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Abstract

Background: Annotation transfer for function and structure within the sequence homology concept essentially
requires protein sequence similarity for the secondary structural blocks forming the fold of a protein. A simplistic
similarity approach in the case of non-globular segments (coiled coils, low complexity regions, transmembrane
regions, long loops, etc.) is not justified and a pertinent source for mistaken homologies. The latter is either due to
positional sequence conservation as a result of a very simple, physically induced pattern or integral sequence
properties that are critical for function. Furthermore, against the backdrop that the number of well-studied proteins
continues to grow at a slow rate, it necessitates for a search methodology to dive deeper into the sequence
similarity space to connect the unknown sequences to the well-studied ones, albeit more distant, for biological
function postulations.

Results: Based on our previous work of dissecting the hidden markov model (HMMER) based similarity score
into fold-critical and the non-globular contributions to improve homology inference, we propose a
framework-dissectHMMER, that identifies more fold-related domain hits from standard HMMER searches.
Subsequent statistical stratification of the fold-related hits into cohorts of functionally-related domains allows
for the function postulation of the query sequence. Briefly, the technical problems as to how to recognize
non-globular parts in the domain model, resolve contradictory HMMER2/HMMER3 results and evaluate
fold-related domain hits for homology, are addressed in this work. The framework is benchmarked against a
set of SCOP-to-Pfam domain models. Despite being a sequence-to-profile method, dissectHMMER performs
favorably against a profile-to-profile based method-HHsuite/HHsearch. Examples of function annotation using
dissectHMMER, including the function discovery of an uncharacterized membrane protein Q9K8K1_BACHD
(WP_010899149.1) as a lactose/H+ symporter, are presented. Finally, dissesctHMMER webserver is made publicly
available at http://dissecthmmer.bii.a-star.edu.sg.

Conclusions: The proposed framework-dissectHMMER, is faithful to the original inception of the sequence
homology concept while improving upon the existing HMMER search tool through the rescue of statistically
evaluated false-negative yet fold-related domain hits to the query sequence. Overall, this translates into an
opportunity for any novel protein sequence to be functionally characterized.
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Background

The sequence homology concept [1-3] is collectively
founded upon the inductive reasoning that a homologous
protein group (as an antecedent) shares a high level of
sequence similarity (as a consequent) [4—8]. Implicitly, this
refers to a high level of similarity among comparable struc-
tural elements across the sequences so that a common
structural fold among these homologs is maintained which,
in turn, governs the general biological function of this
homologous protein family. In simple terms, the highest
abstraction of a biological function is conferred by the
protein fold. In turn, fold conservation implies the conser-
vation of a sequence pattern of hydrophilic/hydrophobic
and size-restricted residues within the protein family.

Despite the simplicity and elegance of the sequence
homology concept, homology itself is not readily com-
putable. Its closest surrogate is the sequence similarity
measure. This measure comes along with the caveat of
possibly high sequence similarity does not necessarily imply
homology. Worse, as we delve deeper into sequence search
space, high sequence divergence among the distant homo-
logs will inevitably corrupt the homology signal. Hence, the
only recourse to maintain on the correct search path is to
piggyback on the similarity between the structural pieces of
the alignment to ensure reasonable fold similarity and,
hence, the implied biological function.

Regrettably, current implementation of sequence search
algorithms do not consciously differentiate between the
3D-structural (i.e., fold-critical) sequence segments and
the non-globular (i.e., remnant) segments. As such, statis-
tically significant yet spurious alignments (attributed by
the remnant segments) can pass off as homologous se-
quences once they escape the designated statistical thresh-
old. In mitigation though, mainstream sequence search
algorithms like BLAST [9, 10] and HMMER [11, 12] de-
ploy compositional bias statistics [13—15] to suppress
some classes of remnant segments (e.g., low-complexity se-
quence). However, compositional bias statistics is purely a
mathematical solution that does not necessarily only target
remnant segments. As an example, the low-complexity
structural a-helices can be suppressed as well [16]. On top
of that, it can also compromise on search sensitivity (true-
positive detection) while suppressing the false-positive hits.
The latter marks a trade-off.

And given that the number of well-studied proteins
continues to grow at a slow rate [17], the transfer of func-
tional annotation from characterized sequences to unknown
ones remains important [3]; yet it is rate-limiting. As such,
this necessitates for a search methodology that can search
deeper into the sequence similarity space to link (via fold
similarity) the unknowns to the known ones while staying
theoretically truthful to the sequence homology concept.

As fold similarity detection is the cornerstone of
homology searches and the fold is defined as the spatial
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arrangement of secondary structural elements [18], the
exclusion of the evolutionarily more variable loop regions
and, generally, the excision of non-globular sequence
segments should minimize noise in the sequence similar-
ity searches. Essentially, the dissecctHMMER approach
attempts to make use the basic concept.

The idea of dissecting the similarity score of the
sequence-to-domain alignment into its fold-critical (i.e.,
3D-structural elements) and remnant (i.e., non-globular
elements) sums with subsequent statistical re-evaluation
of their E-values was introduced in our recent work [19].
In particular, the HMMER variants (HMMER2 and
HMMER3) were investigated. As a necessary condition
to be considered as a true hit, the fold-critical E-value
should be either be more significant than its remnant
E-value, or minimally be statistically significant on it-
self. As a proof of concept, the score dissection idea
has been shown to elucidate previously obscured true
hits due to bad E-values attributed by the remnant
sequence segments, while suppressing the false hits at
the same time. As such, there is no need to comprom-
ise for high false-negative rates (low sensitivity) in ex-
change for low false-positive rates (low specificity).
Also, compositional bias statistics to suppress false-hits
becomes less important with the score dissection. Inter-
estingly, this was achieved without any modifications to
the search algorithm itself, since the score dissection
was applied to the alignments post mortem. Essentially,
the score dissection idea provides a new paradigm in
which homology can be better evaluated with improved
search sensitivity/specificity and deeper search depth.
Most importantly, it is more faithful to the original incep-
tion of the sequence homology concept than current
sequence search implementations.

With the necessary proof of concept established in
our previous work [19], the current work extends our exist-
ing proof to a full-fledged implementation of the score
dissection idea, herewith, dissectHMMER (available at dis-
secthmmer.bii.a-star.edu.sg). In a nutshell, dissectHMMER
attempts to break the limits of current sequence search al-
gorithms (whether sequence-to-profile or profile-to-profile
based methods) to better bridge between the sequence
similarity space and the structural similarity space with its
deeper search depth. This is achieved through rescuing the
false-negative sequence-to-domain hits by re-capturing the
significance of the fold-critical sequence segments of these
hits. As outputs, dissesctHMMER searches for a set of statis-
tically confident domain hits with similar fold for a given
query sequence.

In the course of implementing dissectHMMER, sev-
eral issues were resolved. Firstly, the annotation of fold-
critical residues in domain models is an integral part of
the score dissection idea. Previously, for domain models
without PDB/DSSP information, the quality-score [20]
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was used to predict the fold-critical residues in domain
models. In hindsight, it was found to underestimate the
remnant sequence segments. In the current work, dis-
sectHMMER uses a weighted combination of quality-
score [20], PSIPred [21, 22], SEG [23] and GlobPlot [24]
to improve the sensitivity/specificity of this prediction
task. In the process, a handful of problematic domain
models (e.g. domains without fold-critical residues, do-
mains with dominant proportion of remnant residues)
were found.

Secondly, the fold-critical E-value and the ratio (ie.
fold-critical E-value/remnant E-value) of a sequence-to-
domain alignment are two critical surrogate measures of
the fold-critical score in the score dissection idea. Briefly,
a confident sequence-to-domain hit is founded on a low
fold-critical E-value and a low ratio. However, the ranges
of fold-critical E-values and the ratios exhibited by the
HMMER variants (i.e. HMMER2 and HMMER3) can dif-
fer. Fundamentally, the difference stems from the utilized
alignment modes in HMMER?2 (i.e., glocal mode; local to
sequence, global to domain) and HMMER3 (i.e., local
mode; local to both sequence and domain). This is further
underpinned by the difference between glocal gapped
alignment statistics in HMMER?2 and ungapped alignment
statistics in HMMERS3.

Beyond the different statistical consideration, HMMER3
can only operate in local mode where significant hits are
concluded from fragmented sequence-to-domain align-
ments. Unlike HMMER?Y, the latter is insufficient for infer-
ring protein domain function since a domain denotes a
unit of function. As such, HMMER?2 glocal mode remains
relevant for domain annotation work and its results can
be complemented by HMMER3’s improved sensitivity and
specificity that increases search space.

In practice, the difference in the derived E-values by
the HMMER variants can nevertheless be problematic
for overlapping HMMER2 and HMMER3 sequence-to-
domain alignments. At times, contradiction cases can
occur, where one HMMER variants declares the hit as
true and the other declares it as false.

In the current work, the differences are properly quan-
tified by dissectHMMER where the hits are associated to
some expected false-positive rates. These false-positives
rates which were sampled from the vicinity of negative
domain hits to a set of SCOP-to-Pfam sequences, are
employed to correct the fold-critical E-values and ratios
accordingly. By doing so, the overlapping (occasionally
contradictory) sequence-to-domain results can then be
merged in a justified manner after the corrections.

Thirdly, an error-adjusted domain-coverage measure is
introduced in disseccHMMER. Since the objective of
dissectHMMER is to detect domains with similar fold, this
measure accounts for the statistical significance of the
domain hits, as well as the coverage of the domain. When
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benchmarked against a set of SCOP superfamily profiles
(ie. distant homologs with the same protein fold), dis-
sectHMMER was found to perform favourably against its
former self, HMMER and a profile-to-profile method-
HHsuite/HHsearch.

Finally, through several case studies of elucidating more
fold-related domain hits through a deeper search depth
and subsequently stratifying the quantified hits into
functionally-related domain cohorts, dissectHMMER has
demonstrated its ability to minimally propose a general-
ized function when combined with biological evidence.
The latter is crucial for many novel sequences whose
current search space cannot be linked to any well-
characterized protein sequences. In addition, the strati-
fication of the quantified domain hits (via the ordered
total FPR) helps to guide the amount or level of func-
tion transfer from the most significant domain hit to
the sequence, depending on the magnitude of the total
FPR. As such, the disseccHMMER framework attempts
to balance between over-and under-prediction of bio-
logical function while presenting an opportunity for the
currently novel protein sequences to be functionally
characterized as exemplified by the novel sequence
QI9K8K1_BACHD (WP_010899149.1) in our case study.

Results and discussion

The HMMER score dissection framework: dissectHMMER
webserver

The HMMER score dissection framework, herewith,
dissectHMMER is implemented in Perl and resides at
dissecthmmer.bii.a-star.edu.sg. As depicted in Fig. 1, the
dissectHMMER workflow can be generalized into three
stages: 1) sequence-to-domain alignment generation,
2) score reconstruction/dissection/statistical re-evaluation/
hits classification and 3) error-adjusted domain coverage
computation. It must be emphasized that no algorithmic
changes are necessary to the original HMMER codes since
the main computations in dissectHMMER is done after the
alignments have been generated.

In the sequence-to-domain alignment generation stage,
both HMMER?2 (in glocal mode) and HMMER3 (limited
to local mode) were used concurrently to generate the
alignment results when presented with a query sequence.
In the current setup, the glocal mode for HMMER?2 is
enforced so that a full alignment with respect to the
domain model can be made with the query sequence to
maximize the belief of the domain’s overall fold similarity
when the hit is subsequently evaluated to be true. In
contrast, HMMERS3 by itself cannot always guarantee the
full alignment with respect to the domain model. As such,
this can lead to fragmented sequence-to-domain align-
ments that suggest only partial domain fold similarity. In
hindsight, the overall fold similarity to a domain is a neces-
sary condition for inferring its biological function since the
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Fig. 1 The HMMER score dissection framework, herewith, dissectHMMER is implemented in Perl and resides at dissecthmmer.bii.a-star.edu.sg.
The workflow of dissectHMMER is generalized into three stages: 1) Generation of the sequence-to-domain alignment 2) score reconstruction/dissection/
statistical re-evaluation/hits classification and 3) Computations of the error-adjusted domain coverage measures
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ideal notion of protein domain necessarily encompasses
an unit of function by definition.

Nevertheless, the inclusion of HMMER3 [12] was neces-
sary since its sensitivity and specificity was supposedly
improved over HMMER?2 [11] other than its computational
speed. Aside that, the average domain model length in the
current Pfam library (release 27) is about 230 with a stand-
ard deviation of approximately 200. As such, about 12 %
(1795 out of 14,831) of the Pfam domain models are longer
than 430 in length and hence likely to be multi-domain.
For these multi-domain Pfam models, HMMER3 has a
higher likelihood of capturing the individual domains as
“fragmented” hits than HMMER?2 in glocal mode. When-
ever possible, the common or overlapping sequence-to-
domain alignment that arose from both HMMER2 and
HMMERS3 are paired at an overlap ratio, overlap,,, of 0.9
(see Eq. 4 in Methods). Here, overlap refers to the common
sequence coverage by the same domain model between
two sequence-to-domain alignments.

