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Abstract: Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling
of physiologically relevant human adipose tissue. These models are useful for the development of
tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems
(MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture
and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in
the identification of 184 independent records, of which 27 were determined to be most relevant to
the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC
culture and assessment for the production of physiologically relevant in vitro models of human
adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC
adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality
of adipose tissue in vitro. Results from this study suggest the need for more standardized culture
methods and further analysis on in vitro tissue functionality. These will be necessary to validate the
utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug
discovery regulatory process.

Keywords: adipose-derived stromal/stem cells; culture methods; 3-dimensional; microphysiologi-
cal system

1. Introduction

Stem cells are widely used for in vitro tissue engineering due to their ability to self-
renew and differentiate into multiple cell lineages [1]. In the beginning of the 21st century,
human adipose-derived stromal/stem cells (hASC) emerged as a source of stem cells capa-
ble of differentiating along several lineage pathways including adipogenic, chondrogenic,
osteogenic, endothelial, cardiac, and neural [2]. hASC are an abundant source of cells that
can be isolated from subcutaneous adipose tissue through minimally invasive procedures.
Their abundance and relative ease of isolation make hASC advantageous over other stem
cell types, such as bone marrow-derived stem cells that require more invasive procedures
for acquisition [3].

Adipose tissue recently emerged as a research area of great interest due to its endocrine
activity and role in disease conditions such as obesity [2,4]. According to the Centers for
Disease Control, the prevalence of obesity in adults has increased from 30.5% in 1999–2000
to 42.2% in 2017–2018 (https://www.cdc.gov/obesity/data, accessed on 10 February 2021).
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Obesity is associated with several comorbidities including type 2 diabetes, cardiovascular
disease, and metabolic syndrome; therefore, an understanding of the mechanisms driving
obesity and discovery of prevention methods are of great interest [4].

In vitro models of adipose tissue can be constructed using hASC cultured in adi-
pogenic inductive medium to study adipose tissue biology and pathophysiology. Many
in vitro studies involve culturing cells in a 2-dimensional (2D) format; however, this tech-
nique fails to recapitulate the native 3-dimensional (3D) microenvironment. Therefore, 3D
cell culture methods have been developed to better model the structure and function of
human tissue as compared to their 2D counterparts. 3D cell culture mechanisms involve
seeding cells into a scaffold or allowing them to self-assemble into cell aggregations called
spheroids in a scaffold-free environment.

Scaffold and scaffold-free culture conditions can be employed to engineer constructs
for implantation and soft tissue regeneration or to develop adipose tissue microphysiologi-
cal systems (MPS). MPS are defined as 3D, multicellular, tissue-engineered organ constructs
developed using human cells [5]. MPS have been developed out of a need identified by
the U.S. Food and Drug Administration (FDA) to develop tools for enhanced prediction
of toxicological risk of medical products entering the market [6]. MPS are designed for
pathophysiological and pharmacological research on human tissue in vitro. MPS aim to
reduce, refine, and eventually replace animal models that are costly and time-consuming by
creating a more scalable and reproducible platform for discovery (Figure 1). In vitro models
of human adipose tissue will serve to further scientific understanding of adipose tissue
biology and dysfunction associated with disease conditions such as obesity. Additionally,
healthy and diseased MPS platforms will facilitate more efficient drug discovery processes
by modeling human responses to new pharmacological agents.
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The purpose of this review is to evaluate emerging methods of culturing and assessing
hASC in vitro for the development of engineered adipose tissue constructs. The iden-
tification of the most physiologically relevant culture and characterization methods for
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engineering constructs that recapitulate native human adipose tissue will support efforts
in soft tissue regeneration and in vitro modeling for drug discovery.

2. Methods

We conducted a systematic review by searching PubMed using 7 subsets of keywords
as defined in Table 1. Additional articles of known relevance acquired through inde-
pendent search efforts were also included to ensure a thorough review of the published
literature. The articles collected for this review focused on literature published between
2000 and 2021.

Table 1. Number of articles identified in PubMed using seven subsets of search terms.

