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Abstract 
 
Introduction: Since March of 2020, over 210 million SARS-CoV-2 cases have been reported and 
roughly five billion doses of a SARS-CoV-2 vaccine have been delivered. The rise of the more infectious 
delta variant has recently indicated the value of reinstating previously relaxed non-pharmacological and 
test-driven preventative measures. These efforts have been met with resistance, due, in part, to a lack of 
site-specific quantitative evidence which can justify their value. As vaccination rates continue to increase, 
a gap in knowledge exists regarding appropriate thresholds for escalation and de-escalation of COVID-19 
preventative measures. 

 
Methods: We conducted a series of simulation experiments, trialing the spread of SARS-CoV-2 virus in 
a hypothesized working environment that is subject to COVID-19 infections from the surrounding 
community. We established cohorts of individuals who would, in simulation, work together for a set 
period of time. With these cohorts, we tested the rates of workplace and community acquired infections 
based on applied isolation strategies, community infection rates (CIR), scales of testing, non-
pharmaceutical interventions, variant predominance’s and testing strategies, vaccination coverages, and 
vaccination efficacies of the members included. Permuting through each combination of these variables, 
we estimated expected case counts for 33,462 unique workplace scenarios.  
 
Results: When the CIR is 5 new confirmed cases per 100,000 or fewer, and at 50% of the workforce is 
vaccinated with a 95% efficacious vaccine, then testing daily with an antigen-based or PCR based test in 
only unvaccinated workers will result in less than one infection through 4,800 person weeks. When the 
community infection rate per 100,000 persons is less than or equal to 60, and the vaccination coverage of 
the workforce is 100% with 95% vaccine efficacy then no masking or routine testing + isolation strategies 
are needed to prevent workplace acquired infections regardless of variant predominance. Identifying and 
isolating workers with antigen-based SARS-CoV-2 testing methods results in the same or fewer 
workplace acquired infections than testing with polymerase chain reaction (PCR) methods. 
 
Conclusions: Specific scenarios exist in which preventative measures taken to prevent SARS-CoV-2 
spread, including masking, and testing plus isolation strategies can safely be relaxed. Further, efficacious 
testing with quarantine strategies exist for implementation in only unvaccinated cohorts in a workplace. 
Due to shorter turnaround time, antigen-based testing with lower sensitivity is more effective than PCR 
testing with higher sensitivities in comparable testing strategies. The general reference interactive 
heatmap we provide can be used for site specific, immediate, parameter-based case count predictions to 
inform appropriate institutional policy making. 
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Introduction 
As of August of 2021, 210 million SARS-CoV-2 cases have been reported worldwide, with over four 

million corresponding COVID-19 attributable deaths.1 Multiple counter measures have be implemented to 
mitigate resilient viral spread. Such measures have included social distancing mandates2, public mask 
wearing3, routine testing plus quarantine strategies4,5, and, as of December 2021, mass population 
vaccination campaigns.6,7 As of August 2021, nearly 5 billion doses of a SARS-CoV-2 vaccine have been 
administered with 37.2 million being administered daily around the globe.8,9 This vaccination coverage 
corresponds to 30% of the world population having received at least one COVID-19 vaccination, and 
24% of the world being fully vaccinated.8 

Occurring in parallel, multiple strains of SARS-CoV-2 have arisen.10 The B.1.617.2 (delta) variant is 
currently the most common variant in the United States and has been since April of 2021.11 The delta 
variant has mutations in the spike protein, and also has demonstrated a higher replication rate, viral loads 
and transmissibility.12,13 Further the widely distributed mRNA vaccines (BNT162b214, mRNA-127315) 
and adenoviral vaccines (ChAdOx1 nCoV-1916) demonstrate attenuated, although still considerable 
efficacy against the delta and alpha SARS-CoV-2 variants.17,18 These variant specific parameters are 
concerning and have prompted the reinstatement of tighter public health efforts in several areas.19–22 As 
many of these measures, such as social distancing, mask wearing and routine testing + quarantine 
methods were relaxed following a global decrease in the original SARS-CoV-2 strain23, reinstatement has 
been met with inertia. 

