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Intracerebral hemorrhage (ICH) is a devastating sub-type of stroke with no proven
treatment. Given the emerging role of Galectin-1 and Galectin-3 in neuroimmune
responses, the objective of the current manuscript is to elucidate hemorrhagic-injury
induced modulation and cellular expression of Galectin-1 and Galectin-3 in the brain
in a pre-clinical model of ICH. To address this, ICH was induced in male CD1 mice
by collagenase injection method. Western blotting as well as Immunofluorescence
staining was performed to characterize the temporal expression pattern as well as
cellular localization of Galectin-1 and Galectin-3 after ICH. Further, genetic studies were
conducted to assess the functional role of Galectin-1 and Galectin-3 in inflammatory
response employing a murine macrophage cell line, RAW 264.7. Galectin-1 and
Galectin-3 exhibited very profound and increased expression from day 3 to day 7-post-
injury, in the perihematomal brain region after ICH in comparison to Sham. Further,
Galectin-1 expression was mostly observed in GFAP-positive astrocytes whereas
Galectin-3 expression was observed mostly in Iba1-positive microglia/macrophages as
well as CD16/32 (M1 microglial/macrophage marker)-positive cells. Moreover, genetic
studies revealed a negative regulatory role of both Galectin-1 and Galectin-3 in
the release of a proinflammatory cytokine, IL-6 from RAW 264.7 cells depending
on the stimulus. Altogether, the present manuscript demonstrates for the first time,
increased expression as well as cellular localization of Galectin-1 and Galectin-3 in the
perihematomal brain regions after ICH. In addition, the manuscript raises the potential
of Galectin-1 and Galectin-3 in modulating glial responses and thereby brain injury after
ICH, warranting further investigation.
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INTRODUCTION

Intracerebral hemorrhage is a fatal stroke subtype (Qureshi et al., 2001a) that accounts for an in-
hospital mortality rate and a disability rate of 40 and 80%, respectively (van Asch et al., 2010). ICH
is responsible for 10–15% of all strokes, and the worldwide incidence of ICH is 2 million cases
per year (van Asch et al., 2010) with approximately 120,000 cases per year in the United States

Abbreviations: CD16/32, Cluster of Differentiation 16/32; CD45: Cluster of Differentiation 45; CNS, central nervous
system; ELISA, enzyme linked immunosorbent assay; GFAP, glial fibrillary acidic protein; Hb, hemoglobin; Iba1, ionized
calcium binding adaptor molecule 1; ICH, Intracerebral Hemorrhage; LPS, lipopolysaccharide; NeuN, neuronal nuclei; PBS,
phosphate buffer saline; RIPA, radioimmunoprecipitation.
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(Ribo and Grotta, 2006; Broderick et al., 2007; Aguilar and
Freeman, 2010). However, the incidence is expected to have
doubled by 2050 (Qureshi et al., 2001b) due to aging and the
spreading use of anticoagulants (Wang, 2010). Notably, there is
no effective treatment for ICH, and the pathophysiology of the
disease is poorly defined.

Neuroinflammation characterized by the activation of
microglia, the neuroimmune cells of the CNS, is a key
contributor of ICH-induced secondary brain injury and
loss of neurological function (Wang and Dore, 2007; Carmichael
et al., 2008; Wang, 2010). The introduction of blood components,
including thrombin, Hb and Hb metabolites such as hemin into
the brain creates the basis for neuroinflammatory responses
after ICH (Wang and Dore, 2007; Carmichael et al., 2008;
Robinson et al., 2009; Wang, 2010; Cai et al., 2011; Dang et al.,
2011; Babu et al., 2012; Lin et al., 2012; Weng et al., 2015;
Min et al., 2017). Notably, the proinflammatory activation of
microglia after ICH correlates with blood-brain barrier damage,
brain swelling/edema, hematoma expansion, neurological
deterioration, and poor functional recovery (Platt et al., 1998;
Hickenbottom et al., 1999; Leira et al., 2004; Zhao et al., 2007).
Furthermore, inflammatory response after ICH also regulates
the brain recruitment of blood-derived monocytes/macrophages
that are known to regulate ICH-induced brain injury and thereby
functional recovery (Tessier et al., 1997; Shiratori et al., 2010;
Starossom et al., 2012).