Search Terms Articles Identified

Adipose, three dimensional, spheroid, human 77
Adipose, three dimensional, microphysiological system, human 4

Adipose, three dimensional, xenografts, human 10
Adipose, three dimensional, iPSC, human 9

Adipose, three dimensional, hydrogel scaffold, human 60
Adipose, three dimensional, organoids, human 10

Adipose, three dimensional, induced pluripotent stem cell, human 9

Duplicate articles identified using different subsets of keywords were removed from
the original search results. Review articles were excluded from analysis as were articles
that did not utilize human adipose-derived stromal/stem cells (hASC) or stromal vascular
fraction (SVF) cells. As a note, SVF cells represent all other cell subtypes besides the
mature adipocytes in adipose tissue, and contain endothelial progenitors, fibroblasts,
lymphocytes, monocyte/macrophages, pericytes, pre-adipocytes, and stromal/stem cells,
among others [7]. This collective population of cells is gaining increasing attention as we
gain more insight into the contribution of adipose tissue cellular composition to overall
structure and depot functionality, neuroendocrine function, viral response, and homeostasis
regulation. Finally, articles were excluded if the full text could not be obtained beyond
attempts of interlibrary sourcing within the US.

3. Results and Discussion

Our database search and independent acquisition of relevant articles resulted in the
identification of 184 records. After 30 duplicates were removed as well as one article for
which the full text could not be obtained, 153 independent articles were screened further
based on the abovementioned exclusion criteria. Thirty-one articles were excluded in this
screening process, leaving 122 records to be analyzed in the systematic review (Figure 2).
Results from this review are presented as either the percentage of appearances in the
literature or the percentage of studies that utilized a specific method.
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3.1. Differentiation Pathways

Human adipose-derived stromal/stem cells are capable of differentiation along mul-
tiple lineage pathways. As such, this database search identified studies on a variety
of differentiation pathways. The most common hASC differentiation pathways stud-
ied were adipogenic (36.9%) [4,5,8–50], osteogenic (32.0%) [4,29–66], and chondrogenic
(25.4%) [27,28,36–50,63–76]. Several articles studied a different type of differentiation,
which was designated other (4.1%) [50,77–80], while 38.5% [81–126] of articles reviewed
did not study any kind of differentiation (Figure 3).
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Articles that assessed adipogenesis were divided further according to the flow chart
in Figure 4. The full texts of the 45 articles that studied adipogenesis were screened using
the exclusion criteria outlined in Figure 4. Records were excluded if they exclusively
studied passive adipogenesis pathway activation, if they only used adipogenic media
to confirm multilineage differentiation potential, or if they exclusively studied adipoge-
nesis in vivo. Many articles assessed the passive activation of adipogenic pathways to
ensure that their culture conditions did not encourage spontaneous adipogenic differentia-
tion. Additionally, many articles did not focus on adipogenesis but only used adipogenic
media to demonstrate the multilineage differentiation potential of hASC. These articles
were filtered to ensure that the data presented in this review reflect methods for inten-
tional hASC adipogenesis and adipose tissue engineering in vitro. Finally, none of the
screened articles exclusively studied 2D culture; therefore, all articles included in this
analysis report 3D culture methods. Data and analysis hereafter exclusively refer to the
27 articles [4,5,8–13,15–17,19–26,28,30,31,33,38,44,45,48] identified to be most relevant to
the central goal of this systematic review.
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focus on intentional human adipose-derived stromal/stem cells (hASC) adipogenesis and adipose tissue engineering
in vitro.

Out of the 27 relevant articles, 26 articles used adipogenic medium to differentiate
hASC into adipocytes in vitro. The studies reviewed used either commercial (40%) or
custom-made medium (60%). Table 2 highlights the prevalence of adipogenic medium
components used in custom-made medium. The variability of components used as well as
their respective concentrations indicates a lack of consensus in the literature regarding the
most effective methods for adipogenic induction of hASC.

Table 2. Adipogenic medium components used in custom-made media. Results reported as the
percentage of papers that used a given adipogenic medium component.

