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Abstract: Moisture is detrimental to the performance of epoxy resin material for electrical equipment
in long-term operation and insulation. Therefore, moisture absorption is one of the critical indicators
for insulation of the material. However, some relevant test methods, e.g., the direct weighing method,
are time-consuming, and it usually takes months to complete a test. For this, it is necessary to
have some modification to save the test time. Firstly, the study analyzes the present prediction
method (according to ISO 62:2008). Under the same accuracy, the time required is reduced from
104 days to 71 days. Subsequently, the Langmuir curve-fitting method for water absorption of epoxy
resin is analyzed, and the initial values of diffusion coefficient, bonding coefficient, and de-bonding
coefficient are determined based on the results of molecular simulation, relevant experiment, and
literature review. With the optimized prediction model, it takes only 1.5 days (reduced by 98% as
compared with the standard prediction method) to determine the moisture absorbability. Then, the
factors influencing the prediction accuracy are discussed. The results have shown that the fluctuation
of balance at the initial stage will affect the test precision significantly. Accordingly, this study
proposes a quantitative characterization method for initial trace moisture based on the terahertz
method, by which the trace moisture in epoxy resin is represented precisely through the established
terahertz time-domain spectroscopy system. When this method is used to predict the moisture
absorbability, the experimental time may be further shortened by 33% to 1 day. For the whole water
absorption cycle curve, the error is less than 5%.

Keywords: epoxy resins; Langmuir; terahertz; molecular simulation; prediction

1. Introduction

Epoxy resin has many advantages, e.g., high insulation strength, good chemical
properties, and excellent environmental adaptability [1–7]. It is widely used in electrical
equipment as a packaging and pouring material. Existing studies have shown that mois-
ture will accelerate the aging of epoxy resin material for power equipment and reduce its
insulation performance [8,9]. After the intrusion of water molecules, physical and chem-
ical changes such as plasticization and hydrolysis will occur in epoxy resin, resulting in
irreversible crack, structural damage, and performance degradation of epoxy resin [10–12].
Chemical aging of epoxy resin mainly involves its changes in chemical structure, including
chemical processes such as bond breaking and cross-linking degradation caused by hy-
drolysis. Chemical changes will have an irreversible effect on the material itself. Physical
changes refer to morphological changes such as stiffness degradation and crack, as well as
damage on epoxy matrix. After swelling for water absorption, the crack will be enlarged
with the diffusion of water molecules, and thus the moisture absorption will be accelerated,
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making the water molecules fully contact with the epoxy resin and further damage its
matrix [13–15]. Therefore, moisture absorption is an important indicator for material aging,
and it is necessary to characterize the moisture absorption of epoxy resin material so that
epoxy resin of excessively high water absorption will not be used for the power grid.

Presently, the main method for studying water absorption of composite materials is
weighing method, which may reflect the moisture absorbability of the material simply and
intuitively. However, for organic polymer materials such as epoxy resin, usually, it takes
more than 50 days to reach the saturation point for water absorption, which has seriously
restricted the application of water absorption method in engineering practice [6,16–19]. In
order to reduce the experimental time by the direct method for determining the moisture
absorption and improve the practical utility of the method. ISO 62:2008 [20] put forward a
water absorption prediction formula, combined with Fick’s law and the curve method or
calculation tool, that can estimate the saturated water absorption of the material. However,
it is still time consuming, the error is large, and the prediction effect is not obvious. Based
on Fick’s Law, Simon Heid-Jørgensen [21] established the analytical homogenization model
to predict the water absorption of epoxy-glass composites, which predicted the first stage
of water absorption of the material successfully. However, for the second and third stages
of water absorption, the prediction effect was unsatisfactory. Fu Yingqiang [22] predicted
the water absorption of modified polyvinyl alcohol with the BP neural network method.
The water absorption of the material was predicted successfully based on the measured
water absorption values with a precision of 85%. Hui Li [23] established a water absorption
prediction model for the composite in combination with Arrhenius’s and Fick’s Laws,
which accurately predicted the moisture absorption of the composite any time as soaked in
water at a constant temperature of 95 ◦C.