A problem exists with providing situation specific evidence for both escalation of counter COVID-19 
measures as well as for de-escalation. Public policy measures are muted in efficacy without participant 
adherence24, and current global, national, or regional level guidelines may be viewed as non-specific.25 It 
is not immediately clear to a general audience how small changes in viral parameters can or should direct 
an organization to scale up or safely wind down their workplace health safety measures.26–28 While 
literature exists and is accumulating on predicting Covid-19 cases nationally29,30 or regionally31–33,  there 
is little applicable evidence available for reference at the business practice level to inform situation 
specific decision-making. The viral, community, and workplace parameter thresholds at which a low-risk 
or a complete COVID-free workplace could be maintained, given changing rates of vaccination adherence 
and viral variant distributions, remains unattended.  

To directly address this question, we conducted a series of microsimulations that simulate the spread 
of SARS-CoV-2 virus within workplaces that are subject to infections from surrounding communities, 
using a COVID-19 Outbreak Simulator34 that was specifically designed for risk assessment and continuity 
planning for COVID-19 outbreaks. Our aim was to establish a quantitative reference estimating 
community and workplace viral spread that would be readily digestible for business organizational use. In 
our simulations we permute numerous combinations of community infection rates, SARS-CoV-2 variant 
predominance’s, workplace vaccination coverages, vaccination efficacies, testing with quarantine strategy 
implementations, SARS-CoV-2 test efficacies, and routine indoor mask wearing, and observe how 
expected case counts change for cohorts of individuals working together. We identify appropriate 
circumstances where masking and testing strategies may be discontinued or should be implemented. 
Further, we present the impact of vaccination coverage in the workplace on the efficacy of preventative 
SARS-CoV-2 testing strategies. We finally introduce generalizable reference heatmaps which can allow 
for quick identification of appropriate mitigation strategies for an organization given site-specific details. 
We hope that our presentation of these simulation findings will allow for quantifiable and transparent 
policy decision-making that can respond to shifting viral, organizational, and community specified 
parameters.  
 
Methods 

COVID-19 Outbreak Simulator. We modified and applied the COVID-19 Outbreak population-
based simulator34 which simulates the spread of SARS-CoV-2 virus in dynamic and heterogeneous 
populations. We estimated relevant SARS-CoV-2 parameters from the clinical literature for viral 
transmission dynamics and used the simulator to observe parameter specific viral outbreak outcomes in 
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feed-forward time simulations. We modified the model to also simulate the impact of vaccination on viral 
transmission in generated scenarios. We modeled SARS-CoV-2 testing using both RT-PCR and Antigen 
tests5 and implemented a plugin for COVID-19 vaccination with varying vaccination coverage and 
vaccination efficacy. Additionally, we introduced and observed the effect of varied sizes and durations of 
work groups gathering, testing with quarantine strategies, community infection rates, scales of testing, 
non-pharmaceutical interventions, variant predominance’s and testing strategies on expected case 
counts. In total we set up 33,462 scenarios, to provide quantitative estimates of workplace and community 
associated infections expected for each.  

Simulated Workplace Environment. We simulated a generalizable workplace environment in 
which individuals residing in a community come into contact in a shared location daily for common tasks. 
Viral SARS-CoV-2 transmission occurs during interactions in the community and within interactions in 
the workplace. More specifically, team members are exposed to the community and are subject to a 
“community infection rate.” This is a location-dependent parameter that can be determined by reference 
to current and projected rates of infection in specific areas. An infected individual could infect one or 
more team members within the workplace. The probability of an infected individual infecting others 
(reproduction number R0), or transmission rate, is reduced in our simulations by the effect of non-
pharmaceutical interventions (NPI), testing and vaccination. The simulated environment we created 
assumes members work five days per week with two days off. We modeled two general work team 
scenarios. The first included an office of 60 members interacting together for a 8-week period (480 
person-weeks). A second set of simulations included an office of 200 individuals working together for 24 
weeks (4,800 person-weeks). 

Virus Specific Parameters. Community infection rate (CIR) is the actual community rate of 
infection and is used to model the probability that anyone in the community will be infected per day prior 
to coming to the workplace.  For these simulations we have used community infection rates of 0.5,1, 2.5, 
5, 10, 15, 30, 60, 90, 120 and 150 infections per 100 thousand people per day. We assumed that 30% of 
all infected individuals will remain asymptomatic according to model recommendations from the United 
States Centers for Disease Control and Prevention (CDC). We assigned a variant specific random 
reproduction number to each infected individual, which will determine, on average, the number of 
individuals each will infect during their infection. For simulations representing the original SARS-CoV-2 
strain, reproduction numbers were drawn from random distributions with mean of 2.5 for symptomatic 
cases, and of 0.5 for asymptomatic carriers. For simulations of the alpha (B.1.1.7) strain, the randomly 
assigned distribution mean was 3 for symptomatic cases and 2.1 for asymptomatic carriers. For 
simulations of the delta (B.1.617.2) the R0 distribution mean was 6.5 with a 95% confidence interval 
from 5 to 8 for symptomatic carriers and a mean of 4.5 for asymptomatic carriers. We assumed that the 
transmissibility of asymptomatic carriers are 70% of those of symptomatic cases for the alpha and delta 
variants according to CDC recommendation. 