Galectins are a family of evolutionary conserved
carbohydrate-binding proteins (Barondes et al., 1994a,b; Kasai
and Hirabayashi, 1996) involved in cell activation, differentiation,
proliferation, migration and apoptosis (Perillo et al., 1995; Yang
et al., 1996; Perillo et al., 1998; Moiseeva et al., 1999; Vespa et al.,
1999; Yamaoka et al., 2000; Goldring et al., 2002). Among the
various galectin family members, emerging evidences implicate
key roles of Galectin-1 and Galectin-3 in neuroimmune
responses in several neuropathological conditions (Jeon et al.,
2010; Starossom et al., 2012; Parikh et al., 2015). However, there
exists a critical knowledge gap in the understanding of their
cellular expression and function after ICH. The objective of the
current manuscript is to elucidate hemorrhagic-injury induced
modulation and cellular expression of Galectin-1 and Galectin-3
expression in the brain in a preclinical model of ICH.

MATERIALS AND METHODS

Induction of ICH
Intracerebral hemorrhage was induced in adult male CD-1 mouse
(8–12 weeks; n = 43), as reported previously (Sukumari-Ramesh
et al., 2012a,b, 2016; Bonsack et al., 2016; Sukumari-Ramesh
and Alleyne, 2016; Ahmad et al., 2017; Chen-Roetling et al.,
2017). Briefly, mouse was anesthetized (ketamine and xylazine)
and a small incision was made to expose the skull. Using a
high-speed drill, a burr hole (0.5 mm) was made on the skull
approximately 2.2 mm lateral to bregma. Then the mouse was
placed on to a stereotaxic head frame and a 26-G Hamilton
Syringe was used to inject 0.04U of bacterial type IV collagenase
(Sigma, St. Louis, MO, United States) in 0.5 µL Phosphate Buffer

Saline (pH 7.4; PBS) into the left striatum (3.0 mm) under
stereotaxic guidance. Upon removal of the needle, bone wax
was used to seal the burr hole. Mice were kept at 37 ± 0.5◦C
using a small animal temperature controller throughout the
procedure. The temporal pattern of hematoma after ICH is
provided (Supplementary Figure S1).

Western Blotting
Mice were anesthetized and transcardially perfused with PBS.
Ipsilateral brain tissue (both hematomal and peri-hematomal
brain regions) was collected in RIPA buffer containing protease
and phosphatase inhibitors and subjected to sonication. The
samples were then centrifuged at 14,000 rpm for 5 min at
4◦C to collect the supernatant. Using a BCA protein assay
kit (Pierce, Rockford, IL, United States) protein concentrations
were estimated, and 30–50 micrograms of samples were
run on a 4–20% sodium dodecyl sulfate–polyacrylamide gel
and transferred onto a polyvinylidene difluoride (PVDF)
membrane. Blots were incubated with the respective primary
antibody, [Galectin-1 (1:1000,), R&D systems, Minneapolis,
MN, United States), Galectin-3 (1:1000, Abcam, Cambridge,
MA, United States), or β-actin (1:3000; Sigma, St Louis, MO,
United States)] overnight at 4◦C. This was followed by a 2-h
incubation with a corresponding Alexa Fluor tagged secondary
antibody. Blots were read using a Li-Cor Odyssey near-infrared
imaging system and quantification was done using Quantity One
software (Bio-Rad, Foster City, CA, United States).