The existing moisture absorption prediction methods are based solely on experimental
data, which has the following shortcomings: (1) for the vast majority of composite materials,
relevant theory has proved that the moisture absorption should satisfy the Langmuir
model [24]. However, the existing methods fail to consider the Langmuir model, and thus
the prediction efficiency is low; that is, the experimental time is not shortened obviously.
(2) For a certain material, a lot of tests need to be carried out first to determine its moisture
absorption at different time points, thus causing heavy workload and poor universality.

In order to reduce the time required for moisture absorption test, this study conducted
an epoxy resin moisture absorption prediction and proposed a shrinkage–expansion pre-
diction algorithm based on the Langmuir diffusion model, which was conducive to engi-
neering moisture absorption evaluation, because it shortened the experimental time greatly
as guaranteeing the precision. This study first applied the water absorption prediction
model of material proposed in ISO 62:2008 to the experimental samples and carried out a
relevant error analysis. Then, we proposed a nonlinear fitting method based on shrinkage–
expansion theory according to the characteristics of the Langmuir diffusion equation for
polymers, explored the diffusion process for moisture absorption of epoxy resin through
molecular simulation, and determined the search range of shrinkage–expansion algorithm.
Additionally, through a comparison with the moisture absorbability of epoxy resin material
measured experimentally, the study analyzed the relationship between the experimen-
tal time and the final prediction error, put forward the shortest experimental time, and
obtained a preliminary moisture absorption behavior prediction model for epoxy resin.
At the same time, in order to further reduce the influence for fluctuation of balance in
the experiment and represent the initial trace water absorption in epoxy resin was rep-
resented precisely. The study established a terahertz time-domain spectroscopy system.
As a result, the early water absorption of epoxy resin was represented precisely by the
Terahertz time-domain spectroscopy test method, a theoretical verification was carried out
through molecular simulation. Therefore, the prediction model was deeply optimized. The
experimental time was further reduced to 24 h by terahertz spectroscopy of epoxy resin,
and the precision of the model was up to 99%.
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2. Materials and Methods
2.1. Materials and Experiments

In this experiment, diglycidyl ether of bisphenol-A (DGEBA) (Changzhou Runxiang
Chemical Co., Ltd., Changzhou, China) was adopted, with methylhexahydrophthalic
anhydride (MeHHPA) (Shanghai Aladdin Biotechnology Co., Ltd., Shanghai, China) as
the curing agent and DMP30 (tertiary amine) (Jiangsu Dandelion Biotechnology Co., Ltd.,
Jiangsu, China) as the accelerant. The preparation process was as shown in Figure 1. Mix
all the reagents according to the ratio of epoxy resin: curing agent: toughening agent:
accelerant = 100:80:10:1, and stir at a constant temperature of 50 ◦C. Then, pour the mixture
into a mold, and after vacuum defoamation, solidify at 90 ◦C and 110 ◦C for 2 h, respectively,
in a thermostat (Shanghai qixin scientific instrument co., LTD, Shanghai, China). Cool and
demold until flake samples of diameter 100 mm and thickness 1 mm are obtained.

Figure 1. Sample preparation process.

The experimental process is shown in Figure 2, in which experimental samples are
placed on the hollow iron frame in the constant temperature and humidity box. Before the
experiment, the epoxy resin samples were dried at 60 ◦C in a drying oven and weighed
regularly until the sample mass did not change. The average weight of the six samples after
drying was recorded as m0. Then, the constant temperature and humidity box was tested.
The temperature and humidity meter was placed in the box, and the parameters were set
as temperature = 25 ◦C and relative humidity = 95 %. When the display for the constant
temperature and humidity chamber as well as the reading of built-in hygrothermograph
remained unchanged, it was determined that the experimental environment was good, and
the experimental test was carried out [25]. In the process of the experiment, all the dried
samples were put into the constant temperature and humidity box, keeping the relative
humidity unchanged; a high-precision balance (precision 1 mg) was regularly used to
measure the weight, and the samples were put back immediately after each measurement.
Six samples were repeated five times, and the average m(t) of five experiments was taken;
then, the water absorption percentage, w(t), can be expressed by Formula (1).

w(t) =
m(t)−m0

m0
× 100%, (1)

where m(t) represents the mass of sample after experimental time t, and m0, the mass of
dried sample.
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Figure 2. Experimental process.