In the score reconstruction/dissection/statistical re-
evaluation/hits classification stage, the full score of each
alignment is reconstructed using the emission/transi-
tion/invariant log-odd scores of the alignment’s domain
model. Then, this is followed by the score dissection
computations. Meanwhile, a crucial component that is
tightly coupled to the dissection, is the predefined posi-
tions of the fold-critical and remnant residues in each of
the Pfam [25, 26] domain models. These annotations are
derived from the PDB/DSSP information for 6599 Pfam
models with representative structures while the remaining
(8232 Pfam models) are derived from the combination of
sequence predictors : quality-score [20], PSIPred [21, 22],
SEG [23] and GlobPlot [24]. Accordingly, the relevant
fold-critical and remnant score sums can be derived based
on the summations of these annotations. Consequently,
the fold-critical and remnant sums are re-evaluated via
the model's EVD statistical model to obtain the corre-
sponding fold-critical E-value and remnant E-value (see
Egs. 1-2 of [19]). Together with the original (undissected)
E-values, each sequence-to-domain hit can be classified as
a true-positive (TP), false-negative (FN), false-positive (FP)
and true-negative (TN) according to predefined criteria in
Table 1 (see Methods section “Classification criteria of
sequence-to-domain alignment hits” and the table therein).
Only TP and EN hits will be retained for subsequent
analysis.

In the final stage, two domain coverage scores, covera-
ge™° and coverage®'d critical E-value (hotyeen value of 0
and 1; corrected by some empirical false-positive rates)
are calculated for each pair of overlapping HMMER2/
HMMER3 sequence-to-domain alignment (see Eq. 5). In
retrospect, the false-positive rates are associated to the
fold-critical scores through two surrogate measures of (i)
fold-critical E-value and (ii) ratio of fold-critical E-value
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versus remnant E-value (see Eq. 3) which are under-
pinned by two pairs of empirical false-positive rate dis-
tributions (one for HMMER2, another for HMMER3)
that reflect the relationship between the negative hits to
a list of 1330 SCOP superfamilies to Pfam domains map-
pings (see Methods section “Quantifying the false-posi-
tive rates of dissected fold-critical score associated
measures using the SCOP superfamilies to Pfam domains
mappings” and the figures therein).

Taken together, dissectHMMER with its deeper
search depth, aims to gather a cohort of statistically
confident domain hits that has good fold similarity to
the query sequence. Instead of typically limiting one-
self to examine only the best domain hit to the se-
quence, the collective view constructed from a set of
fold-related (ideally homologous) domains can minim-
ally postulate the generalized biological function of
the query sequence. This is further fuelled by the fact
that experimental protein studies occur under differ-
ent conditions and cell-specific context. Hence, the
task of cataloguing the complete biological function
of any protein is a time-extended effort [17]. In con-
trast, dissectHMMER offers an opportunity to build a
collective and quick glimpse of the possible dated
biological function of a novel protein, albeit in-silico.

Statistical weighted combination of sequence predictors
(quality-score, PSIPred, SEG, GlobPlot) improves the
sensitivity and specificity of fold-critical residues detection
in domain models

As an integral part of dissectHMMER, the annotation of
the Pfam domains which denotes the positions of the
fold-critical and remnant residues in the models, allows
for the computations of fold-critical and remnant sums

Table 1 Classification of sequence-to-domain alignment HMIMER2
and HMMERS hits

Version Classification Original ~ Fold-critical ~ Remnant
E-value E-value E-value
HMMER2 TP (True-positive) <0.1 <1073 -
FP (False-positive) <0.1 >10734 <1073
TN (True-negative) ~ >0.1 >10734 -
FN (False-negative) >0.1 <1073% -
HMMER3 TP (True-positive) <107 <10°° -
FP (False-positive) <107 >107° <107
TN (True-negative) ~ >107° >107° -
FN (False-negative) ~ >107° <10°° -

The original E-value of hit is set at 0.1 as recommended by the HMMER2

manual [32] which gives a false-positive rate of 0.53. Using the latter as

reference, the equivalent original E-value for HMMER3 is set at 107 (false-positive
rate of 0.55). For the fold-critical E-value, the false-positive rate is preset at 0.1.
These corresponds to the values of 10°° and 107°, respectively. ' denotes
“don’t care” condition
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of a sequence-to-domain alignment. For Pfam domains
with representative structure, the identification of their
fold-critical residues can be resolved using the PDB/
DSSP information. For those without representative
structures, the identification becomes a prediction task.
Previously, the quality-score (that measures sequence con-
servation [20]) has been investigated and was found to
have the tendency to underestimate remnant segments.

In this work, the task of predicting the fold-critical
residues in domain models through a weighted combin-
ation of several sequence property predictors was inves-
tigated. These predictors are quality-score (that predicts
sequence conservation [20]), PSIPred (that predicts sec-
ondary structures like a-helices and B-strands [21, 22]),
SEG (that finds low-complexity regions [23]) and Glob-
Plot (that predicts segments of globularity [24]). The full
annotation procedure is described in detail in the
Methods section “Annotation of Pfam domain models
into their fold-critical and remnant residues...” and the
weighted-scoring scheme equation follows Eqs. 1-2
therein.

To evaluate the performance in terms of sensitivity (i.e.
true-positive rate) and specificity (i.e. false-positive rate)
for each of the predictors, they were benchmarked against
a reference set of 6599 Pfam domains with PDB/DSSP
information (see Additional file 1). The respective true-
positive rate (TPR) and false-positive rate (FPR) at each
threshold level are provided in Additional file 2: Table S1.

We measured the score performance via the difference
(TPR-FPR) between the true-positive rate (TPR) and false-
positive rate (FPR) at each threshold level. Based on the
data from Additional file 2: Table S1, quality-score [20],
PSIPred [21, 22], SEG [23] and GlobPlot [24] obtained
their best predictive performance at (TPR-FPR) of 0.61,
0.50, 0.41 and 0.39 respectively. The latter serves as the
predictor-specific weight variables W, egicior in the pro-
posed weighted-scoring scheme (see Eqs. 1-2) which
combines the four predictors’ outputs into a singular value
HOTMSCOTe,eignieq- A such, the sensitivity and specificity of
the weighted-scoring scheme can also be computed and is
provided in Additional file 2: Table S2.

Figure 2 shows the ROC (receiver operator curve) plots
for the 4 individual predictors (quality-score [20], PSIPred
[21, 22], SEG [23] and GlobPlot [24]) and the weighted-
scoring scheme by plotting the true-positive rate (i.e. sensi-
tivity) and false-positive rate (i.e. 1-specificity) values from
Additional file 2: Tables S1 and S2. Given the threshold
range of between 0.05 and 0.95 (at an interval of 0.05), one
would expect 19 data points along each plot given. How-
ever, in the case of PSIPred [21, 22], SEG [23] and GlobPlot
[24], several of their data points coincide to the same posi-
tions for lower thresholds of between 0.05 and around 0.50
(see Additional file 2: Table S1). This implies that beyond a
certain threshold, the sensitivity and specificity for PSIPred
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[21, 22], SEG [23] and GlobPlot [24] cannot be improved.
Interestingly, quality-score [20] by itself is a better pre-
dictor than SEG [23] (consistent with our previous findings
[19]) and GlobPlot [24] but worse than PSIPred [21, 22],
albeit just for a limited range.

Generally speaking, the weighted-scoring scheme per-
formed the best amongst all the predictors, especially for
false-positive rate (i.e. 1-specificity) of less than 0.235
(see vertical dotted line, Fig. 2). Beyond this false-
positive rate, the quality-score [20] takes over as the bet-
ter predictor. But since larger false-positive rate values
are typically avoided when choosing practical settings,
one should not be overly critical of the slightly lower
performance of the weighted-scoring scheme beyond
this false-positive rate. In addition, the weight-scoring
scheme has its best predictive performance at the (TPR-
FPR) of 0.59 (see Additional file 2: Table S2). This corre-
sponds to the false-positive rate of 0.28-0.31. Going for
the lower false-positive rate of 0.28, the weighted-
scoring scheme then declares a fold-critical residue at a
threshold level of >0.5. Consequently, the predicted an-
notations of fold-critical residue in the 14,831 Pfam
domains were computed with the weighted-scoring
scheme and are provided as Additional file 3.

Taken together, the weighted-scoring scheme has
shown to predict fold-critical residues better than any
single predictor. Mathematically, this is attributed to
the statistical weighing step where the contributions of
the better predictors were made more significant. Aside
that, the diversity of sequence predictors with different
sequence property measure (sequence conservation,
secondary structures, globularity, complexity) also allow
for a multi-dimensional coverage of fold-critical residues.

At least 10 % of Pfam library (release 27) contain domain
models with fold-critical residues less than that of
remnant while at least 14 % of remnant segments are as
long as small domain models

As a result of resolving fold-critical residues in Pfam
domains in the preceding section, two sets of annotated
Pfam domain were derived. A set of 6599 domain models
with representative PDB/DSSP entries where locations of
the fold-critical or remnant residues with respect to each
domain model can be straightforwardly resolved, and
another set of the full 14,831 Pfam domains where the
fold-critical and remnant residues are predicted using a
weighted set of calibrated sequence predictors (quality-
score [20], PSIPred [21, 22], SEG, GlobPlot [24]).

Figure 3 depicts the ratio of remnant residues versus
total residues per domain model for the sets of 6599
PDB/DSSP-derived (Fig. 3a) and 14,831 predictor-
derived (Fig. 3b) Pfam domain annotations. At a ratio
of >0.5, 26.8 % (1767 out of 6599) and 10.0 % (1482 out
of 14,831) of the domains from the PDB/DSSP-derived
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Fig. 2 ROC (Receiver operator curve) of weighted-scoring, quality-score, PSIPred, SEG and GlobPlot sequence predictor against 6599
Pfam-to-PDB mappings. For each sequence predictor, 19 data points form each plot (Additional file 2: Tables S1 and S2). However, in the case
of PSIPred, SEG and GlobPlot, several of their data points coincide to the same positions for the lower thresholds of between 0.05 and around
0.50. As such, the sensitivity and specificity for PSIPred, SEG and GlobPlot cannot be improved beyond certain thresholds. Quality-score by
itself is a better predictor than SEG and GlobPlot but worse than PSIPred for a limited range. Meanwhile, the weighted-scoring scheme
performs the best for false-positive rate (i.e. 1-specificity) of less than 0.235 (see vertical dotted line, Fig. 3). Beyond that, the quality-score takes
over as the better predictor. However, since larger false-positive rate values are typically avoided, the slight inferior performance of the
weighted-scoring scheme beyond the false-positive rate of 0.31. Generally speaking, the better performance of the weighted-scoring scheme than any
single predictor is due to the statistical weighing step where the contributions of the better predictors are made more significant

and predictor-derived sets have more remnant residues
than fold-critical residues in each of these models, re-
spectively. Given that the derivation is expected to be
more accurate in the PDB/DSSP-derived annotations
than the predictor-derived ones, 10.0 % serves as a
lower estimate of models with the propensity to attract
spurious sequence similarities via the more abundant
remnant residues. Furthermore, 8 PDB/DSSP-derived do-
main models have no fold-critical residues (ratio of 1). For
these domain models, their model lengths were relatively
short and they vary between 13 and 120 (median is 51)
AA long. Most importantly, they hit the non-globular re-
gion of their representative PDB structures (see Additional
file 4 for the sequence-to-domain alignments). As such,
such domain models should be excluded when the
HMMER search task is aimed at homology inference.
Figure 4 depicts the histograms of remnant segment
lengths (i.e. continuous stretches of remnant residues
of >10AA) for the PDB/DSSP-derived (Fig. 4a) and

predictor-derived (Fig. 4b) Pfam domain sets. A total of
12,253 and 33,788 remnant segments were derived from
the 6599 PDB/DSSP-derived and 14,831 predictor-derived
domain set respectively. Using a small domain model of
about 40 AA like the zinc fingers as reference (609 Pfam
domains are of lengths 40 AAs or less based on release 27),
the respective domain sets contain 14.6 % (1789 out of
12,253) and 15.2 % (5130 out of 33,788) of remnant seg-
ments with lengths exceeding 40AA.

Collectively, the above findings strongly suggest that
certain domains have the propensity to attract spurious
sequence similarity during homology search. Unfortu-
nately, in practice, other than the obvious removal of
signal peptides, simple transmembrane helices and non-
globular segments that flank either the beginning or the
ending of domain models [3, 27-31], it is unrealistic to
create domain models totally without the remnant resi-
dues since structural segments are naturally stitched by
inter-linkers. Therefore, the latter reinforces the need to
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dissect any sequence-to-domain alignments into their
fold-critical and remnant sums for further statistical re-
evaluation prior to making any homology inference;
dissectHMMER is a pragmatic step towards homology
inference.