Immunohistochemistry
Mice were anesthetized and transcardially perfused with PBS.
Brains were collected and placed in 4% paraformaldehyde
overnight at 4◦C, and then snap frozen. Brains were then cut
into 25-mm coronal sections using a cryostat and mounted onto
glass slides. Sections were incubated for 2 h in 10% normal
donkey serum at room temperature. This was followed by
an overnight incubation with the respective primary antibody
at 4◦C. After washing, the sections were incubated with the
corresponding Alexa Fluor-tagged secondary antibody for 1 h at
room temperature. Immunofluorescence was determined using a
Zeiss LSM510 Meta confocal laser microscope and cellular co-
localization was determined, as described earlier (Laird et al.,
2010). We analyzed three non- consecutive sections per animal
and a minimum of 3 random fields around the hematoma.

Enzyme Linked Immunosorbent Assay
RAW 264.7, a murine macrophage cell line, were plated on a 24
well plate and allowed to incubate for 48 h in DMEM (Dulbecco’s
Modified Eagle Medium) containing 5% Fetal Bovine Serum, 5%
Bovine Growth Serum, and 1% Penicillin/Streptomycin. Cells
were then incubated with mouse recombinant Galectin-1 (6.25 or
12.5 µg/ml; R&D Systems, Minneapolis, MN, United States) for
1 h and it was followed by an 18-h treatment with LPS (100 ng/ml)
or hemin (30 µg/ml). The supernatant was collected and used for
the detection of IL-6, by ELISA as per manufacturer’s instructions
(Biolegend, San Diego, CA, United States). Briefly, a 96 well plate
was coated overnight at 4◦C with a specific capture antibody.
Following a 1-h blocking, the cell culture supernatant was added
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to the wells and incubated for 2 h at room temperature. Any
unbound materials were removed by washing and a detection
antibody solution was added to the wells and allowed to incubate
for 1 h at room temperature. After further washing, 100 µl of
Avidin- Horse Radish Peroxidase (HRP) solution was added to
each well for 30 min at room temperature. The substrate solution
was added to the wells after washing for color development.
A stop solution was used, and the plate was read at 450 nm using
a microtiter plate reader (Bio-Tek, Epoch).

Genetic Knockdown of Galectin-3
RAW 264.7 cells were transfected with either control siRNA
(ON-TARGET plus Non-targeting Pool; GE Dharmacon) or
Galectin-3 siRNA (ON-TARGET plus Mouse Lgals3 siRNA; GE
Dharmacon) using HiPerFect Transfection Reagent (QIAGEN)
according to manufacturer’s instructions. Galectin-3 knockdown
was verified 48h post- transfection by western blotting as
described earlier.

Statistical Analysis
The data were analyzed using t-test or one-way analysis of
variance followed by Student–Newman–Keuls post hoc test and
was expressed as mean ± Standard Error (SE). A p-value of < 0.05
was considered to be significant.

RESULTS

Temporal Expression Pattern of
Galectin-1 and Galectin-3 After ICH
To evaluate whether hemorrhagic-injury results in modulation
of Galectin-1 and Galectin-3 expression in the brain, ICH or
Sham was induced in mice using the collagenase injection
method. Given the emerging role of Galectin-1 and Galectin-3
in neuroimmune responses, the ipsilateral brain sections from
sham or ICH mice were subjected to evaluation employing
both western blotting and immunohistochemistry analysis at
various time points ranging from day 1 through day 7 post
surgery, a post-injury time period, which exhibited remarkable
induction of both pro- as well as anti-inflammatory activation
of microglia/macrophages as well as astrocytes after ICH
(Sukumari-Ramesh et al., 2012b, 2016; Bonsack et al., 2016).

Notably, brain sections from sham or contralateral brain areas
from ICH exhibited very marginal or undetectable expression
of Galectin-1 and Galectin-3 whereas augmented expression
of Galectin-1 and Galectin-3 was observed at day 3, day
5, and day 7-post ICH (Figures 1, 2). Along these lines,
the number of Galectin-1 immunopositive cells significantly
increased by approximately 4, 6 and 4-fold on day 3, day 5,
and day 7 post -ICH, respectively, in comparison to sham
(Figure 1B). This observation was further validated using