2.2. Molecular Dynamics Simulation

In the early stage of moisture absorption process for the material, the water absorption
rate is fast, and the initial moisture absorption curve is close to a straight line. Therefore,
in this study, an epoxy resin containing water molecules/anhydride curing agent system
was established, and the search range of diffusion coefficient D was determined through
molecular dynamics simulation.

The system was universal DGEBA, with MeHHPA as the curing agent and DMP30 as
accelerant. The model construction was as shown in Figure 3. Based on the flow for epoxy
resin processing, the crosslinking temperature was determined as 580 K, the crosslinking
pressure as 0.005 GPa, and the COMPASS field was selected as the crosslinking force field.
The standard Forcite/COMPASS force field was for several times of epoxy resin molecule
optimization. The system was performed a 500 ps of molecular dynamics equilibrium
simulation, in which the equilibrium was determined based on the fluctuation ranges of
temperature and energy. The epoxy resin containing water molecules/anhydride curing
agent system contains a total of 2397 atoms, i.e., 274 O, 975 C, and 1148 H.

Figure 3. DGEBA Molecular Dynamics Model: the MSD curves at different temperatures and the relationship curves
between diffusion coefficient and temperature were obtained by simulation.

The range for initial value of diffusion coefficient D was determined by simulating the
diffusion of water molecules at different temperatures in the epoxy resin system.

The chain movement of water molecules in epoxy resin may be represented by mean
square displacement:

MSD =
〈
[ri(t)− r0(t)]

2
〉

, (2)



Polymers 2021, 13, 4250 5 of 15

where ri(t) and r0(t) represent the position vectors of atom i at time t and time 0, respec-
tively.

The diffusion coefficient of water molecules in epoxy resin may be solved by the
Einstein Formula as follows:

Da =
1

6Na
lim
t→∞

d
dt

Na

∑
i=1

〈
[ri(t)− r0(t)]

2
〉

, (3)

where
→
r i(t) and

→
r 0(t) represent the position vectors of atom i at time t and time 0, respec-

tively. In Formula (3), when t is large enough, the diffusion coefficient D may be calculated
with the mean square displacement:

D =

∣∣∣→r (t)−→r (0)∣∣∣2
6t

=
a
6

(4)

In Formula (4), a represents the slope of the fitting curve.
As shown in Figure 3, the MSD at 358 K was at maximum, and at 298 K was at

minimum.

2.3. Terahertz Time-Domain Spectroscopy System

Considering that the requirement for initial experimental data was high for the model,
this study represented water absorbability of epoxy resin precisely by terahertz time-
domain spectroscopy to reduce the influence for fluctuation of balance. Due to the strong
absorption effect of water molecules on terahertz waves, the nondestructive and sensitivity
of terahertz technology to water molecules have attracted much attention and research
from all walks of life. In recent years, a large number of articles [26–29] have studied the
quantitative identification of moisture in various media by terahertz technology. Consider-
ing the stability and accuracy of THz measurement of water, we first combined it with the
prediction method and proposed a faster water detection method.

The established terahertz platform was as shown in Figure 4. First, the femtosecond
laser emitted a pulse less than 80 Fs at 1560 ± 20 nm, which was split into two beams
perpendicular to each other by a beam splitter: pump light and the probe light. Then,
the pump light was focused on the base surface of the photoconductive antenna through
the reflector and time delay device, thus generating the THz pulse, which was focused
on the tested sample after the parabolic mirror collimation. The THz pulse carrying
sample information was transmitted through the samples, and then collimated and focused
through another pair of parabolic mirrors, passing through a detector in alignment with
the probe light. At last, the detector sent the signal to a computer for further data analysis.