Adipogenic Medium Components Percent Usage in Custom-Made Medium

Indomethacin 60%
Isobutylmethylxanthine (IBMX) 86.7%

Rosiglitazone 0%
Dexamethasone 93.3%

Insulin 93.3%
Biotin 13.3%

Pantothenate 13.3%
Other 26.7%

3.2. Adipogenic Differentiation Analysis Techniques
3.2.1. Microscopy Techniques

In vivo, mature adipocytes often have a complex three-dimensional structure that is
characterized by a single large (unilocular) lipid droplet along with other cellular compo-
nents contained within a thin cytoplasm. Immature adipocytes are described as multiloc-
ular as they contain multiple small lipid droplets. Throughout maturation, these small
lipid droplets aggregate together to form the aforementioned unilocular droplet [127].
This maturation process can be observed visually and described quantitatively through
various microscopy techniques and is referred to as a signet ring structure on the basis of
appearance (Figure 5).
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It can be challenging to image adipocytes using light microscopy because of their high
lipid content which causes autofluorescence that is enhanced by light diffraction. Confocal
imaging, used in combination with the introduction of fluorescently-tagged lipophilic dyes,
is a useful alternative as it operates in a narrow plane of focus allowing for the removal of
autofluorescence. Additionally, a z-stack of images can be combined to recreate an image
of the complex three-dimensional structure of adipocytes [128]. Of articles included in this
review, 44.4% used confocal microscopy.

Oil red O (ORO) is a staining solution that accumulates in cellular compartments
that are lipid rich; therefore, it can be used to detect the neutral lipid amounts after hASC
adipogenesis. ORO can be observed using bright field and fluorescent microscopy [16]. Of
articles included in this review, 51.9% used ORO staining to qualitatively observe neutral
lipid content; however, only one article included in this review (3.7%) used ORO staining
to quantitatively measure adipogenesis by eluting the remaining stain with isopropanol
and measuring the absorbance of the solution [129].

Alternatively, BODIPY is a commercially available fluorescent dye that labels lipid
droplets and is detected as bright green fluorescence [130]. Of articles reviewed, 18.5%
used BODIPY to assess lipid accumulation in their culture conditions.

3.2.2. Snapshot Assays

Analyses associated with a specified single time point or “snapshot” assay are used
to quantitatively assess hASC biomarker expression. Snapshot assays confirm the sta-
tus of cells at a given time point but lack substantial information about their temporal
functionality in vitro.

Flow cytometry is a widely used assay for assessing the immunophenotype of mes-
enchymal stromal/stem cells (MSCs). According to the International Federation for Adi-
pose Therapeutics (IFATS) and Science and the International Society for Cellular Therapy
(ISCT), hASC in culture maintain markers similar to other MSCs as they are positive for
CD90, CD73, CD105, and CD44 and negative for CD45 and CD31 [25]. Flow cytometry was
used by 18.5% of reports included in this review to characterize hASC immunophenotype.
The reports uniformly confirmed the positive expression of biomarkers CD90 and CD105
while all other markers varied between publications (Table 3).
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Table 3. hASC biomarkers evaluated using flow cytometry.

Report Positive Markers Identified Negative Markers Identified

Clevenger et al. CD44, CD90, CD105 CD45, CD31
Keck et al. CD90, CD105, CD44 CD45

Mohiuddin et al. CD73, CD90, CD105 CD3, CD14, CD31, CD45
Shen et al. CD90, CD105

Bender et al. CD29, CD105, CD34, CD73, CD90 CD45

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is a quan-
titative method to assess gene expression pre and post-hASC adipogenesis. Of articles
evaluated in this review, 40.7% employed qRT-PCR to assess adipogenesis-related gene
expression. The most commonly assessed genes were peroxisome proliferator activated
receptor γ (PPAR-γ) (84.6% of articles using qRT-PCR), lipoprotein lipase (LPL) (46.2%),
fatty acid binding protein 4 (FABP4) (46.2%), and adiponectin (ADIPOQ) (30.8%). hASC
adipogenesis is driven by PPAR-γ expression and characterized by the upregulation of
LPL, FABP4, and ADIPOQ [131].