FIGURE 1 | Increased expression of Galectin-1 after ICH. (A) Confocal images depicting the temporal expression pattern of Galectin-1 after ICH (scale bar = 20 µm;
n = 3–5 per group). (B) The average number of Galectin-1-positive cells per 0.1 mm2 in the ipsilateral striatum. (C) Increased expression of Galectin-1 was confirmed
by western blotting of brain tissue from the ipsilateral striatum. (D) Densitometry analysis (n = 3–5 per group) of the western blotting data. ∗p < 0.05, ∗∗∗p < 0.001
vs. sham.
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FIGURE 2 | Augmented expression of Galectin-3 after ICH. (A) Temporal expression pattern of Galectin-3 in the perihematomal area after ICH. The representative
confocal images show a remarkable increase in Galectin-3 expression after ICH in comparison to Sham (scale bar = 20 µm; n = 3–5 per group). (B) The average
number of Galectin-3 positive cells per 0.1 mm2 in the ipsilateral striatum. (C) Temporal expression of Galectin-3 was further confirmed using western blotting.
(D) Densitometry analysis (n = 3–5 per group) of the western blotting data. ∗∗p < 0.01, ∗∗∗p < 0.001 vs. sham.

western blotting analysis, which revealed a remarkable and
significant induction of Galectin-1 starting from day 3-post
ICH in comparison to sham (Figures 1C,D). Further, the
induction of Galectin-3 (Figure 2) mirrored the Galectin-1
expression after ICH and Galectin-3 immunopositive cells were
approximately 15, 28 and 24- fold higher on day 3, day 5, and
day 7 post-ICH (Figure 2B) in comparison to sham and the
western blotting followed by densitometry analysis confirmed
the injury-induced increased expression of Galectin-3 after
ICH (Figures 2C,D).

Cellular Localization of Galectin-1 and
Galectin-3 After ICH
To determine the cellular localization of Galectin-1 and Galectin-
3 after ICH, the brain sections were subjected to dual label
immunostaining. Galectin-1 expression was mostly observed
in GFAP-positive astrocytes (Figure 3A) and stereotactic
cell counting revealed that 85% of Galectin-1 positive cells
co-expressed GFAP after ICH. In addition, Galectin-1 expression
was also observed in Iba1- positive microglia/macrophages after
ICH (Figure 3B) but only 12% of Galectin-1 positive cells
co-expressed Iba1.

In contrast, expression of Galectin-3 was mostly confined
to Iba1-positive cells (Figure 4A) and Galectin-3 expression
was absent in GFAP-positive cells (Figure 5A) indicating
differential cellular expression of Galectin-1 and Galectin-3
after ICH. Further, the expression of Galectin-3 was observed
in proinflammatory, M1 microglial or macrophage marker,
CD16/32-positive cells (Figure 4B) implicating a novel role of
Galectin-3 in neuroinflammatory responses after ICH. Notably,
88 and 92% of Galectin-3 positive cells coexpressed Iba1
and CD16/32-positive cells, respectively. Of note, Galectin-
3 expressing microglia or macrophages exhibited phagocytic
phenotype (Figures 4A,B) implicating its unexplored role in
microglial or macrophage mediated phagocytosis after ICH.
Further, NeuN-positive cells didn’t express either Galectin-1 or
Galectin-3 (Figures 3C, 5B).

Galectin-1 and Galectin-3 Mediated
Regulation of Inflammatory Response
To establish the possible functional role of Galectin-1 and
Galectin-3 after ICH, we performed in vitro studies. Recombinant
Galectin-1 (6.25 and 12.5 µg/ml) significantly attenuated
LPS-induced release of a proinflammatory cytokine, Interleukin
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FIGURE 3 | Galectin-1 expression is mostly observed in glial cells after ICH. Brain sections were double immunostained for (A) Galectin-1 and GFAP, (B) Galectin-1
and Iba1, (the lowest panel depicts the high magnification images) and (C) Galectin-1 and NeuN (Scale bar = 20 µm; n = 3 per group). Galectin-1 expression was
observed mostly in GFAP-positive cells and in a subset of Iba1-positive cells. NeuN positive cells didn’t express Galectin-1 (n = 3 per group).