Figure 4. The transmission terahertz time-domain spectroscopy system.
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2.4. DFT Methods

In order to explore the absorption peak of water-bearing epoxy resin in the terahertz
band and verify the experimental data, a spectrum vibration analysis on water-bearing
epoxy resin system was carried out with the Gaussian software (Gaussian, Inc, Gaussian
09W) to identify the characteristic absorption frequency of water molecules in the epoxy
resin theoretically. DGEBA molecules of epoxy resin were selected for the model, with
water molecules added for simulation, as shown in Figure 5. The DFT method was used for
relevant calculation and simulation. The adopted method was mainly B3LYP commutative
correlation functional from generalized gradient approximation, with def2-SVP defined as
the base group of calculation, and the diffusion and polarization functions were added for
all atoms.

Figure 5. Molecular simulation of water-bearing epoxy resin system.

3. Study Methods
3.1. Physical Model of Water Absorption

Carter described a diffusion phenomenon by the Langmuir diffusion model [30].
Water molecules bind together temporarily (physically) or permanently (chemically) in the
material, thus retarding the diffusion process and reducing the speed of water absorption,
especially for a long-term water absorption process. Carter represented relevant physical
and chemical interactions with bonding coefficient α and de-bonding coefficient β. In this
case, α, β� π2 Ds−2, and the water absorption can be expressed by the following formula:

w(t)
ws

=
[

α
α+β exp(−αt)(y(t)− 1) + exp(−βt)

(
β

α+β − 1
)
+ 1
]

y(t) = 1− 8
π2

∞
∑

j=0

{
1

(2j+1)2 exp(−( 2j+1
2 )2) · π2 · 4Dts−2

}
(5)

3.2. Error Thershold Determination

In the water absorption test of epoxy resin sample, water loss is inevitable when the
samples are removed from the constant temperature and humidity box. Therefore, the
weight gain rate for water absorption fluctuates greatly. In the experiment, the applicable
range for precision of model was determined through measuring the error, and thus, the
error caused by the test itself was avoided.

The 2500 h of moisture absorption of epoxy resin samples were analyzed using the
experimental apparatus as shown in Figure 6. For each sample, the analysis was repeated
five times under the same environmental conditions, and the five sets of measurements
were averaged at last, with the mean value as the baseline. As shown in Figure 6, the
weight of the six samples after 2500 h of water absorption ranged from 9.692 g to 9.700 g,
mean value 9.696 g, experimental error ±0.004 g, and the corresponding error of weight
gain rate for water absorption about 5%.
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Figure 6. Test error of the testing apparatus. The right ordinate is the weight range of six samples
after 2500 h of water absorption, and the left ordinate is the corresponding saturated water absorption
error.

3.3. ISO 62:2008 Prediction Method

According to ISO 62:2008 [20], the measured D and C when constant mass is not
achieved are as shown in Formula 6.

√
D ≈ 1

Cs
× d

0.52π
× c(t)√

t
, (6)

where CS saturated water absorption; d sample thickness; t moisture absorption time; C(t)
water absorption rate measured at t.

As applied to the epoxy resin samples, its prediction precision was as shown in
Figure 7. The prediction precision increased with the experimental days. Within the 5%
range of threshold, the required experimental days was about 71 days, and for the samples,
relevant fluctuation was large, and the prediction effect was not obvious.

Figure 7. Relationship between experimental days and prediction accuracy of ISO 62:2008 model for
six samples.
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3.4. Fitting Method Based on Langmuir Formula

Current studies have shown that the water absorption of organic polymer materials
such as epoxy resin conforms to the Langmuir’s Law. Langmuir Formula is characterized
by multiple parameters, cascade equation, high latitude, and high nonlinearity. Therefore,
parameters D, α, β, and Ws were estimated by optimization fitting to determine the
moisture absorbability of the material.