3.2.3. Functional Biochemical Assays

Functional biochemical assays quantify the dynamic functionality of cellular enzy-
matic activities based on biomarkers at the carbohydrate, lipid, or protein levels. Four
functional biochemical assays were routinely employed monitoring triglyceride, lipolysis,
glucose uptake, and adipokine secretion. The ASCs’ accumulation of neutral triglycerides
with the formation of intracellular lipid droplets was assessed quantitatively based on
biochemical detection of triglyceride levels. Following triglyceride lysis into free fatty
acids and glycerol, glycerol levels are evaluated based on spectrophotometric detection.
Alternatively, the ASC intracellular lipolytic enzyme activity can be monitored following
stimulation with exogenous isoproterenol based on release of glycerol within the cellular
lysates [11]. Both assays were employed in 14.8% of reviewed reports.

Glucose uptake following activation of the GLUT4 transporter in response to insulin
can be monitored based on colorimetric or fluorescent detection of 2-deoxyglucose uptake
by ASC. Only a single report in this systematic review (3.7%) reported this outcome. Finally,
adipokine assays using antibody-based methods (ELISA or bead-based assays) are used to
quantify ASC cytokine secretion activity. While 25.9% of the reports evaluated adipokine
secretion, none of the articles characterized the cellular inflammatory response in the
context of adipogenesis.

3.3. 3D Culture Mechanisms

Three-dimensional stromal/stem cell culture techniques have been developed for
the purpose of engineering in vivo-like adipose tissue constructs. Three-dimensional
culture mechanisms can be subdivided into either scaffold or scaffold-free culture systems.
Likewise, culture conditions can also be described as either static or dynamic. In static
culture, cells are placed in non-circulating media that is replaced every few days throughout
the culture period. In dynamic culture, media is continuously perfused through the culture
construct to model the circulating in vivo environment.

3.3.1. Scaffold Culture

One critical aspect of 3D stem cell culture is developing an in vitro environment that
closely mimics native in vivo conditions [11,21,25]. A widely used strategy is to seed
stem cells into a scaffold that is designed to recapitulate the native extracellular matrix
(ECM). Scaffolds can be composed of biologically derived or synthetic materials. Out of
the relevant records reviewed herein, 74% of articles utilized a scaffold material for the
culture of hASC. The most common synthetic and biologically derived materials used in
the literature are highlighted in Table 4. Only one article (5%) used an entirely synthetic
scaffold, while the remaining articles incorporated biologically derived materials. Gelatin
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was identified as one of the most commonly used scaffold materials as it naturally contains
RGD peptides found in many ECM components that promote cell adhesion [13,16,17,21].
Collagen is another commonly used scaffold material as it is the most abundant protein
in human adipose tissue ECM and, therefore, closely recapitulates the native tissue envi-
ronment [10,31]. hASC attachment and adipocyte maturation have been shown to impact
scaffold structure [10,16]. Additionally, scaffold material and properties have been shown
to impact hASC adipogenesis [16]. Notable articles identified in this review characterized
cell-scaffold interactions throughout hASC attachment, proliferation, and differentiation.

Table 4. Most common synthetic and biologically-derived scaffold materials reported in the literature. Results reflect the
number of articles in which a specific material is used as a component in a scaffold.

Biologically-Derived Scaffold Materials Number of Appearances
in the Literature Appearances in the Literature

Collagen 5
Labriola et al., 2018; Newman et al., 2020;

O’Donnell et al., 2020; Paek et al., 2019;
Vinson et al., 2017

Gelatin 4 Gugerell et al., 2015; Lau et al., 2018;
O’Donnell et al., 2020; Vinson et al., 2017

Fibrin 3 Keck et al., 2019; Paek et al., 2019; Yang et al., 2021
Decellularized Adipose Tissue 2 Cheung et al., 2014; Mohiuddin et al., 2019