-6 (IL-6) from RAW 264.7 cells as estimated by ELISA in
comparison to controls (Figure 6) implicating a negative
regulatory role of Galectin-1 in inflammation.

To test the functional role of Galectin-3, we performed
siRNA-mediated genetic knockdown of Galectin-3 in RAW
264.7 cells and examined the inflammatory response. Gene
silencing with siRNA significantly reduced the Galectin-3
expression in RAW 264.7 cells by 52.95% as evidenced by
western blotting (Figures 7A,B). Notably, siRNA medicated
genetic knockdown of Galectin-3 did not modulate LPS-induced
release of IL- 6 (Figure 7C) whereas the genetic knock down
of Galectin-3 significantly augmented hemin (a hemoglobin
metabolite that accumulates at high concentration in intracranial
hematomas) –induced the release of IL-6 (Figure 7D) implicating
an unexplored role of Galectin-3 in modulating inflammatory
response after ICH.

DISCUSSION

Galectins are a family of endogenous carbohydrate-binding
proteins that play critical roles in both physiological and
pathological conditions by interacting with glycosylated
receptors on the cell surface and modulating intracellular
signaling pathways (Perillo et al., 1995, 1998; Yang
et al., 1996; Moiseeva et al., 1999; Vespa et al., 1999;

Yamaoka et al., 2000; Goldring et al., 2002; Laaf et al.,
2019). Galectins exhibit significant sequence similarity in
their carbohydrate-recognition domain (CRD) with an
enhanced affinity toward β-galactosides and are originally
defined by their ability to recognize the disaccharide
N-acetyllactosamine (Barondes et al., 1994a,b; Kasai and
Hirabayashi, 1996). However, recent studies demonstrate
substantial differences in their carbohydrate binding
properties (Hirabayashi et al., 2002; Leffler et al., 2002;
Carlsson et al., 2007).

Galectin-1, the most ubiquitously expressed member of
the galectin family (Stillman et al., 2006) has been implicated
in the regulation of innate and adaptive immunity and
is present in both intracellular and extracellular locations
(Verschuere et al., 2014). The extracellular functions
of Galectin-1 rely largely on the carbohydrate-binding
properties while the intracellular functions involve mainly
carbohydrate-independent interactions (Verschuere et al.,
2014). Consistent with the role of Galectin-1 in immune
response in the periphery, Galectin-1 is known to suppress
macrophage activation (Barrionuevo et al., 2007), promotes
selective apoptosis of T cells (Toscano et al., 2007), induces
the secretion of anti-inflammatory cytokine, IL-10 (van
der Leij et al., 2004; Cedeno-Laurent et al., 2012), and
attenuates nitric oxide (NO) production by macrophages
(Correa et al., 2003).
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FIGURE 4 | Galectin-3 expression in microglia/macrophages after ICH. Brain
sections were immunostained for (A) Galectin-3 and Iba1, and (B) Galectin-3
and CD 16/32. Both Iba1 (a marker of microglia/macrophages) as well as
CD16/32 (a marker of proinflammatory M1 microglia or macrophages)-positive
cells, co expressed Galectin-3 (n = 3 per group).

Galectin-1 is expressed widely in nervous tissues at embryonic
stages but becomes restricted mainly to peripheral tissues
upon maturation (Horie and Kadoya, 2002). Consistently,
uninjured brain striatum exhibited marginal expression of
Galectin-1. However, upon hemorrhagic brain injury very
remarkable Galectin-1 expression was observed in GFAP-
positive astrocytes. Along these lines, Galectin-1 is implicated
in astrocyte differentiation and subsequent release of BDNF
(Brain Derived Neurotrophic factor) after a brain injury
implicating a role of Galectin-1 in neuroprotection (Sasaki
et al., 2004; Qu et al., 2010). Further, Galectin-1 is one
of the key regulators of adult neurogenesis through its
carbohydrate-binding ability and promotes functional recovery
after stroke (Ishibashi et al., 2007). Galectin-1 administration
reduced apoptosis of neurons, decreased brain infarction
volume and improved neurological function induced by brain
ischemia (Qu et al., 2011). Also, native and recombinant galectin-
1 protected mouse and rat cerebellar neurons from the
neurotoxic effects of glutamate (Lekishvili et al., 2006). Of note,
Galectin-1 deactivates inflammatory microglia and protects from
inflammation-induced neurodegeneration (Starossom et al.,
2012). Further, our studies demonstrated that recombinant
Galectin-1 attenuates the release of a proinflammatory cytokine,