In this study, the shrinkage–expansion theory was applied to the optimization fitting
of initial water absorption data of epoxy resin so as to establish the water absorption
prediction model of epoxy resin. In the shrinkage–expansion theory, there are three stages,
as follows: first, gradually reduce the step size in the initial search space; the second is
to expand the step size for search; the third is to calculate the mean value and standard
deviation for these degree points that meet relevant requirements, which are used to
determine the step size of the next process and carry out iteration. The objective function
can be searched in and out of multi-dimensional starting space, the search center and step
size can be adjusted by the feedback information during the search process, and thus the
optimal parameters for the given Langmuir Formula [31], i.e., D, α, β and Ws, may be
approached by merely a few shrinkage-expansion cycles. This algorithm does not have to
give the derivative or partial derivative of the formula, thus reducing the complexity of
calculation, and therefore, this study introduced the shrinkage-expansion algorithm for
relevant fitting. Since the initial values for the parameters were greater than 0, they were
first all set to any value greater than 0.

As shown in Figure 8, for direct fitting based on all the 104 days of data, the direct
fitting based on all 104 days of data had a good effect. However, water absorption prediction
based on36 h and 108 h initial experimental data had a poor effect, and the error relative
to the true value was large. In order to further explore the relationship between the
time required fir experiment and the final prediction error, the repeated five times of
experimental data for six samples were averaged, and the fitting test was conducted with
the experimental data at 18 h, 36 h, 45 h, 89 h, 108 h, 174 h, 311 h, 430 h, 511 h, 625 h, 1406 h,
1731 h, 2122 h, and 2500 h. The fitting results of the experimental data at 104 days were
taken as the benchmark for observing and analyzing the error.

Figure 8. The experimental data of 36 h, 108 h, and 2500 h were used to directly apply the shrinkage-
expansion algorithm to fit the obtained curves.

As shown in Figure 9, the shrinkage-expansion algorithm was directly used for
optimization fitting of the Langmuir formula. Based on less than 94 days of experimental
data, the error for the six samples was greater than 5.1%, and so, the prediction effect was
poor, and the fitting error was large, that is, the order of magnitude for the results obtained
for the parameters differed greatly from that of the true values. The reason for this was
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that, for the shrinkage—expansion algorithm, when there are multiple parameters and the
nonlinear relationship is complex, the efficiency for optimization search is low, especially
when the initial value is not so appropriate, the search process from the initial point to the
optimal point is relatively slow, while the Langmuir formula contains four unknowns, with
D, α, β, Ws as regression parameters to be estimated. Ws is merely parameter solution > 0,
and it is impossible to estimate its initial value. Therefore, it is necessary to narrow the
shrinkage range and determine the initial values of D, α and β.

Figure 9. The relationship curve between experimental time and water absorption prediction error of
the initial shrinkage–expansion prediction method directly applied to six samples.

4. Determination of the Initial Values of the Parameters
4.1. Search Range of Diffusion Coefficient D

Table 1 showed the diffusion coefficient of water molecules at 298 K, 313 K, 328 K,
343 K, and 358 K, with R2 as the goodness of fit, which was greater than 0.98 for all,
indicating that the simulation fitting results are credible. The diffusion coefficient of water
molecules in this study was close to that in relevant literature [32], which indicated that the
simulation method used in this study was effective and reasonable. According to Table 1,
the diffusion coefficient of water molecules in epoxy resin increased with temperature.

Table 1. Diffusion coefficient of water molecules at different temperatures in epoxy resin.

Temperature a R2 D/cm2/s

298 K 0.024 0.98 3.96 × 10−7

313 K 0.025 0.98 4.19 × 10−7

328 K 0.037 0.98 6.11 × 10−7

343 K 0.090 0.99 1.50 × 10−6

358 K 0.222 0.99 3.71 × 10−6

There is no unit for Slope a or correlation coefficient R2, where D is diffusion coefficient.
According to the classical diffusion theory, the migration rate as well as the diffusion

coefficient of water molecules increases with temperature. Microscopically rising tempera-
ture makes the model expand and the free volume of water molecules increase. At the same
time, with the increase in temperature, the kinetic energy of water molecules increases, and
the binding effect of epoxy resin on water molecules decreases. Therefore, the diffusion
coefficient of water molecules increases with temperature.