Alginate 2 Lee et al., 2014; Vinson et al., 2017

Synthetic Scaffold Materials

Polyethylene Glycol 3 Clevenger et al., 2016; Lee et al., 2014;
Reid et al., 2013

Methacrylate 3 Cheung et al., 2014; Gugerell et al., 2015;
O’Donnell et al., 2020

Newman et al. developed collagen-elastin-like polypeptide scaffolds for culturing
hASC and found that more stiff, dense, and crosslinked scaffolds led to a spheroid mor-
phology whereas less stiff, non-crosslinked scaffolds lead to a spread morphology. The
spheroid morphology is more representative of native adipose tissue cell morphology,
which may explain why cells seeded on stiff, crosslinked scaffolds experienced enhanced
adipogenesis compared to their less-stiff, non-crosslinked counterparts [9].

Clevenger et al. developed three different hydrogels with various RGD peptides (cycli-
cal, linear, and derived from vitronectin) to assess impact on hASC adhesion, proliferation,
and differentiation. Their results suggested that the cyclic and vitronectin-derived RGD
sequences allowed for robust initial attachment of undifferentiated hASC. Vitronectin-
derived RGD maintained cells in a more rounded morphology. This rounded morphology
supported increased adipogenesis in hydrogels containing vitronectin-derived RGD com-
pared to other RGD peptides as determined by percentage of cells containing lipid vacuoles
as well as lipid vacuole size [8,31].

Despite the work by Newman et al. and Clevenger et al., studies on the interaction
between ECM-derived scaffold biomaterials and hASC throughout proliferation, differenti-
ation, and maturation are limited. Notably, only two publications utilized decellularized
adipose tissue (DAT) as a scaffold material for the culture of hASC [8,31]. DAT most closely
mimics the native ECM environment and has previously been shown to naturally induce
adipogenic differentiation and support hASC proliferation [8].

Cheung et al. found that incorporation of DAT into methacrylated glycol chitosan
(MGC) and methacrylated chondroitin sulphate (MCS) hydrogels enhanced long-term
viability and hASC adipogenesis based on GPDH enzyme activity, adipogenic gene ex-
pression, and intracellular lipid accumulation. Cells seeded on DAT hydrogel scaffolds
exhibited better cell retention than culture on a pure DAT scaffold. Additionally, hydrogel
choice significantly impacted hASC viability and adipogenesis [31]. These results suggest
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the need for more studies on the impact of materials on hASC viability and adipogenesis
for tissue engineering applications.

Mohiuddin et al. analyzed the effect of seeding hASC on DAT hydrogels in terms of
hASC proliferation and differentiation as well as hydrogel microstructure. Their results
suggested that the DAT hydrogel could support the attachment, proliferation, and adi-
pogenic differentiation of hASC. Adipogenic differentiation was analyzed by adipogenic
gene expression and BODIPY staining. Additionally, DAT hydrogels cultured with hASC
in adipogenic media had a lower mean pore size and a higher number of fiber intersections
compared to unseeded hydrogels. However, this change in hydrogel structure was less
significant than that of constructs cultured in osteogenic media [26]. These findings further
confirm the potential use of DAT hydrogels as a scaffold material for hASC throughout
adipogenesis. More research needs to be conducted to identify scaffold materials and
material properties that best support the proliferation, differentiation, and maturation of
hASC in vitro to engineer in vivo-like adipose tissue constructs.

Louis et al. created vascularized adipose tissue constructs by bioprinting a mixture of
mature human adipocytes, hASC, human umbilical endothelial cells (HUVEC), collagen
microfibers, and fibrinogen into a supporting bath. The constructs remained viable and
demonstrated vascularization with capillary structures surrounding mature adipocytes
after seven days of culture in vitro [11].