Non- Pharmacological Interventions. We used a “distancing factor” to model the effect of non-
pharmaceutical interventions (NPI) measures including mask wearing and physical distancing. This 
distancing factor changes the reproduction number of individuals during simulation but does not affect 
individual their viral loads. We modeled scenarios with no mask wearing, with continuous mask wearing 
(decreased R0) and with no mask wearing and overcrowding throughout the workday. To represent 
masking, a factor of 0.635 was multiplied to an individual’s overall transmissibility while wearing a mask. 
A factor of 1 represented no NPI, and a factor of 1.2 was multiplied to overall transmissibility to represent 
overcrowding and no masking. An overcrowding scenario was included to represent industries such as 
movie productions during which team members often stay in close contact for extended period of time 
such as when filming indoor scenes. 

Testing Strategies. In our simulations we included implementation of routine COVID-19 testing 
strategies. For these simulations we include testing team-members for the presence of SARS-CoV-2 with 
either a polymerase chain reaction (PCR) or an antigen-based test. To accurately present the efficacy of 
testing we simulated testing strategies using two SARS-CoV-2 tests, a RT-PCR test with a clinical 
sensitivity of 90% and an antigen test method with a clinical sensitivity of 80%, which corresponds to two 
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commonly used tests observed in the literature5 In Table 1, we present the clinical sensitivities, 
specificities, and turnaround times for simulated testing scenarios. Also included in Table 1 are the 
frequency with which these tests were conducted in our simulated scenarios, which includes not testing 
(None), testing once a week (on Monday – M), testing three times a week (MWF), to testing daily during 
the work week (MTWTF). We start each week from Saturday and start testing at the beginning of the 
third day (Monday). We define clinical sensitivity as the sensitivity of a test when it is applied to a 
population with people at different stages of infection in a clinical setting, mostly determined by the limit 
of detection of the test and the viral load of the sample at the time of testing. Specificity is the probably 
that a test correctly generates a negative result when an individual was not infected. Turnaround time is 
the time required for the test results to become available. In our model, infected team members return to 
work after samples are collected and could infect others before the test results become available. To 
simulate testing with quarantine in our simulated workplace environment, team members were isolated 
for 10 days if they showed any COVID-19 symptoms or tested positive by either a RT-PCR based test or 
an Antigen test. We differentiated between true and false positive tests and only isolated truly infected 
team members, because isolating negative individuals will not affect future transmissions. Asymptomatic 
carriers could infect others and remain undetected. Infected team members who recovered from an 
infection could still be infectious after isolation but had markedly decreased transmission probability 
(1%). We assume that workplaces will continue with the same number of members, representing 
temporary replacements, even if one or two members are in isolation. We simulated testing strategies 
applied to all team members, and additionally applied exclusively toward team members who were not 
vaccinated. 

Vaccination Efficacy and Coverage. We varied the parameters related to vaccination of team 
members in our simulations. To model vaccination, we jointly modulated the probability of infection 
(immunity to infection), and the probability of transmission (infectivity after vaccination) in vaccinated 
individuals. We modeled vaccines with 95% efficacy, 70% efficacy, and 50% efficacy. These 
probabilities represent the post-vaccination immunity to infection, or the probability that a vaccinated 
individual is immune to an infection event. We modulated vaccinated individuals to have a decreased 
infectivity after vaccination to 5% of their infectivity baseline. This was done to represent their 
diminished viral load that could cause an infection to others. Specifically, if an individual (unvaccinated) 
had a viral load that would on average infect three people during an infection, then a Covid-19 positive 
vaccinated individual would on average infect 3 persons * 0.05, or 0.15 people after vaccination. 
Additionally, if an individual is vaccinated with a vaccine with 70% efficacy, the individual would be 
able to avoid an infection event at the probability of 0.70. Finally, in a workforce population, we included 
in our simulations a ‘level of coverage’ parameter to observe the effects of varying the percentage of 
vaccinated individuals in the workplace. We allowed the ‘coverage’ parameter to range from 0% (no 
vaccinated team members), 25%, 50%, 75%, or 100%. For simplicity, we assume full vaccination 
according to CDC definition and do not consider variation of efficacy and the increase (e.g., between first 
and second shots) and loss of immunity (e.g., out of protection period). Table 2 delineates all the 
permutations of vaccine interventions we included in these simulations.  