According to the thermodynamic formula, the thermodynamic process of gas molec-
ular diffusion follows the Arrhenius Formula, that is, the diffusion coefficient of water
molecules has an exponential relationship with temperature. A temperature fitting was
carried out for the diffusion coefficient of water molecules, and the fitting results were as
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shown in Figure 3. As a result, the diffusion coefficient functions of water molecules at
different temperatures were obtained, which proved the accuracy of molecular simulation
results.

The theoretical value for the magnitude order of diffusion coefficient of water molecules
in pure epoxy resin was determined as about 10−7 through the establishment of molecular
model. However, in practice, the penetration rate of water molecules through the epoxy
resin may be hindered by the internal forces of the material. For this, the initial magnitude
order for the diffusion coefficient may be selected as 10−7~ 10−8 for selecting the initial
value of the algorithm. However, it should be noted that this is only a range for the initial
value of the algorithm; that is, it is not the range for final value due to the influence of other
environmental factors.

4.2. Search Range of α and β

In the initial moisture absorption stage of epoxy resin for rapid water absorption, water
molecules interacting intensively diffuse into the polymer, while free water quickly fills the
free volume of the epoxy resin. After a certain moisture absorption time, the diffusion is
saturated, and the free water and the bound water are in equilibrium. This process is time
consuming, while for the molecular simulation method, the time is relatively short, with ps
as the unit, and thus, it cannot be simulated by molecular simulation. Therefore, the range
of initial value for α and βwas determined by an experiment and relevant literature in this
study.

As shown in Table 2, the magnitude order of α and β for water absorption of epoxy
resin measured in this experiment was 10−6 ~10−7 s−1. Based on an enormous amount of
literature, the magnitude order of α and β for organic polymer materials such as epoxy
resin is roughly 10−6 ~10−8 s−1. Therefore, the initial value was set as 10−7 s−1 for α and β
of epoxy resin.

Table 2. Ranges of α and β of different materials.

Water Absorption Test
Value of Epoxy

Resin/s−1

Silicone
Rubber [16]/s−1

Epoxy Resin Adhesive
(Type EC 2216 from

3M) [33]/s−1

α 7.432 × 10−6 1.5 × 10−6 4 × 10−8

β 9.071 × 10−7 2.5 × 10−6 8.1 × 10−8

5. Prediction Results for Water Absorption of Epoxy Resin

In the experiment, the moisture absorption of epoxy resin material was measured, the
relationship between the required experimental time for prediction and the final prediction
error was analyzed, and the shortest time required for experiment was proposed. Thus,
the moisture absorption behavior prediction model of epoxy resin was obtained.

The 36 h and 108 h experimental results were applied through the prediction model
after the initial values were substituted. The results were as shown in Figure 10 and Table 3.
Obviously, the prediction curve and saturated water absorption were more precise than
before optimization of the model (Figure 8).
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Figure 10. The experimental data of 36 h, 108 h, and 2500 h were used to compare the predicted
curves of the optimized shrinkage-expansion algorithm.

Table 3. Parameter Comparison of 36 h, 108 h, and True Value.

The Experimental
Time D The Relative

Error α/β The Relative
Error Ws

The Relative
Error

The real value 1.098 × 10−7 0 8.248 0 1.958 0
108 h 1.082 × 10−7 1.457% 8.003 2.970% 1.95 0.409%
36 h 1.052 × 10−7 4.189% 9.113 10.487% 1.912 2.349%

The relationship between the required experimental time for prediction and the final
prediction error was as shown in Figure 11. Based on the results for experimental error,
the precision of the established water absorption prediction model of epoxy resin was
further verified. Based on the precision of the testing apparatus mentioned above, the error
threshold was determined as 5%, and thus, the shortest time required for experiment was
36 h. The prediction precision may be increased with experimental time. The optimized
prediction model shortened the experimental time greatly as guaranteeing the precision as
compared with the model before optimization and the prediction method proposed in ISO
62:2008.

However, the stability of prediction models for different samples needed to be further
improved. As shown in Figure 11, the final error corresponding to the early experimental
time of different samples fluctuated greatly, which was caused by the instability of balance.
Therefore, it is necessary to further optimize the stability of the model.