For a given false-positive rate, HMMER3 sequence-to-domain
hit’s fold-critical E-value needs to be more stringent than its
HMMER?2's counterpart in glocal mode

Previously, an unresolved issue with respect to the score
dissection framework was the selection of the fold-
critical E-value cutoff for including potential true hits.
Based on the HMMER manuals, the recommended E-
value cutoff was 0.1 for trusted hits in HMMER?2 (see pg

43 of [32]), while it was less well-defined for HMMER3
at an E-value cutoff of <<1 (see pg 19 of [33]). Now,
taking the better defined E-value of 0.1, it still remains
unclear (i) if the cutoff of 0.1 is appropriate for the fold-
critical E-value cutoff for trusted hits inclusion and (ii)
whether it is justifiable to use the same fold-critical E-
value cutoff for both HMMER2 and HMMER3, given
that their algorithmic and parameterization differences.
To properly resolve these issues, we calibrate HMMER2
and HMMER3 E-values against a set of sequence-
structure-Pfam domain assignments. While the SCOP
superfamilies were derived from alignments of similar
structures, Pfam domains were created from alignments
of homologous sequences. Essentially, the SCOP-to-Pfam
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mappings create a set of distant homologous Pfam
domains for each SCOP superfamily where its sequences
share good fold similarity. Through the sampling of the
fold-critical E-value range of the negative domain hits in
the vicinity of the SCOP-to-Pfam sequences, it allows
dissectHMMER to examine the extent to which the
fold-critical score can be used to infer fold similarity
(structural alignment space) from sequence similarity
(sequence alignment space).

Therefore, a set of 1330 mapped SCOP superfamilies
(version 1.75) to Pfam domains (release 27) was created
where each SCOP superfamily (with an average of 16.5 se-
quences) can be mapped to an average of 4.8 Pfam domains
(see Additional file 4). For details of the SCOP-to-Pfam

mapping creation, readers are referred to Methods section
“Creation of a SCOP superfamilies...”.

Altogether, there are a total of 22,001 sequences in the
1330 SCOP superfamilies set. Thereafter, each sequence
in the SCOP superfamily was searched against 14,831
Pfam domain models to generate a list of negative
domain hits (i.e. domain hits that cannot be mapped to
the particular SCOP superfamily where the query se-
quence originates from). The negative domain hits were
then dissected into the fold-critical and remnant scores
and then evaluated for their corresponding fold-critical and
remnant E-values. Altogether, 136,642 HMMER2 and
41,506 HMMER3 fold-critical E-values of the negative do-
main hits were generated over the 22,001 SCOP sequences.
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Consequently, using Eq. 3 (see Methods section), the
false-positive rates of the fold-critical E-values were
computed for the sets of HMMER2 and HMMER3
negative hits at each threshold level over a common
threshold range of 107°° to 10° (at an unit step in the
logarithm of 10; see Additional file 5). For details, see
Methods section “Quantifying error rates of dissected
fold-critical scores”.

Figure 5 depicts the fold-critical E-values of the negative
hits (in logarithm of 10) versus their corresponding false-
positive rates (in logarithm of 10). At the recommended E-
value cutoff of 0.1 (see vertical dotted line), the HMMER2
false-positive rate is lower (at 0.53) than that of HMMER3
(at 0.79). The equivalent HMMER3 E-value cutoff to
achieve the same false-positive rate would have been 107>,
The latter falls within the recommended E-value of << 1 by
the manual (see pg 19 of [33]). Conversely, if one goes for a
preset false-positive rate of 0.01 (see horizontal dotted line),
the corresponding HMMER2 fold-critical E-value cutoff
will be at 107® and a much smaller fold-critical E-value cut-
off of 10~ for HMMERS3.

Page 10 of 32

Taken together, the original recommended E-value
cutoff of 0.1 is probably too generous for the fold-
critical E-value cutoff since the false-positive rates are
both over 0.50 for the HMMER variants. Conversely,
if one opts to control for a common false-positive
rate between the HMMER variants, then the fold-
critical E-value cutoff of both HMMER algorithms
need to be set at different levels, with the case of
HMMER3’s being more stringent.

In hindsight, it must be emphasized that this is not a
comprehensive comparative study between HMMER2
and HMMER3 given the differences in the alignment
modes (glocal versus local; fragmented versus contigu-
ous full alignment). Moreover, it is unreasonable to
assume a one-to-one correspondence relationship be-
tween HMMER2 and HMMERS3 for the case of negative
domain hits. Rather, we only wish to highlight that the
HMMERS3 local alignments do have a general tendency
towards more significant E-values than HMMER2 glocal
alignments at the same false-positive rate (see Fig. 5).
Unfortunately, since HMMER3 does not currently offer
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Fig. 5 Fold-critical E-values of the negative hits (in logarithm of 10) versus their corresponding false-positive rates (in logarithm of 10).

At the recommended E-value cutoff of 0.1 (see vertical dotted line), the HMMER?2 false-positive rate is lower (at 0.53) than that of HMMER3
(at 0.79). The equivalent HMMER3 E-value cutoff to achieve the same false-positive rate would have been 107, Conversely, if a false-positive r
ate of 0.01 (see horizontal dotted line) is set, the corresponding HMMER2 and HMMER3 fold-critical E-value cutoffs corresponds to 107° and
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glocal mode, readers need to enforce a stricter E-value
cutoff for admitting trusted hits when they migrate from
the glocal mode of HMMER2 to HMMER3. For dis-
sectHMMER, the preceding finding necessitates for a
scoring method that normalizes for the differences in
false-positive rates generated by HMMER2 and HMMER3
when unifying overlapping (i.e. common sequence cover-
age for the same domain model) sequence-to-domain hits
between HMMER2 and HMMERS3.

Segregation between fold-critical and remnant sequences,
dissectHMMER improves the sensitivity and specificity of
domain detection with similar fold over profile-to-profile
method-HHsearch

As discussed earlier, the respective false-positive rates
associated to any overlapping HMMER2 and HMMER3
sequence-to-domain alignments can vary greatly at the
same E-value cutoff. Although in mitigation, one may
preset independent HMMER2-specific and HMMER3-
specific fold-critical E-value cutoffs to limit hits beyond
a common false-positive rate, this will inevitably cause
some of the paired or overlapping HMMER2 and
HMMER3 alignments to be orphaned. As a conse-
quence, this may create a bias towards one of the
HMMER alignments; for better or worse. Also, besides
achieving statistical significance, the sequence-to-
domain hit should also reflect some level of fold similar-
ity of the domain model. This issue is particularly
relevant to the HMMER3 hits since HMMER3 returns
fragmented alignments, thus satisfying only partial
domain fold similarity. In the case of HMMER?2 hits,
domain coverage is always one, since the glocal mode
can be enforced.

With the preceding background considerations, an error-
adjusted domain coverage measure is proposed as shown
by Eq. 5 (see Methods section “Error-adjusted domain
coverage score: combining HMMER2 and HMMER3
fold-critical measures and domain coverage” and equations
therein). This measure gives a singular value for each
pair of HMMER2/HMMER3 sequence-to-domain align-
ments that is computed from both HMMER2-specific
and HMMER3-specific false-positive rates and domain
coverages.

To backtrack, dissectHMMER creates a pair of fold-
critical and remnant score for each sequence-to-domain
alignment that is subsequently evaluated for its fold-
critical E-value and its remnant E-values. As such, two
surrogate measures of the fold-critical score can be
derived : (i) fold-critical E-value and (ii) ratio of fold-
critical E-value over remnant E-value.

To elaborate further, the fold-critical E-value indicates
the level of statistical significance of the fold-critical
components in the alignment while ratio reflects the
magnitude difference between the fold-critical and the
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remnant parts of the alignment (low ratio suggests the
fold-critical components dominates the statistical signifi-
cance of the alignment). A confident sequence-to-
domain hit is characterized by low fold-critical E-value
and low ratio. In any case, both fold-critical E-value and
ratio can be associated to some level of false-positive
rate as part of the error-adjusted domain coverage for-
mula. Therefore, two versions of the error-adjusted do-
main coverage for the paired HMMER2/HMMER3
alignments can be evaluated for, as represented by cover-
ageratio and Coveragefold-critical E - value (see Eq. 5)'

For the purpose of evaluating the error-adjusted do-
main coverage measure of dissectHMMER, it was pit
against the well-regarded profile-to-profile HMM
method—HHsuite/HHsearch. The two algorithms were
evaluated across 1330 SCOP superfamilies where a mul-
tiple sequence alignment of each SCOP superfamily pro-
file was generated using the clustalw program and
presented to the respective algorithms as inputs. To re-
iterate, each SCOP superfamily fold can be shared by
several Pfam domain models. Meanwhile, since dis-
sectHMMER is fundamentally a sequence-to-profile
method, some additional steps were added to allow dis-
sectHMMER to derive a domain-wise score measure
(see Eq. 6) comparable to that of HHsearch for this
evaluation.

As usual, each sequence of the SCOP profile was first
processed by the disseccHMMER workflow (see section
“The HMMER score dissection framework: dissectHMMER
webserver”) to generate a list of sequence-to-domain hits
and their associated error-adjusted domain coverage score
measures (i.e. coverage™ and coverage'd”citical E-value)
Then, the collection of all sequence-to-domain hits for
this SCOP profile were sorted into groups of individual
domain models. As such, the averages of error-adjusted
domain coverage scores per domain model can be com-
puted (see Eq. 6) in “SCOP superfamily-wise evaluation
of dissect HMMER” section of Methods). Essentially, the
average is the domain-wise score measure (domainscor-
e/[;atio or domainscore]iold—critical E - value for the kth
domain model) for the dissectHMMER algorithm.

Meanwhile, for the HHsuite/HHsearch algorithm
(taken from ftp://toolkit.genzentrum.lmu.de/pub/HH-
suite/), the SCOP profile was directly used to sea
rch against the HHsearch-specific Pfam release 27
database (PfamA_27.0.hhm downloaded from ftp://
toolkit.genzentrum.lmu.de/pub/HH-suite/databases/
hhsearch_dbs/). In addition, the search model was set
to the “local alignment” mode to maximize for search sensi-
tivity. For each SCOP superfamily profile, the HHSearch al-
gorithm presented a list of domain-to-domain hits that
were sorted based on their probabilities, E-values (database
size of 14,831 based on Pfam release 27) and P-values. For
this comparison, the probability score of each domain-
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to-domain from HHsearch is taken as its best measure
against that of dissectHMMER's.

In total, the disseccHMMER algorithm computed the
domain-wise score measures for all 1330 SCOP super-
families (with 6339 mappable Pfam domains) while only
1199 SCOP superfamilies for the HHsearch algorithm.
In hindsight, some SCOP profiles contain information
entropy that was too low for the HHsearch to create its
native HMM representation. In any case, to ensure that
comparison is fair, only the common 1199 superfamilies
(with 5966 mappable Pfam domains) between the two
algorithms were further analyzed. This made up 80,592
domainscore™® and 80,592 domainscore®! ~critical E-
value for dissectHMMER and 39,695 HHsearch probabil-
ity scores. Consequently, the sets of domain-wise scores
for both dissectHMMER and HHsearch were evaluated
for the algorithms’ specificity and sensitivity over the
score range of 0 to 1 at an interval of 0.01.
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As a baseline prior to applying score dissection, the
HMMERS algorithm was also evaluated at three E-value
cutoffs of 0.1, 1 and 10. For each of the cutoffs, only the
sequence-to-domain alignment hits below the designated
E-value thresholds (i.e. trusted hits; assuming false-
positive rate of 0) were kept and the domain-wise score
measure is simply the domain coverage. This implies that
the terms (1 - fpﬁﬁﬁﬁfﬁz)coverageHMMERz and ﬂf;ﬁgﬁg{g
in Eq. 5 are both set to zero. Consequently, this made up
12,871 (at E-value <0.1), 18,191 (at E-value <1) and 20,672
at (E-value <10) HMMER3 domain coverage values.

Figure 6 depicts the ROC plots for dissectHMMER,
HHsearch and HMMER3. Generally speaking, the do-
main detection for the SCOP superfamily (based on fold
similarity) proves to be a formidable task for all the
sequence-based search methods. Towards the extreme
false-positive rate of about 1, the HHsearch, HMMER3
and dissectHMMER algorithms only detected up to
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Fig. 6 ROC (receiver operator curve) plots for dissectHMMER, HHsearch and HMMER3 against SCOP-to-Pfam mapping set. The domain detection for
the SCOP superfamily (based on fold similarity) is generally a difficult task for sequence-based search methods. Towards the false-positive rate of 1,
HHsearch, HMMER3 and dissectHMMER only detected up to 50 % (3067), 63 % (3767) and 65 % (3890 for fold-critical measure; 3894 for ratio measure)
of the 5966 mappable Pfam models respectively. At the false-positive rate (i.e. 1-specificity) of below 0.15, HMMER3 (a sequence-to-profile method)
performed worse than HHsearch (a profile-to-profile method) as expected. Beyond 0.15, HMMER3 picked up higher sensitivities than HHsearch when
false-positive rates went over 0.15 but large false-positive rate thresholds are rarely considered. Meanwhile, dissectHMMER's plots hovered above that
of both HMMER3 and HHsearch by a considerably margin, thus suggesting that it is more capable at detecting Pfam domains that share a superfamily
fold; thus, better bridging sequence similarity search space and structural similarity search space. Note that the error rates are separately derived from
the empirical distributions of the negative domain hits in the vicinity of the SCOP-to-Pfam sequences
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50 % (3067), 63 % (3767 for E-value <0.1; 3779 for E-
value <1; 3782 for E-value <10) and 65 % (3890 for fold-
critical measure; 3894 for ratio measure) of the 5966
possible Pfam models respectively.

At the false-positive rate (i.e. 1-specificity) of below 0.15,
HMMER3 which belongs to the sequence-to-profile
method, performed worse than the profile-to-profile
method HHsearch as expected. And although HMMER3
picked up higher sensitivities than HHsearch when false-
positive rates went over 0.15, large false-positive rate
thresholds are seldom considered since they admit a large
number of false hits.