FIGURE 5 | Cellular localization of Galectin-3 after ICH. Brain sections were
double immunostained with (A) Galectin-3 and GFAP, and (B) Galectin-3 and
NeuN. Galectin-3 expression was absent in either GFAP-positive or
NeuN-positive cells. Scale bar = 20 µm; n = 3 per group.

FIGURE 6 | Recombinant Galectin-1 and inflammatory response. Prior to LPS
(100 ng/ml) stimulation, Raw 264.7 cells were treated with recombinant
Galectin-1, and the release of IL-6 was measured using ELISA, as detailed in
methods. Recombinant Galectin-1 significantly reduced LPS-induced release
of IL-6 from RAW 246.7 cells (n = 4 per group). ∗∗∗p < 0.001 vs. LPS.

IL-6 from LPS-stimulated murine macrophages, RAW 264.7 in
comparison to controls implicating a negative regulatory role of
Galectin-1 in inflammation.

Galectin-1 is one of the endogenous ligands of CD45 (Walzel
et al., 1999), which regulates microglia/macrophage activation. In
addition, Galectin-1 interaction with CD45 leads to the retention
of this glycoprotein on the plasma membrane and augmenting
its phosphatase activity. Recent studies demonstrated that
CD45 negatively regulates proinflammatory M1 microglia
activation but promotes anti-inflammatory, M2 phenotype
through modulation of the mitogen-activated protein kinase

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 May 2019 | Volume 13 | Article 157

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00157 May 10, 2019 Time: 14:53 # 7

Bonsack and Sukumari-Ramesh Galectin-1 and Galectin-3 After ICH

FIGURE 7 | Galectin-3 and inflammatory response (A) RAW 246.7 cells were treated with either control siRNA or Galectin-3 siRNA as detailed in methods and the
genetic knockdown of Galectin-3 was verified using (A) western blotting followed by (B) densitometry analysis. ∗∗∗p < 0.001 vs. control siRNA. (C) Galectin-3
knockdown didn’t modulate LPS-induced release of IL-6 (D) whereas significantly unregulated hemin–induced release of IL-6 from RAW 246.7 cells in comparison to
control (n = 3 per group). ∗∗p < 0.01 vs. hemin.

p38 (p38MAPK), cAMP response element binding (CREB), and
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) signaling pathways (Starossom et al., 2012). This effect
involved binding of Galectin-1 to core 2 O-glycans on CD45
suggesting that the expression of glycan moieties on activated
microglial/macrophages is required for Galectin-1 binding and
function (Starossom et al., 2012). In addition, Galectin-1
suppressed methamphetamine-induced neuroinflammation in
human brain microvascular endothelial cells (Parikh et al., 2015)
and Galectin-1 is suggested to be involved in neurite outgrowth
and synaptic connectivity. Altogether, the data suggest that
Galectin-1 induction in reactive astrocytes after ICH could be an
intercellular communication mechanism facilitating astrocyte-
mediated regulation of neuroprotection after ICH warranting
further investigation.