Three-dimensional scaffold culture is typically done in static conditions wherein media
is replaced every few days of culture [11,24]. In addition to being labor intensive with a
high risk of contamination, static culture systems typically cultivate non-physiological mass
transport conditions characterized by heterogeneous nutrient delivery to cells throughout
the scaffold. Finally, static culture does not accurately recapitulate interstitial flow through
adipose tissue in vivo [11]. Gugerell et al. assessed hASC seeded on P(LLG) scaffolds and
in gelatin hydrogels subjected to static and perfusion culture at a flow rate of 0.3 mL/min.
Culture in a perfusion bioreactor led to better cell viability after nine days compared
to static culture. However, static culture supported enhanced adipogenesis compared
to perfusion culture [48,132]. More research needs to be done on the effects of media
perfusion and bioreactor geometry on hASC adipogenic differentiation in vitro in order to
identify the most effective culture methods for recapitulating nutrient transport through
adipose tissue.

3.3.2. Scaffold-Free Culture

Scaffold design for adipose tissue engineering can be challenging due to the significant
increase in adipocyte size throughout maturation. Many scaffolds are unable to adapt
their pore size, which can restrict adipocyte volume expansion. Therefore, scaffold-free
culture approaches leading to the formation of 3D spheroids have been studied extensively.
There are four main scaffold-free culture mechanisms: low-attachment culture, hanging
drop, magnetic levitation, and dynamic culture conditions [132]. Low-attachment culture
involves the formation of spheroids via suspension of cells over a low-attachment culture
plate. Hanging drop culture allows for the gravity-mediated formation of spheroids. In
magnetic levitation culture, cells are mixed with magnetic particles and subjected to a
magnet throughout culture. Finally, dynamic culture conditions include spheroid formation
in a spinning flask or microgravity bioreactor [30].

Kapur et al. found that hASC spheroids formed using a hanging drop method fol-
lowed by adherent or ultra-low attachment culture spontaneously generate an extracellular
matrix as evident by positive staining for type I and type III collagen. hASC survived for
up to six months in ultra-low attachment culture and were able to produce new, replication-
competent cells when moved to adherent culture. Additionally, spheroids demonstrated
adipogenic differentiation potential while cultured in ultra-low attachment culture and
exposed to adipogenic induction media [10].

Fitzgerald et al. compared three different culture methods: ultra-low attachment static
culture, ultra-low attachment dynamic culture, and elastin-like polypeptide–polyethyleneimine
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(ELP–PEI) coated surfaces. They assessed spheroid size and number of spheroids through
time-lapse microscopy and adipogenic differentiation by measuring triglyceride content.
They found that ultra-low attachment static and dynamic culture led to a reduction in
number of spheroids due to spheroid merging and ultimately the formation of larger
spheroids. PEI molecular weight was shown to impact cell retention and spheroid size as
lower molecular weight PEI (800 g/mol) exhibited better retention and larger spheroid size
than higher molecular weight PEI (25,000 g/mol). Additionally, triglyceride accumulation
on ELP–PEI coatings was equal to or higher than that in ultra-low attachment static and
suspension culture [48].

Zhang et al. assessed the effects of hASC spheroid formation in a microgravity biore-
actor on stemness properties and differentiation potential. Spheroids exhibited increased
stemness properties, including increased proliferation and colony forming efficiency, com-
pared to monolayer culture. Additionally, spheroids exhibited increased adipogenic dif-
ferentiation capabilities as demonstrated by an upregulation of adipogenic marker genes
(PPAR-γ and LPL) and ORO staining [38].

Labusca et al. used proprietary magnetic nanoparticles and magnetic field levitation to
form hASC spheroids. Spheroids exhibited improved viability and proliferation compared
to non-levitated spheroids and 2D culture. Additionally, hASC experienced increased
adipogenesis when cultured in spheroids compared to 2D; however, magnetic field levi-
tation was associated with a smaller increase in adipogenesis compared to non-levitated
spheroids [20].

Results from these studies indicate the potential use of scaffold-free hASC culture
methods for adipose tissue engineering applications. While 3D hASC spheroid culture has
demonstrated increased adipogenic differentiation potential and improved maintenance of
stemness properties, more research needs to be conducted to determine the best scaffold-
free culture methods for engineering adipose tissue. Results from this systematic review
indicate that studies on 3D culture methods in the field primarily use “snapshot” assays
(adipogenic gene expression, etc.) rather than functional assays (lipolysis, glucose uptake,
etc.) to assess hASC adipogenesis in vitro. Further research is needed to evaluate the
impact of 3D culture methods on hASC functionality to engineer adipose tissue constructs
that are more physiologically relevant.