Most importantly, when the score dissection frame-
work is integrated into the HMMER algorithm, the
end results are a set of dissecctHMMER’s ROC plots
that hover above that of both HMMER3 and
HHsearch by a considerably margin (see Fig. 6). At a
false-positive rate of 0.15, the increase in true-positive
rate (or the recovery of false-negatives) by dissectHMMER
was between 8 and 10 % over that of HMMER3 with a
true-positive rate of 46 % (54 % for the ratio measure;
56 % for the fold-critical E-value measure). This in-
crease of 8-10 % is in the same order of magnitude
as the average false-negative rate of 4.86 (+ 10.27)%
generated by the Pfam domains when searched
against the SwissProt/UniProt database from our pre-
vious work [19].

Taken together, dissectHMMER is more capable at de-
tecting Pfam domains that share a superfamily fold; thus,
better bridging sequence similarity search space and struc-
tural similarity search space. This better performance is
underpinned by the error-adjusted domain coverage score
measures coverage™® and coverage®d - critical E-value
dissectHMMER that critically corrects the fold-critical
sums of the sequence-to-domain hits with estimated false-
positive rates.

In hindsight, the score dissection concept can bene-
fit the supposedly less sensitive sequence-to-profile
search method by outperforming the more superior
profile-to-profile search method (e.g. HHsearch) as
exemplified by disseccHMMER. It would hardly be
surprising if the “dissected” version of HHsearch
would improve upon itself and over dissectHMMER
as well, though it is beyond the scope of this work.
Overall, the improvement brought about by score dis-
section asserts the necessity of segregating between
the fold-critical and remnant residues that is deeply
rooted in the core of the homology inference prob-
lem. And beyond mere numerical improvements, dis-
sectHMMER’s implementation is the most faithful to
the sequence homology concept as compared to other
current search algorithms since only the structural
residues (i.e. fold-critical segments) will be considered
for inferring homology.
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Case studies of dissectHMMER improves the confidence
of protein function prediction/annotation

In this section, the improved postulation of biological func-
tion for protein sequences by dissectHMMER, beyond that
of the typical Pfam/HMMER analysis, was demonstrated
through the analysis of three UniProt sequences: HEM1_-
METKA (NP_613487.1), TIP12_MAIZE (NP_001105029.1)
and Q9K8K1_BACHD (WP_010899149.1; completely
uncharacterized). These sequences were first analyzed by
the Pfam webserver (http://pfam.xfam.org/) and their
domain architectures are depicted in Fig. 7. Briefly,
HEMI1_METKA has three domains: GlutR_N (PF05201.10)
with E-value of 3.1e-39 from positions 7—142, Shikima-
te_DH (PF01488.15) with E-value of 2.4e—38 from positions
156-292 and GlutR_dimer (PF00745.15) with E-value of
1.2e-13 from positions 305-403 (See Fig. 7a). In the case
of TIP12_MAIZE, it has a single domain hit to MIP
(PF00230.15) with E-value of 1.1e-75 from positions 13—
234 (See Fig. 7b). Lastly, the sequence Q9K8K1_BACHD
has a single domain hit to an domain of unknown function
DUF819 (PF05684) with E-value of 4.1e-155 from
positions 10-388 (See Fig. 7c). Generally speaking, there is
no way to assert if the significance of these domain hits are
mainly attributed to the fold-critical sequence segments of
the sequence-to-domain alignments to justify for function
annotation transfer. Implicitly, this requires some leap of
faith based on a single significant domain hit. And in the
case of QI9K8K1 BACHD, faith on a significant yet un-
known domain hit offers little clue as to the plausible bio-
logical function of the sequence.

Meanwhile, in analysis of HEM1_METKA (sequence
length of 404 AA) by dissectHMMER (see Additional file
6), the sequence also exhibited a N-terminus domain hit
to the PF05201.10 GlutR_N domain (positions 7-142)
and a C-terminus domain hit to PF00745.15 GlutR_di-
mer domain (positions 305-403). The key difference in
results between the Pfam server and dissectHMMER
was marked by the middle sequence stretch from posi-
tions 168-265 where dissectHMMER generated 13 do-
main hits while the Pfam webserver generates only a
single domain hit (See Fig. 7 versus Fig. 8a). Between the
Pfam webserver and dissectHMMER, only the Shikima-
te_DH (PF01488.15) domain was a common hit. The re-
sults are presented in Table 2.

In Table 2, the Pfam accession, domain name, domain
length and representative PDB (if any) for each domain
hit are given in column 1. Column 2 gives the sequence
range (i.e. sequence stretch covered by the domain) and
the domain coverage, where 1 indicates full coverage
while <1 implies partial coverage by the domain model.
Column 3 gives the individual original HMMER2 and
HMMER3 E-values for each of the sequence-to-domain
alignment. Column 4 gives the corrected domain cover-
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Fig. 7 Domain architecture of sequence examples HEM1_METKA, TIP12_MAIZE and Q9K8K1_BACHD. The sequences were analyzed by the Pfam
webserver (http://pfam.xfam.org/). Briefly, HEM1_METKA has three domains: GIutR_N (PF05201.10) with E-value of 3.1e-39 from positions 7-142,
Shikimate_DH (PF01488.15) with E-value of 2.4e-38 from positions 156-292 and GlutR_dimer (PF00745.15) with E-value of 1.2e-13 from positions
305-403 (See Fig. 7a). In the case of TIP12_MAIZE, it has a single domain hit to MIP (PF00230.15) with E-value of 1.1e-75 from positions 13-234
(See Fig. 7b). Lastly, the sequence Q9K8K1_BACHD has a single domain hit to an unknown domain DUF819 (PF05684) with E-value of 4.1e-155
from positions 10-388 (See Fig. 7c). Generally speaking, there is no way to assert if the significance of these domain hits are mainly attributed to
the fold-critical sequence segments of the sequence-to-domain alignments. In the case of Q9K8K1_BACHD, the hit to an unknown domain offers

388

(see Eq. 5) of the HMMER2/HMMER3 sequence-to-
domain hits. The expected FPRs (false-positive rates) for
the domain coverage scores are also provided and they
were estimated from the relevant disssccHMMER ROC
plots in Fig. 6 when given a coverage score. Finally, the
list of domains were sorted by the total FPR in ascending
order (column 5) where the latter is the sum of the two
independent FPRs as given in column 3.

To validate the domain hits as proposed by dissect-
HMMER for the sequence stretch of 168-265, the PDB
structure of HEM1_METKA, 1GPJ|A (sequence length of
404AA), was used to perform structural alignments (via
the jCE algorithm [34]) against each of the representative
PDB structure of the 13 domains. Briefly, the structure
1GPJ|A is a glutamyl-tRNA reductase involved in the tetra-
pyrrole biosynthesis of plants and prokaryotes [35]. This
reductase contains 3 domains : a N-terminus RNA-binding
domain, a NADPH-binding domain (which positional
range coincides with the 13 domains proposed by dis-
sectHMMER in Table 2) and a C-terminus dimerization
domain. The resulting RMSDs and sequence identities
(%Ids) from the structural alignments are tabulated in
column 6. Column 6 also includes the aligned range
between the structure 1GPJ|A and the respective repre-
sentative structures (in column 1). Finally, the relevant
biological function of these representative structures
based on literature review are listed in the last column.

Based on the listed biological functions in Table 2 (last
column), the domain hits can mainly be generalized as

cellular metabolism reactions and can be further subdi-
vided into 2 main groups : (i) 10 anabolic reactions that
combine simple substances into more complex mole-
cules driven by NADP+ and (ii) 2 catabolic reactions
that breaks complex organic molecules into simpler sub-
stances driven by NAD+. The exception in the list is the
TrkA_N (PF02254.13) domain that uses NAD+ to drive
conformational change in K+ channels/transporters for
osmoregulation [36]. The 13 NADP+ and NAD+ binding
domain hits are depicted in Fig. 8.

With the exception of the IlvN domain (PF07991.7), the
top 9 domain hits Shikimate_DH (PF01488.15), F420_oxi-
dored (PF03807.12), THF_DHG_CYH_C (PF02882.14),
NAD_binding 2 (PF03446.10), 2-Hacid_dh_C(PF02826.14),
adh_short (PF00106.20), KR (PF08659.5), NAD_binding_7
(PF13241.1) and NAD_binding 10 (PF13460.1) are NADP+
driven anabolic processes with a total FPR range of between
0.0 and 0.06 and a structural-derived %Id range of between
9.0 and 14. Essentially, this cohort of NADP+ driven
biosynthesis processes corroborates well with the notion
that the HEM1_HETKA possesses a NADP+ domain to
drive its tetrapyrrole biosynthesis. In the case of the IIvN
domain, the structural alignment covers about 120 posi-
tions between the NADP+ binding domains of 1GPJ|A and
1YVE|A (see last row, column 6; Table 2) supporting the
notion that it has a NADP+ binding domain, However, its
sequence-to-domain hit covers only 42 % (75 out of 177
AA) of its NADP+ domain and found by HMMERS3 alone.
As a result, the total FPR is regretfully high at 1.07 as the
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(See figure on previous page.)

Fig. 8 DissectHMMER analysis of HEM1_METKA. The domain hits can mainly be generalized as cellular metabolism reactions and can be further
subdivided into 2 main groups : (i) 10 anabolic reactions that combine simple substances into more complex molecules driven by NADP+ and (ii)
2 catabolic reactions that breaks complex organic molecules into simpler substances driven by NAD+. With the exception of the IlvN domain
(PF07991.7), the top 9 domain hits Shikimate_DH (PF01488.15), F420_oxidored (PF03807.12), THF_DHG_CYH_C (PF02882.14), NAD_binding_2
(PF03446.10), 2-Hacid_dh_C(PF02826.14), adh_short (PF00106.20), KR (PF08659.5), NAD_binding_7 (PF13241.1) and NAD_binding_10 (PF13460.1)
are NADP+ driven anabolic processes with a total FPR range of between 0.0 and 0.06 and a structural-derived %Ild range of between 9.0 and 14.
In the case of the llvN domain, its sequence-to-domain hit covers only 42 % (75 out of 177 AA) of its NADP+ domain and found by HMMER3
alone. As a result, the total FPR is regretfully high at 1.07 as the HMMER algorithm reaches its limit of detection. The next group of domain hits
i.e. GFO_IDH_MocA (PF01408.17) and Malic_M (PF03949.10) binds the NAD+ molecule. This group exhibits a larger total FPR range of between
0.20 and 0.70 and a lower structural-derived %Id of between 6.4 and 9.4. Notably, there was a noticeable jump between the adjacent hits from
0.06 (NAD_binding_10) to 0.20 (GFO_IDH_MocA) when the ligand changes from NADP+ to NAD+ between the anabolic and catabolic groups

HMMER algorithm reaches its limit of detection. The next
group of domain hits i.e. GFO_IDH_MocA (PF01408.17)
and Malic_M (PF03949.10) binds the NAD+ molecule. This
group exhibits a larger total FPR range of between 0.20 and
0.70 and a lower structural-derived %Id of between 6.4 and
9.4. Interestingly, there was an noticeable jump between
the adjacent hits from 0.06 (NAD_binding 10) to 0.20
(GFO_IDH_MocA) when the ligand changes from NADP+
to NAD+ between the anabolic and catabolic groups. If the
original E-values had been used, the distinction between
the NADP+ (HMMER2 E-values between 1.9e-67 and
4.86) and NAD+ (HMMER?2 E-values between 3.44e—2 and
8.97e—2) domains would be challenging due to the overlap-
ping ranges. Meanwhile, the HMMER3 results would have
posed some additional difficulties due to missing E-values
for some of these domains.

In hindsight, though the chemical composition be-
tween NADP+ and NAD+ only differs by a phosphate,
the biological processes that each molecule outlines
suggests quite the opposite i.e. building versus breaking
down (see section 14.3 of [37]). On this occasion, the
deeper search depth to gather more fold-related domains
by dissectHMMER and the subsequent hits stratification
via the total FPR measure and biological evidence to
partition the hits into a cohort of NADP+ domains as a
closer and majority group while the NAD+ domains as
the distant and minority group, helps to clarify that the
middle segment of HEM1_METKA is a NADP+ and not
a NAD+ binding domain.

In the second example, the analysis of 6-TM (trans-
membrane) TIP12_MAIZE (sequence length of 252 AA)
by dissecctHMMER reveals 11 relevant domain hits
altogether (see Additional file 2: Table S3 and Additional
file 7 for the full list). Out of which, only 5 domain hits
have associated structures as listed in Table 3, as sorted
by the total FPR measure in ascending order. Further-
more, the 5 domain hits can be sorted into a cohort of 4
channel proteins and a single outlier antiporter protein
as depicted in Fig. 9.