Figure 11. ISO 62:2008, Unoptimized Model and Optimized Model Prediction Error Comparison.
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6. Precise Representation of Early Water Absorbability

The influence of water content on terahertz absorption was analyzed through cal-
culating the absorption spectra of the samples. The THz-TDS test system was used to
obtain the reference and sample time domain signals, which were uref(t) and usample(t),
respectively. The uref(t) and usample(t) were converted to frequency domain through Fourier
transform, and thus, frequency functions Eref(ω) and Esample(ω) were obtained. According
to Bill Lambert’s Law, the absorbance is directly proportional to the concentration of light
absorbing material and the thickness of absorbing layer but inversely related to the trans-
mittance. Therefore, Formula (7) may be used to calculate the absorption coefficient (α) of
the samples.

α =
1
d

ln(
Are f

Asample
), (7)

where d is the sample thickness, and Aref and Asample are the amplitudes of the reference
signal and sample signal frequency functions, respectively.

After testing, analyzing, and median filtering of epoxy resin, the absorption coefficient
of the samples with different water content was obtained, as shown in Figure 12. Obviously,
there was an intensive absorption peak near 1.9 THz, and the peak value increased with
water content.

Figure 12. Absorption coefficient of samples with different water content.

The vibration spectra of the mixed system at 0–3 THz were as shown in Figure 13.

Figure 13. Terahertz spectrogram for molecular simulation.
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According to Figure 13, the vibration simulation results of water-bearing epoxy resin
system showed obvious absorption peaks at 1.13, 1.51, 1.9, and 2.5 THz, and the intensity
of absorption peak at 1.9 THz was the highest, which was consistent with the test results.

For this, the peak value at 1.9 THz was taken as the reference for fitting with water
absorption as shown in Figure 14. For absorption spectra of epoxy resin samples with
different water content, the peak height at 1.9 THz fitted well with water content, with
goodness of fit greater than 0.98. Therefore, the device may be used for preliminary testing.

Figure 14. Peak height at 1.9 THz and relevant water content curve.

The error comparison of Terahertz with balance for testing was as shown in Figure 15,
where there were water absorption data indirectly represented by terahertz and obtained
by the balance. According to the obtained prediction curve, under an error threshold of
5%, the terahertz method may shorten the experimental time to 24 h and enhance relevant
stability as compared with the testing of balance, thus further shortening the experimental
time.

Figure 15. Comparison of model prediction precision between THz and electronic balance.

7. Conclusions

For the conventional experimental method, it takes a long time to test the water
absorption of epoxy resin for electrical equipment. The core idea of this study is “to obtain
long-term water absorption over time with short experimental time”. With the prediction
model proposed in this study, the long-term water absorption may be predicted, and the
water absorption curve may be drawn simply by substituting 24 h of initial experimental
data into the model.
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(1) Based on the nonlinearity and high latitude of the Langmuir diffusion equation, this
study has proposed a shrinkage-expansion algorithm-based fitting method, which
may realize the fitting of the water absorption process, but the algorithm is still to be
improved, for the experimental time is merely reduced from 104 days to 94 days.

(2) The diffusion coefficient of epoxy resin at different temperatures has been simulated
and analyzed with a molecular simulation method, and the diffusion coefficient and
the temperature satisfy the Arrhenius formula.

(3) Based on the results of molecular simulation, experiment, and the relevant literature,
the initial values of diffusion coefficient, bonding coefficient, and de-bonding coeffi-
cient have been determined, and the prediction model has been optimized. Thus, the
experimental time is further reduced from 108 days to 1.5 days, and the prediction
error is no greater than the experimental error of moisture absorption test (5%), and
so the engineering requirements may be set generally.

(4) In order to reduce the influence for fluctuation of balance and further shorten the
experimental time required by the model, this study has proposed a method to
improve the precision of the model based on terahertz. Under an error threshold of
5%, the terahertz method may shorten the experimental time from 36 h to 24 h.
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