3.4. Microphysiological Systems

Scaffold and scaffold-free 3D culture techniques have been employed to develop
microphysiological models of adipose tissue. Adipose tissue MPS aim to recapitulate
the functionality of adipose tissue as an organ system in vitro with the ultimate goal to
reduce, refine, and replace animal models during the drug discovery process for human
diseases. Out of the relevant articles included in this review, six articles (22.2%) self-
reported the use of an adipose tissue MPS in their research. One article reported the use
of an adipose tissue organoid. The remaining five articles reported the use of an adipose
tissue “organ-on-a-chip” (Figure 6).
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Tseng et al. published a methods paper about their successful development of an
“adiposphere” via magnetic levitation of human SVF, preadipocytes and endothelial cells,
and hASC [17]. This is an example of a scaffold-free culture mechanism used to create
an MPS, specifically, an organoid. Few studies have been done on the development of
adipose tissue organoids and assessment of their potential for aiding drug discovery and
personalized medicine.

Paek et al. created a vascularized adipose tissue microphysiological system by co-
culturing hASC and human adipose microvascular endothelial cells (hAMECs) in a fibrin
hydrogel scaffold. The hAMECs underwent vasculogenesis and formed a network of
endothelial tubes throughout the scaffold. The presence of the vasculature increased the
rate of adipogenesis allowing for the formation of twice as many lipid droplets in 28 days
compared to a non-vascularized model. Furthermore, cells were cultured in the MPS for
40 days leading to the robust maturation and growth of adipocytes to form a densely
packed tissue construct [24].

Yang et al. created a microfluidic device to study the effects of flow rate on hASC
adipogenic differentiation. The device is composed of five round, 3D culture chambers
filled with a hASC-laden fibrin hydrogel scaffold interconnected by two fluidic channels.
By administering media at a volumetric flow rate of 1, 4, and 10 µL/hr, average cellular
shear stress was estimated to be 0.79 mPa, 3.13 mPa, and 7.86 mPa, respectively. Despite
the fact that all three average shear stresses are within physiologic limits (less than 10 mPa),
several adipogenic markers were downregulated in response even the smallest amount
of shear stress. This suggests that even physiological levels of interstitial shear stress
can have inhibitory effects on hASC adipogenesis in vitro [4]. More studies need to be
conducted on the effects of media flow rate and MPS geometry on hASC adipogenesis.
Solidifying an effective method of modeling interstitial flow throughout adipose tissue
without compromising hASC adipogenic potential will allow for the development of a
model that better recapitulates in vivo mass transport and supports long-term cell viability.
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Bender et al. used human SVF and a human blood product-derived biological scaf-
fold (ObaGel™) to create a “fat-on-a-chip” construct. These 3D structures demonstrated
increased adipogenesis based on number and size of lipid vacuoles. Additionally, SVF
cultured in ObaGel demonstrated increased glucose uptake, leptin secretion, and lipolysis
in response to isoproterenol, metformin, and compound C compared to 2D culture [10,48].

Several reports identified in this systematic review discuss the use of an adipose tissue
MPS. Despite significant findings that hASC culture in 3D cellular aggregates (spheroids)
experience increased adipogenesis likely due to the replication of in vivo adipocyte mor-
phology, there is a lack of research on the development of self-assembled adipose tissue
organoids [4]. Additionally, it is possible that the lack of both organoid and organ-on-a-chip
models identified in this review is, in part, due to inconsistency in the classification of
MPS. Therefore, there is a need for the standardization of MPS definitions and classification
criteria within the field.

