shifted to 161.82 ◦C and 161.46 ◦C. The degree of
crystallinity was found to be 90%, 50% and 39% for the physical mixture, extruded filament and printed
tablets, respectively. The extrusion process and printing seem to have had less effect on the crystallinity
of pregabalin as the operating temperatures were lower than the melting point of API. FDM technology
involves high temperatures in both the filaments-making process and the printing process. Although
these processes require short exposure to high temperature, significant thermal degradation can be
found in the case of thermolabile drugs and polymers [16,44]. The thermogravimetric analysis of API,
physical mixture, filament and tablets were carried out as shown in Figure 3D. No significant mass loss
was found from 115 to 125 ◦C (HME zone) and 180 ◦C (printing zone) for pure API, physical mixtures
and filament. However, in the case of printed tablets, 2%–3% mass loss was found in the HME zone,
while approximately 5% of mass loss was found in the printing zone. This could have been due to the
repetitive exposure of printed tablets to high temperature, which resulted in the decomposition of
polymers, causing weight loss.
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Figure 3. Physical characterization of printed tablets. Fourier-transform infrared spectroscopy (A), X-ray
powder diffractometry (B), differential scanning calorimetry (C), and thermogravimetric analysis (D).

SEM imaging shows the surface morphology of filaments and tablets (Figure 4). Filaments showed
an irregular surface due to the low extrusion temperature, which resulted in incomplete melting of the
drug and remained in crystalline form [45]. Drug loaded filaments prepared by HME are relatively
rougher compared to commercial filaments [20]. In the case of the printed tablets, we can see prominent
printed layers and uniform layer height. Uniformity in layer height determines the overall uniformity
of tablet. However, the roughness/smoothness of a tablet does not have any effect on the tablet floating
and release properties.

Figure 4. SEM image of filament and tablets. Outer surface of filament (A), side view of top layer (B),
and center view of different layers (C).
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In vitro floating study of open and closed systems with different infill ratios were carried out
(Figure 5). In a previous study, floating capacity and duration were found to be dependent on the
density of the tablets [31], whereas, in our study, the floating study revealed a very high correlation
between the presence of top/bottom layer and the floating capacity, with a very minimum dependency
on the density. All the open systems (F1–F3) failed to show floating properties and sank immediately to
the bottom of the vessel (Figure 5A), whereas the closed systems (F4 and F5) showed excellent floating
properties and remained floating for >24 h (Figure 5B). Open systems have void spaces where water
enters and replaces the air inside and increases the density of the tablets, causing it to sink in the media
(Figure 6). On the contrary, in the case of closed system, water penetrates at a very slow rate so that the
void spaces inside the tablet help to retain the buoyancy of the printed tablets, which remained true for
the optimized formulation (Figure 5C) with closed system and open space on one side of the tablet.

Figure 5. Floating study of prepared formulations. Open system (A), closed system (B), and optimized
formulation (C) over 1, 8 and 24 h (left to right).

Figure 6. Floating mechanism of optimized formulation. The internal structure of tablet is composed
of a grid infill with void space filled with air so that the tablet has low density, which helps in buoyancy
of the tablet in media.

The release study of closed formulations F4–F5 showed a relationship between the internal structure
of the printed tablet and the drug release rate (Figure 7A). 3D printing has unique characteristics
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whereby the infill percentage and the infill pattern can be changed [46]. Infill is the internal structure
of the printed object which determines the mechanical strength of object in the general 3D printing
process. However, in the case of pharmaceutical formulations, the infill percentage of the formulation
has been shown to play a major role in the kinetics of drug release in a number of studies. Drug release
was significantly higher in formulations with low infill percentages [18]. In this study, tablets with
low infill percentages showed faster release compared to tablets with high infill percentage. However,
there was incomplete drug release in the case of tablets with a higher infill ratio. However, in the
case of open system formulations F1–F3, the infill ratio did not have significant effect on the drug
release (Figure 7B). A similar trend was noted in a previous study as well [31]. In addition, drug release
was more controlled in the case of closed systems compared to open systems in which peak drug
release was obtained around 6–8 h. The compactness of the tablet and surface area interaction with
the media played huge role in drug release. Open tablets with low infill have higher access of media
compared to closed tablets and tablets with high infill. This facilitated a faster release of the drug from
the system. Thus, the optimized formulation was designed to mimic the advantages of both open and
close systems (Figure 8). One side of the tablet was closed, and the other side was partially opened,
and the infill was maintained at 25%. Moreover, the geometry of the formulation has shown to control
the drug release [47]. This unique design (F6) helped to achieve complete drug release (Figure 7C)
while retaining its floating ability for 24 h. The closed bottom of the tablet helped the buoyancy of the
tablet and the partially opened top layer allowed entry of water inside tablet in a controlled manner,
which facilitated complete drug release over longer period which is in contrast to F1 although it had
similar dimension and infill percentages. The use of polymer also plays role in controlling the release
of drugs from a printed formulation [16,17]. In a previous study, formulation prepared with HPMCAS
HG was not completely dissolved even after 24 h and drug release was pH-sensitive as the enteric
polymer was distributed into the matrix rather than as a coating layer in conventional formulations [45].
This phenomenon contributed to the extended release in the case of our formulation as well.

Figure 7. In vitro drug release study. Closed systems (A), open systems (B), and optimized formulation
with commercial product (C).
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Figure 8. Top view and side view of optimized formulation. Design of unique shaped optimized
formulation (A), slicing of tablets with 25% infill (B) and printed tablets (C).

To understand the release properties better, drug release data were fitted to different mathematical
kinetic models (Figure 9). A single model could not define the drug release pattern from tablets and
rather seemed to have a combination of different mechanisms. The regression value was found to be
higher for the Zero-order and Higuchi models, suggesting that the release and diffusion rates were
constant. Drug release for HPMCAS polymers have been found to be regulated by the drug diffusion
and erosion polymer from the surface of the system [48]. Printed tablets did not show any changes in
morphology and maintained their integrity during whole dissolution process.

Figure 9. Drug release kinetics fitted to various models: Zero-order (A), Higuchi model (B),
Hixon-Crowell model (C), and First-order (D).
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Formulation F6 was compared to Lyrica® CR 165 mg, a marketed product of Pfizer, and release
profiles were compared using similarity factor (f2). The values of similarity factor (f 2) for the batch F6
showed a maximum of 65.32 (Table 4); hence, it was selected as optimum batch.

Table 4. Comparison of prepared formulations with commercialized products using similarity factor
(f2).

Formulations F1 F2 F3 F4 F5 F6

Lyrica® CR 165 19.53 26.9 25.7 40.88 37.2 65.32

4. Conclusions

A uniquely shaped tablet was designed to formulate a floating gastro-retentive controlled release
dosage form using FDM technology. This study proves the possibility of employing 3D printing
technology to prepare a floating controlled release system of pregabalin. The feasibility of designing
and printing tablets to meet a specific criterion using 3D printing technology has already been proven
effective via various studies. Further development on design of formulations and resolution of printers
to the extent where on-demand manufacturing and personalized medicine are possible will definitely
change the future of pharmacotherapy.
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