With a total FPR of 0.0, TIP12 MAIZE is strongly postu-
lated to be a water/glycerol channel based on the most
significant MIP (PF00230.15) domain hit. In turn, the MIP

domain has a representative PDB structure 1YMG]JA that
describes a bovine aquaporin [38]. Then, to validate the
relevance of the other 4 domain hits, structural alignments
(via the jCE algorithm [34]) were executed for each repre-
sentative PDB structure of the domains against the PDB
structure 1YMG|A. The resulting RMSDs, sequence iden-
tities (%Ids), the aligned ranges and biological functions
from the structural alignments are tabulated in columns 6
and 7 of Table 3. Interestingly, the subsequent two channel
protein domain hits Voltage CLC (PF00654.15) and
Form_Nir_tranp (PF01226.12), marks a jump from the MIP
domain hit with a total FPR of 0.29 and 0.35 respectively.
Their structurally-derived %Ids are 6.6 and 9.5 respectively.
This is concurrently accompanied by a change of the trans-
ported solute from water (H,O) to some anions, chloride
(CI") and nitrite (NO3) respectively. The fourth domain
ECF-ribofla_trS (PF07155.7) scores a total FPR of 0.61 with
a structurally-derived %Id of 6.4, and is a 5-TM channel
protein that transports riboflavin molecules (generally
neutral in charge) across the membrane. Despite the
differences in the substrate specificity, the cohort of domain
hits i.e, MIP, Voltage CLC, Form_Nir_tranp and ECF-
ribofla_trS generally describes a channel protein that trans-
ports its solute across the lipid membrane. This cohort
ranges a total FPR of between 0.00 and 0.61 and a
structurally-derived %Id of between 6.4 and 100. Although
the Pfam server was also able to conclude that TIP12_ -
MAIZE is an aquaporin (see Fig. 7b versus Fig. 9), the
cohort of 4 fold-related channel proteins, gathered by
dissectHMMER, helps to reaffirm that the 6-TM
TIP12_MAIZE is indeed a channel protein, and in
particular, an aquaporin.

In contrast, the last domain hit BCCT (PF02028.12) de-
scribes a 12-TM antiporter (concurrent exchange of carni-
tine and butyrobetaine) that is mechanistically different
from a channel protein. This BCCT hit scores an unim-
pressive total FPR of 1.01. It is further ousted as a positive
domain hit by its structural alignment results against
1YMGIJA and scores a bad RMSD of 9.73 and a low
structurally-derived %Id of 3.8. Meanwhile, it would have
been difficult to identify the other less significant channel
domains (i.e., Voltage_CLC, Form_Nir_tranp and ECF-



Wong et al. Biology Direct (2015) 10:39

Page 17 of 32

Table 2 DissectHMMER results for the analysis of HEM1_METKA for the middle sequence stretch from positions 168-265

ratio

Domain Sequence Original E-values [coverage/FPR] Total  RMSD/%ld/Structural - Function description of
description range/Domain  [HMMER2/HMMER3]  [coverage/FPRI™ £ FPR  alignment range representative pdb
coverage (1GPJ|A:pdb)
PF01488.15 156-292/ 1.90e-67/ 0.995/0.00 000 3.2/ Synthesis of aromatic amino-acids
o in shikimate pathway [39];
Shikimate_DH 1 3.21e-40 0.995/0.00 14.0/ NADP+ driven
length:170 149-304:
pdb:TNVT|A 110-270
PF03807.12 169-268/ 8.73e-06/ 0.975/0.00 000 375/ Conversion of insoluble ferrin (Fe**")
A to soluble ferrin(Fe”*) [40];
F420_oxidored 1 293e-07 0.980/0.00 14.0/ NADP+ driven
length:123 168-281:
pdb:2VNS|A 29-150
PF02882.14 131-258/ 5.34e-01/ 0.780/0.00 000 329/ Interconversion of 1-carbon
derivatives of tetrahydrofolate;
THF_DHG_CYH_C 1 8.87e-03 0.795/0.00 10.7/ substrates for methione,
length:205 149-307: thymidylate and purine
syntheses [41]; NADP+ driven
pdb:1A4I|A 147-29
PF03446.10 167-321/1 3.00e-01/ 0.700/0.00 000 357/ Decarboxylating reduction of
o 6-phosphogluconate to ribose
NAD_binding_2 1.27e-03 0.710/0.00 14/ 5-phosphate [42]; NADP+ driven
length:235 167-288:
pdb:1PGQ|A 2-129
PF02826.14 127-269/ 8.79e-03/ 0.645/0.00 000 3.05/ Purine biosynthesis [43];
>Hacid_dh_C 1 529-09 0670/0.00 18/ NADP driven
length:260 161-264:
pdb:30RQJA 3-101
PF00106.20 168-305/ 1.10e-02/ 0.640/0.00 0.00 3.00/ Synthesis of tripinone
from pseudotropine
adh_short 1 5.53e-05 0.645/0.00 9.2/ [44]; NADP+ driven
length:225 164-265:
pdb:11PE|A 6-145
PF08659.5 169-281/1 4.86e + 00/ 0.57/0.01 001 362/ Mammalian fatty acid synthase;
a large multienzyme that catalyzes
KR 6.51e-03 0.725/000 9.0/ all steps of fatty acid synthesis [45];
length:257 150-291: NADP+ driven
pdb:2VZ9|A 1651-1802
PF13241.1 162-275/ 9.13e-02/ 0.535/0.01 002 417/ Siroheme synthesis from uro'gen |ll
- in tetrapyrrole biosynthesis [46];
NAD_binding_7 1 7.38e-03 0.535/0.01 120/ NADP+ driven
length:379 160-304:
pdb:1PJQA 5-150
PF13460.1 170-344/ 2.40e-02/- 0.495/0.03 006  3.26/ Synthesis of bilverdin from
NAD_binding_10 1 0.490/0.03 1.5/ bilirubin (47]; NADP+ driven
Length:362 168-288:
pdb:THDOJA 4-152
PF01408.17 168-265/1 8.97e-02/- 0.445/0.11 020 373/ Cleavage of non-reducing
N-acetylgactosamine from
GFO_IDH_MocA 0.450/0.10 94/ blood group ABO antigens
length:188 167-303: (48]; NAD+ driven
pdb:2IXB|A 20-164
PF02254.13 170-285/ 3.55e-02/- 0.400/0.18 033 331/ NAD-mediated conformation
switch for K™ influx control [49];
TrkA_N 1 0420/0.15 10.5/ NAD+ driven
length:195 168-300:
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Table 2 DissectHMMER results for the analysis of HEM1_METKA for the middle sequence stretch from positions 168-265 (Continued)

pdb:1LSS|A 1-132

PF03949.10 146-323/ 3.44e-02/- 0.140/0.66 070 322/ Oxidation of malate to
Malic_M 1 0.485/0.04 64/ pyruvate [50]; NAD+ driven
length:324 149-305:

pdb:1DO8|A 298-494

PF07991.7 165-233/ -/1.65e-04 0.205/0.53 107 349/ Synthesis of branched side
IIvN 042 0.205/0.54 97/ E;ggzedfirv‘ifO'e“d”e BTl
length:177 163-288:

pdb:TYVE|A 121-252

For each domain hit, the Pfam accession, domain name, domain length and representative PDB (if any) are given in column 1. Column 2 gives the sequence
range (i.e. sequence stretch covered by the domain) and the domain coverage where 1 indicates full coverage while <1 implies partial coverage by the domain
model. Column 3 gives the original (or undissected) HMMER2 and HMMER3 E-values of the sequence-to-domain alignments. Column 4 gives the coverage score,
coverage™© and coverage//d-<itical E-value (saq Eqy. 5) which is the corrected domain coverage score of the HMMER2/HMMER3 sequence-to-domain hit. The expected
FPRs (false-positive rates) for the coverage scores are also provided and they were estimated from the relevant dissectHMMER ROC plots in Fig. 6. Column 5 gives the
sorted total FPR in ascending order, where the latter is the sum of the two independent FPRs as given in column 3. Column 6 gives the RMSD/%Id and alignment range
derived from the structure alignments between 1GPJ|A and the representative structures of the domain models. The last column gives the biological function of the
representative structures.

Table 3 Filtered dissectHMMER results from the analysis of the 6-TM TIP12_MAIZE

Domain Sequence Original E-values [coverage/FPR]™"° Total  RMSD/%Id/Structural ~ Function description
description range/Domain  [HMMER2/ [coverage/FPRI™ ¥ae PR alignment range of representative pdb

coverage HMMER3] (1YMGJA:pdb)
PF00230.15 13-234/ 146e-127/ 1.00/0.00 000 0.00/ 6-TM water/glycerol channel of malarial
MIP 1 8506-73 1.00/0.00 100/ parasite Plasmodium falciparum [52]
length:296 6-239:
pdb:1YMG|A 6-239
PFO0654.15 1-236/ 3.89e-01/ 0.345/0.28 029 499/ 12-TM chloride channel; 3 CI” bind sites,
Voltage_CLC 1 6.52e-05 0.550/0.01 6.6/ teﬁghmae;fgrr;“ekgl ;;aejeégry transverse to
length:730 78-228:
pdb:2HLF|A 254-383
PF01226.12 17-238/ 3.54e-03/- 0.325/0.32 035 351/ 6-TM nitrite anion channel of bacteria
Form_Nir_trans 1 0490/0.03 95/ for cytoplasmic detoxification [54]
length:366 10-223:
pdb:AFC4|A 25-249
PF07155.7 57-190/ 8.10e-02/- 0.235/0.48 061 352/ 5-TM pore that transport riboflavin
ECF-ribofla_trS 1 0435/0.13 64/ molecules across the lipid bilayer [55]
ength:196 131-226:
pdb4HZU|S 35:162
PF02028.12 28-242/ 7.24e-02/- 0.010/0.98 101 973/ 12-TM carnitine/butyrobetaine
BCCT 1 0495/0.03 38/ antiporter [36}
length:722 6-198:
pdb:2WSW|A 86-373

For each domain hit, the Pfam accession, domain name, domain length and representative PDB (if any) are given in column 1. Column 2 gives the sequence
range (i.e. sequence stretch covered by the domain) and the domain coverage where 1 indicates full coverage while <1 implies partial coverage by the domain
model. Column 3 gives the original (or undissected) HMMER2 and HMMER3 E-values of the sequence-to-domain alignments. Column 4 gives the coverage score,
coverage™™® and coverage™'dcritical E-value (saa Eqy. 5) which is the corrected domain coverage score of the HMMER2/HMMER3 sequence-to-domain hit. The expected
FPRs (false-positive rates) for the coverage scores are also provided and they were estimated from the relevant dissectHMMER ROC plots in Fig. 6. Column 5 gives the
sorted total FPR in ascending order, where the latter is the sum of the two independent FPRs as given in column 3. Column 6 gives the RMSD/%Id and alignment range
derived from the structure alignments between 1YMGJA and the representative structures of the domain models. The last column gives the biological function of the
representative structures.
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Fig. 9 DissectHMMER analysis of TIP12_MAIZE. The most significant domain hit MIP (PF00230) describes a water/glycerol channel that scores a total
FPR of 0.0. Interestingly, the next two domain hits Voltage_CLC (PF00654.15) and Form_Nir_tranp (PF01226.12), marks a jump from the MIP domain hit
with a total FPR of 0.29 and 0.35 respectively. Their structurally-derived %lds are 6.6 and 9.5 respectively. This is concurrently accompanied by a change
of the transported solute from water (H,O) to some anions, chloride (CI”) and nitrite (NO5) respectively. The fourth domain ECF-ribofla_trS (PF07155.7)
scores a total FPR of 061 and structurally-derived %ld of 64, and is a 5-TM channel protein that transports riboflavin molecules (generally neutral in
charge) across the membrane. Overall, the cohort of domain hits MIP, Voltage_CLC, Form_Nir_tranp and ECF-ribofla_trS generally describes a channel
protein that transports its solute across the lipid membrane. In contrast, the last domain hit BCCT (PF02028.12) describes a 12-TM antiporter (concurrent
exchange of carnitine and butyrobetaine) that is mechanistically different from a channel protein. This BCCT hit scores an unimpressive total FPR of
1.01. It is further ousted as a positive domain hit by its structural alignment results against TIP12_MAIZE with a bad RMSD of 9.73 and a low %ld of 3.8 )

ribofla_trS) via their original HMMER2 E-values since
these values can span between a much less significant range
of between 3.54e—3 and 3.89e—1 as compared to the very
significant E-values of MIP at 1.46e—127. At the same time,
the outlier antiporter domain (BCCT) with an E-value
of 7.24e-2, complicates the analysis by sitting in the
middle of the range. Meanwhile, using HMMERS3, only
two domains, MIP and Voltage_CLC were detected at
E-values of 8.5e—73 and 6.52e—05, respectively.