Articles that self-identified as using an MPS tended to use more functional assays
for characterizing their in vitro adipose tissue constructs compared to articles that did
not identify as using an MPS. This is likely due to the focus of MPS development for
drug discovery applications which necessitates the formation and, therefore, validation
of physiologically relevant adipose tissue. Even so, there is a general lack of focus on
functional assays within the published literature. Additionally, only one article in this
review performed drug testing on a construct [4]. Therefore, there is a need for increased
focus on assessing the functionality of in vitro adipose tissue constructs derived from hASC
and human SVF to understand the impact of culture conditions on the development of
physiologically relevant adipose tissue for drug discovery applications.

3.5. Limitations of Current Analysis

Despite the systematic approach utilized in the current meta-analysis, there are several
limitations to the analysis in this systematic review. The keywords used in the database
search did not capture all relevant articles, as evident by the inclusion of several related
articles identified only through independent search efforts. It is possible that this was
amplified through the use of only a single literature database (PubMed). Additionally, we
limited our search to articles that used either adipose-derived stem cells or stromal vascular
fraction from human sources. This potentially limited the methods that we identified by not
including studies that used animal-derived sources. Additionally, with a narrow focus on
hASC and SVF culture methods, we were not able to capture related studies that may have
used different cell types such as mature adipocytes or explanted adipose tissue constructs.

3.6. Identifying Future Directions Using MPS Models to Evaluate Human Adipose Biology

Significant advances have been made in developing physiologically relevant MPS
models of adipose tissue using hASC and SVF cells. However, there are several gaps in the
published literature that were identified in this systematic review.

First, there is no standardized cocktail of adipogenic factors that are used to routinely
induce either beige/brown or white adipose differentiation. In the absence of such a
fundamental standardized growth medium, there is likely to be considerable variability
in the adipogenic process across laboratories and studies. Despite the widespread use
of ECM-derived biomaterial scaffolds for culturing hASC, there are few reports on cell-
material interactions throughout proliferation, adipogenesis, and maturation. Among
articles studying scaffold-free culture methods, there are few reports on the impact of
culture type on adipogenic potential. Additionally, no articles identified in this review
used functional assays to assess the impact of 3D culture methods on the creation of a
physiologically functional in vitro tissue construct. Therefore, there is a need for more
studies to assess the impact of culture environment on the development of physiologically
relevant adipose tissue constructs.

Similarly, very few articles reported the use of perfusion culture to mimic interstitial
flow in adipose tissue. Articles using perfusion culture reported decreased adipogenic
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potential compared to static culture [17,26,45]. There is a need for more research on the
impact of flow rate and bioreactor geometry to develop culture conditions that support
maximum cell viability by mimicking in vivo mass transport without compromising hASC
adipogenic potential.

Despite the fact that white adipose tissue is dependent on vascularization for the
transport of nutrients, oxygen, and other soluble factors to maintain homeostasis, only
three articles identified in this review focused on engineering vascularized adipose tissue
constructs [17]. Notably, Paek et al. found that the vascularization of the tissue construct
was associated with increased adipogenesis compared to a non-vascularized construct [4].
However, no articles included in this review used functional assays to assess the impact of
vascularization on the functionality of adipose tissue constructs in vitro. This is a critical
next step to the development of physiologically accurate models of human adipose tissue.
Finally, there were a limited number of studies that used MPS models. Only one article
studied the impact of drug application on a tissue construct [4]. Additionally, there were
no articles that modeled adipose tissue disease conditions. The future of MPS modeling for
effective drug screening relies upon advancements in these areas.

According to the FDA, predictive tools such as engineered tissue constructs are crit-
ical to the goal of reducing, refining, and/or replacing animal testing. Standardization
of variables such as reagents, culture methods, and analysis methods (summarized in
Figure 7) used for adipose tissue engineering will propel the field towards models with
enhanced physiological relevance. This will support the FDA’s mission to further predictive
toxicology and enhance safety when bringing new medical products to market [6].
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In summary, there remains a need for an increased focus on the assessment of in vitro
functionality within the field of adipose tissue engineering for both regenerative medicine
and MPS models. Advancements in 3D culture methods for the generation of physiologi-
cally relevant adipose tissue constructs will synergistically support the discovery of novel
methods for soft tissue regeneration and models for drug discovery.
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