Galectin-3 is a 25–35 kDa chimeric type protein with
functions tightly depend on the localization (Thomas and
Pasquini, 2018). The expression of Galectin-3 has been found
in the nucleus, and cytoplasm (Liu et al., 2002). Further,
macrophages and activated microglia can release Galectin-
3 in the extracellular space leading to extracellular matrix
remodeling and altered inflammatory response, respectively
(Li et al., 2008; Jeon et al., 2010). Instead of the classical
endoplasmic reticulum/Golgi secretion pathway, Galectin-3
follows an alternative secretory pathway for secretion and export
(Mehul and Hughes, 1997) and upon release, Galectin-3 interacts
with several extracellular receptors. Though, Galectin-3 is closely
linked to the inflammatory cascade of reactions; the precise
functional role of Galectin-3 in neuroinflammation is largely

controversial. However, it is reported that galectin-3 released by
microglia acted as an endogenous TLR-4 (Toll Like Receptor-4)
ligand (Burguillos et al., 2015). Further, the genetic deletion of
Galectin-3 reduced neuronal loss and administration of Galectin-
3 antibody exerted neuroprotective effects in a preclinical
model of traumatic brain injury (Yip et al., 2017) together
implicating a detrimental role of Galectin-3 after a brain injury.
In contrast, targeted deletion of Galectin-3 exacerbated ischemic
brain injury and neurodegeneration after cerebral ischemia
(Lalancette-Hebert et al., 2012) suggesting a neuroprotective
role of Gelectin-3 after brain damage. In addition, Galectin-
3 contributes to angiogenesis and neurogenesis implicating
its possible role in post-ischemic brain repair (Yan et al.,
2009). Galectin-3 also promoted oligodendroglia differentiation,
contributing to functional recovery following demyelinating
disorders (Pasquini et al., 2011). These conflicting functional
roles of Galectin-3 after neuropathology could be due to the
differential subcellular expression of Galectin-3 or due to the
difference in the pathophysiology of brain disorders warranting
further investigation.

Consistent with other neuropathological conditions,
we observed elevated expression of Galectin-3 after
ICH and expression was predominantly observed in
Iba1 positive cells, the inflammatory cells of the CNS.
Iba1 positive cells after ICH could be either microglia
or infiltrating macrophages, which play roles in innate
immune response. Recent studies demonstrate that microglia
and macrophages may have differential roles after brain
pathology (Gao et al., 2017). Along these lines, studies
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with primary microglial culture document a proinflammatory
role of Galectin-3 (Burguillos et al., 2015), whereas studies
with macrophages demonstrate an anti-inflammatory role
(MacKinnon et al., 2008) warranting further investigation.
Moreover, genetic knockdown of Galectin-3 in RAW 246.7 cells
augmented hemin- induced release of IL-6, a proinflammatory
cytokine implicating a role of Galectin-3 in inflammatory
responses after ICH. Besides, Galectin-3 expressing microglia
or macrophages exhibited phagocytic phenotype implicating
its unexplored role in microglial or macrophage mediated
phagocytosis, which plays a key role in hematoma resolution and
subsequent brain recovery after ICH. Consistently, recent reports
suggest that macrophages that accumulate in the CNS during
parasite infection abundantly express Galectin-3 (Quenum
Zangbede et al., 2018) and activated microglia phagocytose cells
via Galectin-3 (Nomura et al., 2017). In addition, elevated plasma
Galectin-3 levels were strongly associated with inflammation,
severity and poor outcomes in patients with acute ICH (Yan
et al., 2016). Therefore, further studies are needed elucidating the
functional roles of Galectin-3 after ICH.

CONCLUSION

Galectin-1 and Galectin-3 exhibited very profound and increased
expression from day 3 to day 7-post-injury, in the perihematomal
brain region after ICH in comparison to Sham. Further, Galectin-
1 expression was mostly observed in GFAP- positive astrocytes
whereas Galectin-3 expression was observed mostly in Iba1 as
well as CD16/32-positive cells, the inflammatory cells of the
CNS. Moreover, genetic studies revealed a negative regulatory
role of both Galectin-1 and Galectin-3 in the release of a
proinflammatory cytokine, IL-6 depending on the stimulus.
Altogether, the data suggest that Galectin-1 and Galectin-3 could

be targeted in modulating glial responses and thereby brain injury
after ICH, warranting further investigation.
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