In the last example, the dissecctHMMER analysis of the
uncharacterized 11-TM Q9K8K1_BACHD (sequence
length of 388 AA) found 16 fold-related domain hits for
further consideration (see Additional file 2: Table S4 and
Additional file 8 for the full list). After filtering for
domains with at least 10-TM, there remains 8 domain hits
(out of which, 6 have representative PDB structures) on
top of the most significant DUF819 domain hit, as listed
in Table 4. And given the lack of function annotation
from the most significant domain DUF819 (albeit having a
total FPR=0.0), the closest functional postulation for
QI9K8K1_BACHD was proposed by the next most fold-

critical significant MFS_1 domain (total FPR = 0.0) with a
representative PDB structure 2CFP|A that describes a
12-TM lactose/H+ symporter. Furthermore, to clarify
if Q9K8K1_BACHD can be generalized as a sugar
transporter, the PDB structure 2CFP|A was used as a
surrogate structure to Q9K8K1_BACHD for perform-
ing structural alignments (via the jCE algorithm [34])
against the representative PDB structures (if available)
of the domain hits in Table 4. The resulting RMSDs,
structurally-derived sequence identities (%Id), the aligned
ranges from the structural alignments and the biological
functions are tabulated in columns 6 and 7 of Table 4.
Overall, the hits in Table 4 can be organized into three
functional groups: the sugar transporters, the proton
transporters and the peptide/amino-acid transporters as
depicted in Fig. 10. The sugar transporter group
contains 4 independent domain hits to the sequence
QI9K8K1_BACHD : MFS_1 (a 12-TM lactose/H+ sym-
porter with a total FPR of 0.0), MFS_2 (a 12-TM glu-
cose/H+ symporter with a total FPR of 0.18), Sugar_tr
(a 12-TM d-xylose/d-glucose transporter with a total
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Table 4 Filtered dissectHMMER results from the analysis of the 11-TM Q9K8K1_BACHD
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Domain Sequence Original E-values  [coverage/FPR]"™™ Total  RMSD/%Id/Structural Function description of
description range/Domain  [HMMER2/ [coverage/FPRI B FPR  alignment range representative pdb

coverage HMMER3] (2CFP|Apdb)
PFO5684 10-388/ 5.30e-244/ 1.00/0.00 000 - Unknown function
DUF819 1 3.50e-162 1.00/0.00
length:400
pdb:-
PF07690.11 13-382/ 7.72e-02/ 0.845/0.00 000 0.0/ 12-TM lactose permease (symporter)
MFS_1 1 998e-05 0815/0.00 100/ ﬂiﬁfg’:j;g?;giﬂ“{;‘fs lactose and
length:793 1-417:
pdb:2CFP|A 1-417
PF00999.16 10-387/ 8.25e-03/- 0415/0.15 0.18 499/ 12-TM sodium/proton
Na_H_Exchanger 1 0.490/0.03 67/ (Na(+)/H(+)) antiporters [58]
length:593 33-180:
pdb:4BWZ|A 75-238
PF13347.1 36-382/ 831e-02/- 0415/0.15 018 362/ 12-TM glucose/H(+) symporter
MES_2 1 0490/0.03 94/ of Staphylococcus epidermidis [59]
length:847 11-401:
pdb:4LDS|A 7-423
PF00083.19 6-385/ 5.20e-02/- 0.225/0.50 054 479/ 12-TM D-xylose or d-glucose
Sugar_tr 1 0.485/0.04 65/ transporter [60]
length:605 4-388:
pdb:4GCOJA 5-428
PFO0115.15 22-381/ 7.88e-02/- 0.120/0.70 076 74/ 12-TM mitochondrial cytochrome
con
length:591 9-417:
pdb:1 V55|A 9-501
PFO3611.9 7-379/ 1.28e-03/- 0.035/0.90 094 - 10-TM 3-keto-L-gulonate
EIIC-GAT 1 0.485/0.04 sugar-specific permease [62].
length:642
pdb:-
PF03169.10 3-388/ 3.73e-02/- 0.050/0.88 098 - 12-14 TM oligopeptide
oPT 1 0450/0.10 transporter protein [63].
length:1010
pdb:-
PF02028.12 7-330/ 1.18e-02/- 0.005/1.00 101 773/ 12-TM carnitine/butyrobetaine
BCCT 1 0500/0.01 31/ antiporter [6}
length:722 8-212:
pdb:2WSW|A 48-404

For each domain hit, the Pfam accession, domain name, domain length and representative PDB (if any) are given in column 1. Column 2 gives the sequence
range (i.e. sequence stretch covered by the domain) and the domain coverage where 1 indicates full coverage while <1 implies partial coverage by the domain
model. Column 3 gives the original (or undissected) HMMER2 and HMMER3 E-values of the sequence-to-domain alignments. Column 4 gives the coverage score,

ratio

coverage ©

and z:ovc—:-ragef

Id -critical E-value (saa Eqp. 5) which is the corrected domain coverage score of the HMMER2/HMMER3 sequence-to-domain hit. The expected

FPRs (false-positive rates) for the coverage scores are also provided and they were estimated from the relevant dissectHMMER ROC plots in Fig. 6. Column 5 gives the
sorted total FPR in ascending order, where the latter is the sum of the two independent FPRs as given in column 3. Column 6 gives the RMSD/%Id and alignment range
derived from the structure alignments between 2CFP|A and the representative structures of the domain models. The last column gives the biological function of the

representative structures.
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Fig. 10 DissectHMMER analysis of Q9K8K1_BACHD. The sugar transporter group contains 4 independent domain hits to the sequence
QI9K8K1_BACHD : MFS_1 (a 12-TM lactose/H+ symporter with a total FPR of 0.0), MFS_2 (a 12-TM glucose/H+ symporter with a total FPR
of 0.18), Sugar_tr (@ 12-TM d-xylose/d-glucose transporter with a total FPR of 0.54) and EIIC-GAT (10-TM L-gulonate sugar-specific
transporter with a total FPR of 0.94). This fold-related cohort of sugar transporter domains spans a total FPR of between 0.00 and 0.94
and a structurally-derived %ld range of between 6.5 and 100 (good RMSD between 0 and 4.79). The next group is a cohort of proton
transporters made up of the Na_H_Exchanger (a 12-TM sodium/H+ antiporter) and COX1 (a 12-TM dual proton pumps) domains. This
group spans between a total FPR of between 0.18 and 0.76 with an unimpressive structurally-derived %ld of between 1.7 and 6.7

(bad RMSD range of between 4.99 and 7.4). Furthermore, the Na_H_Exchanger domain is an antiporter that is structurally different from
the sugar symporters. And for the last group of peptide/amino-acid transporter, which is made up of the OPT and BCCT domain, it spans

and particularly, a lactose/H+ symporter

a total FPR of between 0.98 and 1.01 with a low %ld of 3.1. Taken together, Q9K8K1_BACHD is neither a proton transporter nor a
peptide/amino-acid transporter given the low sequence identity and structural similarity. Rather, Q9K8K1_BACHD is a sugar transporter

FPR of 0.54) and EIIC-GAT (10-TM L-gulonate sugar-
specific transporter with a total FPR of 0.94). This
fold-related cohort of sugar transporter domains spans
a total FPR of between 0.00 and 0.94 and has a
structurally-derived sequence identity range of between
6.5 and 100 (good RMSD between 0 and 4.79). Notably,
the changes in substrate specificity from lactose, glucose
to L-gulonate in these sugar transporters are marked by
the increasing total FPRs (0.0->0.18, 0.0— > 0.54, 0.0— >
0.94) as stratified by dissectHMMER, when the sequence
QI9K8K1_BACHD deviates from the various distant sugar
transporters.

The next group is a cohort of proton transporters
made up of the Na_H_Exchanger (a 12-TM sodium/H+
antiporter) and COX1 (a 12-TM dual proton pumps)
domains. This group spans between a total FPR of be-
tween 0.18 and 0.76 with an unimpressive structurally-

derived %Id of between 1.7 and 6.7 (bad RMSD range of
between 4.99 and 7.4). Furthermore, the Na_H_Exchan-
ger domain is an antiporter that is structurally different
from the sugar symporters. And for the last group of
peptide/amino-acid transporter, which is made up of the
OPT and BCCT domain, it spans a total FPR of between
0.98 and 1.01 with a low %Id of 3.1. Taken together,
QI9K8K1_BACHD is neither a proton transporter nor a
peptide/amino-acid transporter given the low sequence
identity and structural similarity. Rather, the uncharac-
terized Q9K8K1_BACHD sequence is a 11-TM sugar
transporter and particularly, a lactose/H+ symporter.
Based on the original HMMER?2 results, the distinction
among the sugar transporters (E-values between 1.28e—3
and 8.31e-2), the proton transporters (E-values between
8.25e-3 and 7.88e-2) and the peptide/amino-acid trans-
porters (E-values between 1.18e—2 and 3.73e-2) would
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have been difficult due to the highly overlapping ranges.
And based on the HMMERS3 results with the detection
of only the DUF819 and MFS_1 domains, conclusions
would have been difficult. In this example, the steep
jump in E-values between DUF819 and MFS_1
(HMMER?2: 5.30e-244 versus 7.72e—02; HMMER3:
3.50e-162 versus 9.98e-5) would likely exclude the
MFS_1 domain as a plausible hit, whereas dissectHM-
MER (via the total FPR measure) rescues it .

In hindsight, the vast range of the NADP-binding do-
mains (HMMER2 E-values between 1.9e—67 and 4.86),
channel proteins (HMMER?2 E-values of between 1.46e—
127 and 3.89e-1) and sugar transporters (HMMER2 E-
values between 5.30e-244 and 8.31e-2; presume DUF819
is a sugar transporter domain) in the preceding case
studies indicates a high level of sequence divergence
within the various homologous groups. This, in turn,
downplayed the statistical significance of some of these
hits due to the penalty imposed by the non-globular seg-
ments, when evaluated over the full alignments.

Instead, by re-evaluating the fold-critical segments of
the alignments through score dissection, dissect HMMER
exhibits a deeper search depth and maintains a correct
search path to elucidate more fold-related and relevant
domain hits. And when these properly quantified and
functionally-characterized hits are stratified into relevant
cohorts, dissectHMMER is minimally able to postulate the
generalized function of the query sequence. In the case of
HEM1 METKA, its generalized biological function hints
at cellular metabolism and specifically at an anabolic reac-
tion as supported by the top hits of NADP+ binding do-
mains (Shikimate_ DH, F420_oxidored, 2-Hacid_dh_C,
adh_short, NAD_binding 7 and NAD_binding 10 with
total FPR <0.06). Meanwhile, for TIP12_MAIZE, it can be
generalized as a channel pore that conducts some solute
and particularly water/glycerol as supported by the MIP
domain hit (with total FPR of 0.0). And for the case of the
novel sequence Q9K8K1_BACHD, it can be generalized as
a sugar transporter and is strongly postulated to be a
lactose/H+ symporter as supported by the MFS_1 domain
(total FPR of 0.0).

At the same time, the stratification of the quantified
domain hits (via the ordered total FPR) helps to guide
the amount or level of function transfer from the most
significant domain hit to the sequence. To emphasize,
the change in substrate specificity between the actual
and next best domain hits (from NADP+ to NAD+
for HEM1_HETKA; from water to anions (ClI,NO3)
for TIP12_MAIZE; from Ilactose to glucose for
QI9K8K1_BACHD) occurs around the total FPR range
of between 0.18 and 0.29. Anecdotally speaking, for
cases where the total FPR of the most significant do-
main hit is below this range, the specific function
may be inferred from this significant hit. However, if
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this most significant hit straddles around this range
and beyond, the postulation of function should be
limited to the level of the generalized biological func-
tion. As such, disseccHMMER attempts to balance be-
tween over and under-prediction of the biological function
while transferring sufficient information to uncharacterized
sequences that are currently not linked to any domain hits.

Conclusions

The basis of the sequence homology concept states the
necessity to emphasize on the similarity between the
structural pieces of an alignment to ensure reasonable fold
similarity (3D-structural) and, hence, the implied bio-
logical function. However, high sequence similarity (being
the only surrogate measure to homology) does not neces-
sarily imply homology. To add further complexity, current
implementation of sequence search algorithms do not
consciously differentiate between the 3D-structural se-
quence segments and the non-globular segments of the
alignments. And hence, spurious yet statistically signifi-
cant alignments can be propagated as homology pieces.
The situation is made worse when one attempts to trans-
fer function annotation between two distant sequences in
the deeper sequence similarity search space since this im-
plies higher sequence divergence that inevitably corrupts
the homology signal.

The proposed framework, dissectHMMER, is built upon
our previous work [19] in an attempt to break the limits
of current sequence search algorithms (even outperform-
ing a profile-to-profile based method-HHsuite/HHsearch)
while maintaining on the correct search path. As fold
similarity is the modus operandi of homology and that the
fold is defined as the spatial arrangement of secondary
structural elements [18], it is not surprising that searching
with a query that primarily consists of sequences from the
secondary structural elements (i.e., the fold-critical seg-
ments) is expected to be more successful. Overall,
dissectHMMER is able to achieve a deeper yet relevant
search depth through the rescue of statistically evaluated
false-negative yet fold-related domain hits to the query
sequence. In turn, the subsequent stratification of more
fold-related hits (implying similar function) into cohorts
of functionally-related domains allows dissectHMMER to
minimally propose a generalized function for the query
sequence when supported by biological evidence. The lat-
ter is crucial for many novel sequences whose current
search space cannot be linked to any well-characterized
protein sequences. Also, the stratification of the quantified
hits via the ordered total FPR measures hints at the
amount or level of function transfer from the most signifi-
cant domain hit to the sequence. This allows a balance
between over- and under-prediction of the function.
Taken together, disseccHMMER presents an opportunity
for current novel protein sequences to be functionally
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characterized, as illustrated through the real-life application
of dissectHMMER on the sequence Q9K8K1_BACHD
where it is resolved as a lactose/H+ symporter of the sugar
transporter class.

Methods

Annotation of Pfam domain models into their fold-critical
and remnant residues via a combination of sequence
prediction tools that were calibrated using a set of
PDB-Pfam mappings

Firstly, a list of Pfam-PDB mappings needs to be derived
as a reference set. Based on the mapping file “pdb_pfam_-
mapping.txt” from the Pfam ftp site (ftp://ftp.ebi.ac.uk/
pub/databases/Pfam/mappings/, Nov 2013), there is a
total of 6863 Pfam to PDB associations. Using the initial
mapping, hmmsearch (HMMER?2) was performed for each
of the 6863 Pfam (release 27) models against 249,830
PDB sequences extracted from the file “ss.txt” (http://
www.rcsb.org/pdb/static.do?p=download/http/index.html,
Jan 2014). In addition, the database size was corrected to
n =540,261 (UniProt as of April 2013) so that the E-values
become more conservative. At E-value <1, there were
6599 Pfam-PDB mappings. In each Pfam-PDB mapping,
the fold-critical residues (i.e. structural elements) and the
remnant residues (i.e. loops, linkers etc.) can be easily
defined using the associated DSSP information from the
“ss.txt” file. The PDB-Pfam derived residue information
serves as a reference to evaluate the performance of se-
lected sequence tools for predicting the fold-critical resi-
dues (‘(H;E;I;T;S” based on DSSP annotation) and remnant
residues (gaps -’ or ?') for the set of 6599 Pfam domains.
These PDB/DSSP-derived Pfam domain annotations is
given in Additional file 1.

Meanwhile for the prediction task, each Pfam (release 27)
domain model will be converted into a score vector where
each alignment position exhibits a score (i.e. a score-
residue pair) that ranges between the values from 0 to 1 for
each of the following predictors: the quality-score [20]
(sequence conservation measure, parameter settings:
BLOSUMBS62), PSIPred [21, 22] (secondary structure
prediction, parameter settings:default), GlobPlot [24]
(globular segment; smoothframe = 10, domjoinframe = 10,
dompeakframe = 40, disjoinframe =4, dispeakframe =5)
and SEG [23] (low-complexity measure; window size = 25,
LOWecut = 3.1, HIGHcut = 3.4). Briefly, for the quality-
score [20], the computations follows Egs. 10—14 from [19]
while, for the rest, the domain associated score vector can
be computed using Egs. 1-3 from [31]. It is important to
note that for domains with less than 5 sequences, predic-
tions by PSIPred [21, 22], GlobPlot [24] and SEG [23] will
not be executed. As such, based on the same set of 6599
Pfam domains, the quality-score [20] would result in a
total number of 1,403,175 score-residue pairs, while this is
1,290,923 score-residue pairs for the PSIPred [21, 22],
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GlobPlot [24] and SEG [23] predictors. In addition,
remnant segments of less than 10 AA (amino acids)
were considered as globular segments in both cases of
PDB-derived and predicted residues.

To evaluate the performance of each of the predictors, a
score threshold between 0 and 1 at interval of 0.05 was
varied. Above a particular score threshold, a residue is
considered as fold-critical while it is otherwise considered
remnant. Hence, at each interval, the associated set of
score-residue pairs was classified as true-positive (TP),
false-positive (FP), false-negative (FN) and true-negative
(TN) based on the PDB-derived residues as reference.
Consequently, the false-positive rate (FPR) and true-
positive rate (TPR) can be computed. The detailed results
were tabulated in Additional file 2: Table S1.

Based on the Table, quality-score [20], PSIPred [21, 22],
SEG [23] and GlobPlot [24] obtained their best predictive
performance of (TPR-FPR) at 0.61, 0.50, 0.41 and 0.39 re-
spectively (see entries marked “ in the last column). High
TPR and low FPR gives the maximized margin. Evidently,
the various predictors varied in their predictive power.

To combine the 4 predictor outputs into a single pre-
diction outcome for each score-residue pair, a weighted-
scoring scheme equation is given as follows:

N=4

SCOT€yeighted = § SCOT €predictor; X Wpredictor; (1)
i=1

where predictor = {qualityscore, PSIPred, SEG, GlobPlot}
and  Wqgaligyscore = 0.61,  Wpsiprea = 0.50, Wseg =041 and
Walobplot = 0.39 respectively.

Then for each domain model, the score range is nor-
malized to between 0 and 1 so that it is comparable to
that of the predictors. This is achieved as follows:

SCOTeweighted k~Xmin
NOYMSCOT Eyeighted k = (2)

Amax~%min
where api, = min{score,eignrear: k=1.. K}, Omax = max{s-
coreyeignted : k= 1.. K} and k is the alignment position of
the domain model with length K.

Likewise, the performance of the weighted score was
evaluated and the results were tabulated in Additional file
2: Table S2. At the score threshold of 0.5, the weighted-
score gives one of the best predictive performance.

Finally, using the weighted-scoring scheme (ie. com-
bination of quality-score [20], PSIPred [21, 22], SEG [23]
and GlobPlot [24]), the predictor-derived annotations for
all 14,831 models of Pfam domain library were created
and is given as Additional file 3.

Creation of a SCOP superfamilies to Pfam domains
mapping set

For the purpose of evaluating the error rates of the
dissected fold-critical scores/E-values, a list of SCOP
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superfamily to Pfam domain mappings needs to be de-
rived as the reference set. In SCOP, a superfamily contains
at least one common ancestor protein within the group,
hence the sequences within the group share fold similarity
and are homologous among one another.

Up till SCOP release 1.75, protein sequences are sub-
divided into a hierarchical order of class (cl), fold (cf),
superfamily (sf), family (fa) and domain(dm). Further-
more, between SCOP and PDB sequences, there is a 1:1
relationship that can be established since SCOP is a
subset of the PDB database and herein, the SCOP-PDB
entry. Based on the SCOP-PDB entry to SCOP classifica-
tion file “dir.cla.scop.txt_1.75.txt” (http://scop.mrc-lmb.
cam.ac.uk/scop/parse/) and its corresponding sequence file
“astral-scopdom-seqres-gd-all-1.75.fasta” (http://scop.berke
ley.edu/downloads/scopseq-1.75/astral-scopdom-seqres-gd-
all-1.75.fa) from the SCOP website, one can construct a list
of 1330 SCOP superfamilies (i.e. clcfsf) with at least 2
sequences per superfamily after removing repeated se-
quences and substrings.

Then, for each of the 1330 SCOP superfamilies, the corre-
sponding SCOP-PDB entries per superfamily were resolved
against the mapping file “pdb_pfam_mapping.txt” from
the Pfam ftp site (ftp://ftp.ebi.ac.uk/pub/databases/Pfam/
mappings/, Nov 2013) using the common PDB|chain iden-
tifier so that the associated Pfam domains per SCOP super-
family could be associated. The list of SCOP superfamily to
Pfam domains is provided as Additional file 9. From the list,
each SCOP superfamily has an average of 16.5 sequences
(standard deviation of 51.2) and can be mapped to an
average of 4.8 Pfam domains (standard deviation of 10.0).

It is also noteworthy to mention that the number of
mapped domain per SCOP superfamily tends to be opti-
mistic. This is because the current version of “pdb_pfam_
mapping.txt” file is computed using HMMER3 which
operates only in local alignment mode, and hence, the
Pfam domain might not fully cover the whole SCOP-PDB
entry. Nevertheless, it should not affect our subsequent
purpose of using the SCOP-to-Pfam mappings as a com-
mon baseline to evaluate any sequence search algorithms.

Quantifying the false-positive rates of dissected fold-critical
score associated measures using the SCOP superfamilies to
Pfam domains mappings

Under the score dissection framework where both
HMMER?2 (in glocal mode) and HMMER3 (local mode
only) algorithms were used, a query sequence can simultan-
eously generate both HMMER2-specific and HMMER3-
specific, yet overlapping sequence-to-domain alignments.
The alignments will be subjected to score reconstruction
(based on Egs. 1-2 from [19]) where it first recreates the
alignment score by summing up the positional-dependent
emission, transition log odd scores and invariant log odd
scores, and then re-evaluates the sum for the corresponding
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E-value via the model’s EVD (extreme value distribution)
statistical model. All the associated parameters (i.e. log-odd
scores and summary statistic) are retrievable from the Pfam
model files. When the score reconstruction is coupled to
the dissection step, it allows the fold-critical and the
remnant sum to be determined. The dissection step is
guided by the residues’ information from the PDB/DSSP-
derived Pfam domain annotations (see Additional file 1)
that states if a residue is fold-critical or remnant. Conse-
quently, the fold-critical and remnant E-values can also be
derived from these sums through the model’s EVD statis-
tical evaluation.

To quantify the false-positive rates associated to these
fold-critical scores, two surrogate measures are derived :
(i) the fold-critical E-value and (ii) the ratio of fold-
critical E-value over remnant E-value. These measures
were derived for both HMMER2 and HMMER3 over the
1330 SCOP superfamilies with mapped Pfam domains
(see preceding section).

Potentially, each SCOP-PDB sequence within a super-
family can make a hit to any of the superfamily’s mapped
Pfam domains. To create a hit list, each sequence in
a SCOP superfamily is searched via hmmpfam (for
HMMER2) or hmmscan (for HMMER3) against the
full Pfam domain library (version 27; 14,831 models)
at an E-value cutoff of 20. These domain hits were
then checked against the superfamily’s mapped list of
Pfam domains (see Additional file 9) and then classified
accordingly as positives (if overlapping) or negatives (if
non-overlapping). Since we are interested only in quantify-
ing the false-positive rates, only the negative domains hit
were subjected to the score/E-value reconstruction and
dissection as described earlier.

In summary, the computations over 22,001 SCOP
sequences from the 1330 SCOP superfamilies will result
in 136,642 HMMER2 and 41,506 HMMER3 fold-critical
E-values for the negative sets. This will also correspond to
136,645 HMMER?2 and 41,489 HMMER3 ratios (i.e. fold-
critical E-values versus remnant E-values) for the negative
sets respectively. The total numbers in the ratio sets are
slightly smaller than the fold-critical sets since ratios with
remnant E-values of zero were excluded (i.e. ratios would
have been infinity).

Figures 11 depicts the histograms of fold-critical over
remnant E-value ratios for the negative HMMER?2 (Fig. 11a)
and HMMER3 (Fig. 11b) hits respectively. Similarly,
Figs. 12 depicts the histograms of fold-critical E-values for
the negative HMMER? (Fig. 12a) and HMMER3 (Fig. 12b)
hits respectively. Based on the histograms of these negative
data sets, for a given cutoff (whether a ratio or fold-
critical E-value; see dotted lines as example), the area
on the left-hand side constitutes the false-positive rate.
Computationally, the false-positive rate (FPR) is the sum-
mation of the frequencies from the left most extreme
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interval to the k™ interval containing the cutoff value, x as
follows:

f P ymeasure = P(measure<x)

xeinterval k

= frequency, (3)

i=min interval

where measure is either a ratio (i.e. fold-critical E-value/
remnant E-value) or a fold-critical E-value in logl0 scale,
frequency; is the height of interval i, x is the observed ra-
tio or fold-critical E-value to be used as the cutoff.
Essentially, P(measure < x) denotes the chances of seeing

a value smaller than the observed value (i.e. x) under the
null hypothesis that assumes all sample observations
arise by chance.

As an example, given the ratio between fold-critical ver-
sus remnant E-values of 0.056 (1072%%), the corresponding
FPR for HMMER? is found to be about 0.1 (see dotted
line in Fig. 11a). Correspondingly for the same FPR (see
dotted line in Fig. 11b, this ratio for HMMERS is preset at
a much smaller value of 7.9e-10 (107%). Similarly, based
on Fig. 12a, at a fold-critical E-value of 3.6e—4 (10’3‘45),
the FPR is found to be approximately 0.1 (see dotted line)
for HMMER2. Meanwhile, the fold-critical E-value is set
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at 1.0e—6 (107°) for the same FPR for HMMERS based on
Fig. 12b (see dotted line).

Classification criteria of sequence-to-domain alignment
hits

In the preceding section, the computations of 22,001
SCOP sequences from the 1330 SCOP superfamilies has
resulted in 136,642 HMMER2 and 41,506 HMMER3
fold-critical E-values for the negative hits. And using
Eq. 3, the false-positive rates of both HMMER variants
associated to the negative fold-critical E-values at each
threshold can be determined. For both HMMER2 and
HMMER3 negative sets, the threshold is varied between

1072% and 10, The resulting false-positive rates for both
HMMER variants is provided in Additional file 5.

To create the criteria to classify each sequence-to-
domain hit as true-positive (TP), false-negative (FN),
false-positive (FP) and true-negative (TN), the cutoff
values have to be determined for the (i) original E-value
(i.e. the original undissected alignment) and the (ii) fold-
critical E-value.

For the original E-value, the reference is taken from
the recommended HMMER2 E-value for trusted hits
[32] at 0.1 (false-positive rate of 0.53). This is matched
by a HMMER3 E-value of 10~ (false-positive rate of
0.55). For the fold-critical E-value, the HMMER2 and
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HMMERS3 values are 107>** and 107° respectively. These
values has an associated false-positive rate of 0.1. As a
result, the criteria for the hit classification are summa-
rized in Table 1.

Error-adjusted domain coverage score: combining
HMMER2 and HMMERS3 fold-critical measures and domain
coverage

In the preceding section, the false-positive rate of either
HMMER2’s or HMMER3’s hit can be empirically com-
puted when given the hit’s surrogate measures of either
fold-critical over remnant E-value ratio or fold-critical
E-value. However, due to the algorithmic, parameterization,
alignhment mode differences between the HMMER variants,
the two derived false-positive rates may not be necessarily
comparable for overlapping HMMER2 and HMMER3
sequence-to-domain alignments.

To emphasize, overlapping denotes some coverage of
common sequence ranges between the two alignments
for the same domain model. In particular, an overlap ra-
tio, overlap,,;, between the two comparable sequence-
to-domain alignments where sequence segment i pre-
cedes segment j, can be defined as follows :

bl'—ﬂj bi—ﬂj>

bi—ﬂi ’ bj—ﬂj

(4)

overlap, ..o = min(

where (a;, b;) is the start and end positions of sequence
segment i, (@, b)) is the start and end positions of se-
quence segment j.

Aside that, it is also insufficient for a sequence-to-domain
hit to solely achieve some significant fold-critical E-values
or low fold-critical over remnant E-values ratio. Concur-
rently, the hit should exhibit some reasonable level of do-
main coverage to indicate that the sequence has an overall
fold similarity to the domain. Taken together, this necessi-
tates for a scoring scheme that reflects both the statistical
results and the domain coverage in the overlapping
sequence-to-domain hit of HMMER2 and HMMER3 as
a singular measure. As such, an error-adjusted domain
coverage measure is proposed as follows :

measure __

[(1 B fpr}—[MMER2) coverageMMMER2

Coverage measure

1
2
+

HMMER3 HMMER3
(l_fprmeasure )Coverage ]

(5)

where measure is either a ratio (i.e. fold-critical E-value/
remnant E-value) or a fold-critical E-value in logl0 scale,
fpr is the empirically-derived false-positive rate associ-
ated to the measure for either HMMER2 or HMMERS3,
coverage is the alignment length of sequence-to-domain
hit over the domain length for either HMMER2 or
HMMERS3.

Page 27 of 32

Note that for HMMER?2, the coverage is always 1 since
glocal mode is enforced while coverage for HMMERS is
<1. As such, the range of values for coveragecasure 1S
between 0 and 1.

SCOP superfamily-wise evaluation of dissectHMMER

For each SCOP superfamily with N sequences, a
multiple sequence alignment (MSA) of length L can be
created using the clustalw program as follows :

S11 S12 Slj e S1L
821 S22 Szj e Sor
Si1 Sio Sij SiL
SN1 SN2 ... SN]' ... SNL

where S is the amino acid alphabet or a gap, i is the
index of the sequence and j is the alignment position.

For each sequence, disseccHMMER will be applied to
generate the sequence-to-domain alignment hits and the
associated error-adjusted domain coverage mesasures
(for both ratio and fold-critical E-value measures; see
Eq. 5).

For the set of generated sequence-to-domain align-
ments, individual hits belonging to the i™ sequence and
k'™ Pfam domain model, [sequence,~to—domainy] ab; are

gathered as a group, where ab; denotes the start and
end position of the sequence range that is mapped to
the MSA alignment positions.

For each domain model, k=1..K
Define an empty set 4, =
Fori=1..N and j=i..N

if exists an overlap between aligned segment ajb; and ajb;
then [sequence; —to - domain,, Ly, €

4

end

Compute the average domain score for [sequence, —to —domain |, < 4, as follows
s
domainscore] " = m ZCOVCIage;'_',‘:“"”"' _ ®6)
kI i=1

end

Reviewers’ comments

Reviewer’s report 1: Masanori Arita, Metabolome
Informatics Research Team, Metabolomics Research
Group, RIKEN Center for Sustainable Resource Science
This manuscript is a completion work by the authors
regarding the score dissection of HMMER software
tools. The concept is reasonable and the improvement
is expected (meta tools with dissection analysis usu-
ally perform better). Nevertheless, the obtained results
are quite notable as in Fig. 6. The improvement is
significant and I strongly agree with authors for its
worth.
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In the background section, it is better to explain
the difference between HMMER2 and HMMER3 be-
cause their difference is crucial in the analysis. Ex-
planation of the glocal mode and the limitation of
HMMER3 because of its statistical model greatly
helps readers to understand the merits of using both
tools other than speed.

Authors’ response: We thank the reviewer for his
kind comments on our work. We have added some ex-
planation in the background section to better explain
the rationale of using both HMMER2 and HMMER3.

The performance comparison with HHsearch needs
more care: although tools were compared on 1199
SCOP families, a part of them could only create mar-
ginal HMM representation due to the family size. I
would like to know the performance by using large
families only, because the number of families for
comparison needs not be as much as 1000. If there is
a performance difference depending on fold superfam-
ilies, that would also provide important insights for
readers.

Authors’ response: We thank the reviewer for his
critical consideration. In fact, the issue is slightly more
involved. Out of the 131 SCOP superfamilies that were
unable to generate HHsearch profiles, 125 of them in-
deed contain 6 or less sequences. At the same time, 6
other SCOP superfamilies have between 11 and 1318
sequences. While insufficient sequences can degenerate
the quality of a HMM profile, the multiple sequence
alignment of a large superfamily can also be challen-
ging at the same time. In hindsight, the quality of the
multiple sequence alignment is also an important fac-
tor that contributes to the entropy of a HMM profile,
especially for profile-to-profile based methods like
HHsearch.

To illustrate the point, the top 5 % (65 out of 1199)
of SCOP superfamilies with large alignments (i.e. the
number of sequences >60) were excluded while the
attempt to exclude superfamilies with low number of
sequences does not further improve the HHsearch plot
(data not shown). Overall, the performance compari-
son for 1134 SCOP superfamilies is depicted in Fig.
13.

Compared to Fig. 6, all individual plots (dissectHM-
MER, HHsearch, HMMER3) were generally shifted to-
wards better semsitivity (i.e. TPR) with the plot of
HHsearch being dramatically improved and almost com-
parable to the dissectHMMER/[Ratio] plot. Despite so, at
a FPR of <0.05, dissectHMMER remains more sensitive
than HHsearch, given the latter’s best performance in this
comparison. As such, the results again reinforced that
score dissection can improve fold similarity detection in
existing methods, namely, HMMER3, and comparable to
a profile-to-profile search method like HHsearch.

Page 28 of 32

Minor points:

Page 3 first paragraph: The word “inductive proof” is
too strong a word. Since this is not a mathematics paper
I would suggest a softer language than a proof.

Page 12 2nd paragraph: “for better or worst” —>
worse?

Page 13 2nd paragraph: “profile-to-profile HMMER
method” —> “profile-to-profile HMM method”

Page 19 2nd last paragraph: “dissecthmmer” —>
“dissectHMMER”

Authors’ response: The minor points have all been ad-
dressed in the revised manuscript.

Reviewer’s report 2: Shamil Sunyaev, Division of Genetics,
Dept. of Medicine, Brigham & Women’s Hospital and
Harvard Medical School

This manuscript offers a framework to evaluate remote
homology by focusing on positions critical to protein
folds. It combines HMMER search with methods for
predicting disordered regions. The method has been suc-
cessfully validated and implemented as an online tool.
This development is of interest and the tool is poten-
tially useful. As a minor comment, the paper can be
written in a more economical and focused way. A
shorter title may also be better.

Authors’ response: We thank the reviewer for his kind
comments and we have shortened the title. Though the
manuscript’s main aim is to provide an improved search
tool to evaluate homology, the rationale behind dis-
sectHMMER also needs to be sufficiently justified in the
manuscript. As such, the existing text is considered
polished and tightened.

Reviewer’s report 3: L. Aravind, Protein and Genome
Evolution Research Group, Computational Biology Branch,
NCBI/NLM/NIH

The paper develops a concept worked out by the authors
that the “dissection” of positions into fold critical versus
non-globular contributions improves judgement of hom-
ology and thereby function prediction. In conceptual
terms this proposal might be viewed in two potentially
opposing ways: On one hand, the separation of the fold-
critical and non-globular parts in the domain model is
expected to reduce “false signal” of homology that tends
to arise from non-globular regions. This is favorably
reflected in the benchmarking experiments presented
here by the authors. Indeed, the directed use of the fold-
critical parts of the model seem to enhance recognition
of correct structural relationship. On the other hand it
should be kept in mind that natural selection does not
entirely respect the fold-critical-non-globular dichotomy
with potentially functionally critical constellations of res-
idues being lodged in regions deemed non-globular.
These can provide specific functional information that
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Fig. 13 ROC (receiver operator curve) plots for dissectHMMER, HHsearch and HMMER3 against selected 1134 SCOP-to-Pfam mapped superfamily
cases. The top 5 % (65 out of 1199) of SCOP superfamilies with large alignments (i.e. the number of sequences >60) were excluded to maximize the
results of HHsearch. Compared to Fig. 6, all individual plots (dissectHMMER, HHsearch, HMMER3) has improved sensitivity (i.e. TPR) for the same
specificity rate. The plot for HHsearch improved dramatically and almost comparable to that of dissectHMMER[Ratio]. However, at a FPR of <0.05,
dissectHMMER remains more sensitive than HHsearch. As such, the results reinforced that score dissection can improve fold similarity detection in
existing methods, namely, HMMER3, and comparable to a profile-to-profile search method like HHsearch
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goes over and beyond the basic fold-recognition, and in
some cases tend to be strongly conserved. Hence, the
removal of such can potentially hamper function infer-
ence. The authors might hence want to clearly specify
how this might affect their approach.

Authors’ response: The reviewer has highlighted an
important issue. We agree that the well-conserved non-
globular segments might contain useful functional annota-
tions like the cases of many diverse PTM sites/motifs.
However, fold similarity (via fold-critical segments) implies
an overall emphasize over the full-length domain scoring
whereas functional sites/motifs are small and localized
signals that covers only part of the larger domain model.
As such, the latter remains complementary for further
clarifying sequence-to-domain hits that have similar fold-
critical scores. But alone, it is likely to attract sequence-to-
domain hits of unrelated biological functions, which is the
bane of the problem in functional annotation.

In practice, dissectHMMER considers short non-
globular aligned segments of <10 alignment positions as

part of the fold-critical segments. These segments are
generally well-conserved in the multiple sequence align-
ment (See methods: Annotation of Pfam domain
models...) yet they are in minority. Mostly, the non-
globular alignment segments in domain models have
many gaps (due to varying inter-linkers lengths) and the
supposedly conserved pieces are also not well-aligned.
The latter is largely responsible for the spurious
sequence-to-domain hits and the situation is made worse
when used with the local-mode only HMMER3. To prop-
erly capture the non-globular functional sites/motifs in
each domain model, the sites/motifs need to be detected
via specific PTM predictors and then to construct some
well-conserved alignment out of them. Finally, only part
of the overall gapped alignment that captures the well-
conserved pieces should be considered as part of the fold-
critical segments. However, this is beyond the scope of the
current work.

The second aspect of this work pertains to functional
inference from fold recognition. Here the key process
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followed by the authors is the stratification of hits in
clusters of related domains. The biological evidence can
be of two types:

1) a biochemical function which can have differing
levels of precision, like “methylase” or “methylase cata-
lyzing methylation of particular substrate”, etc. and

2) general biological function like “epigenetic modifi-
cation”. It is not clear how these are distinguished in
during the creation of cohorts during analysis of the hits.
The former tends to be much more informative in terms
of function prediction:

Authors’ response: Historically, most domain libraries
(e.g. SMART and Pfam) started with the collection of
models that describe enzymatic/biochemical function
and hence characterized by folds (as evident in the early
versions of domain libraries). In contrast, biological
function like “epigenetic modification” describes the
more localized functional annotations of the models. dis-
sectHMMER works towards detecting sequence-to-domain
hits that shares good fold similarity to infer function of the
first type. Adding the extra description of localized func-
tional annotations of the second type (as our future work)
will help to further segregate the results into more defined
sub-cohorts.

Minor:

-The results in the abstract are presented in the past
tense: it might be stylistically better to use the present
tense to distinguish current work from previously pub-
lished work.

-Several figures were invisible in the PDF version for
review making some of the statements hard to visualize

-Regretfully - > “Regrettably” would make better sense

-DUF819 is called PF05684.7 but in Pfam it is just
PF05684.

Authors’ response: The preceding minor points have
all been addressed in the revised manuscript.

-DUE819 belongs in “Clan” with several other trans-
ported which could be used for functional inference
though by itself it is a DUF.

Authors’ response: Although DUF819 belongs to the
CPA superfamily (clan: CL0064) and is suggestive of
transporter function, its specific function is more difficult
to clarify this way.

Additional files

Additional file 1: Annotations of fold-critical and remnant residues of
a reference set of 6599 Pfam domains with PDB/DSSP information.
(TXT 3708 kb)

Additional file 2: Table S1. Sensitivity and specificity of each of the
predictors (i.e. quality-score [20], PSIPred [21, 22], SEG [23] and GlobPlot
[24]) against a reference set of 6599 Pfam domains with PDB/DSSP
information. Table S2. Sensitivity and specificity of the weighted-scoring
scheme against a reference set of 6599 Pfam domains with PDB/DSSP
information. Table S3. Full list of dissectHMMER results for the analysis of
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the 14,831 Pfam domains using the weighted-scoring scheme.
(TXT 4429 kb)
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Additional file 5: False-positive rates of the fold-critical E-values
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Additional file 6: The web output of dissectHMMER search results
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Additional file 7: The web output of dissectHMMER search results
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