Outcomes Measurement. During the course of the simulations, we measured and report the 
number of community acquired infections (CAI), the number of workplace acquired infections (WAI), 
and the total number of acquired infections (TAI, of CAI + WAI). We selected WAI to be our main 
output metric. We measure and report WAI over 480 person-weeks (PW) and 4,800 PW, representing our 
60-persons followed for 8 weeks and 200 persons followed 24 weeks cohorts respectively. To determine 
efficacy of intervention, we set an acceptable range threshold for WAI to be less than one. For ease of 
generalization of results, we also report a scaled down WAI, CAI and TAI to per-person per-week metric 
outcomes. Finally, we also track and report the total number of symptomatic workforce members, number 
of infections detected, and the number of false positive tests expected per scenario. All scenario outcome 
metrics may be viewed in Table 3 (supplement only). The simulation package is publicly available at 
https://ictr.github.io/covid19-outbreak-simulator/.  
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Results 
Using the COVID-19 Outbreak Simulator we simulated 33,462 scenarios with various 

community infection rates, vaccine types and coverages, non-pharmaceutical interventions (NPI), and 
testing strategies. In Table 3, we report for each of these 33,462 combinations of input variable 
parameters and output metrics. Summary heatmaps of our findings regarding simulated total cases per 
scenario are presented as Figures 1-4. Each figure presents a multi stratified heatmap which annotates 
infections expected after each simulation based on community infection rate, vaccination coverage 
percentage, vaccination efficacy, and SARS-Cov-2 strain, which is stratified by various ‘testing + 
quarantine’ strategies. We repeat this analysis twelve times, iteratively testing the additional effect of 
testing + quarantine strategies applied to all employees versus to only unvaccinated employees, and with 
or without concomitant mask wearing while in the office place, and for two working group size + 
duration combinations. Figure 1 presents WAI through 480 PW without masking with testing for all 
employees, while Figure 2 presents with masking and testing for all employees. Figure 3 presents TAI, 
without masking, through 480 PW. Figure 4 presents WAI through 4,800 PW without masking with 
testing for all employees, while Figure 5 presents with masking and testing for all employees. Figure 6 
presents TAI through 4,800 PW. All permutations of our results are displayed online, with push button 
toggle features, for public presentation https://public.tableau.com/app/profile/rowland.pettit/viz/COVID-
19Heatmaps/COVID-19Simulations. 

No Masking Criteria.  With a threshold of less than or equal to one workplace aquired infection 
per cohort specific person weeks, we found some conditions in which no masking is necessary. If the 
community infection rate (CIR) per 100,000 persons is less than or equal to 150, and the vaccination 
coverage of the workforce is 100% with 95% vaccine efficacy then no masking or routine testing + 
quarantine strategies are needed to achieve less than one workplace acquired infection WAI in most 
scenarios. Specifically, when following either the 60 persons by 8-week work group (480 PW) or the 200 
persons by 24-week work group (4800 PW) the expected WAI in settings dominated by the original 
SARS-Cov-2 (1˚) strain is 0.000 and 0.004 respectively. In settings dominated by the alpha (⍺) strains, 
expected WAI is 0.037 and 0.446 for 480 PW and 4800 PW respectively. In preventing the delta (∆) 
strain, the no test no mask strategy was effective after 480 PW (WAI = 0.275), but not through 4,800 PW 
(WAI = 2.81). The minimum CIR which yielded less than one WAI with no testing and no masking 
against the delta variant through 4,800 PW was less than or equal to 30 new daily cases per 100,000 
persons (WAI = 0.62). As no testing is necessary, there will be no false positive tests and no expected 
symptomatic workforce members.  

For less efficacious vaccines, at efficacies of 70%, testing and masking measures may be still 
completely relaxed regardless of variant predominance if the vaccination coverage is 100% and the 
community infection rate is 1 or less (WAI expected through 480 PW 1˚ = 0.000, ⍺ = 0.004, ∆ = 0.039; 
4,800 PW 1˚ = 0.001, ⍺ = 0.043, ∆ = 0.431). No masking and no testing resulted in less than one case in 
several other specific settings, although not for all variants. Obtaining 75% workplace vaccination 
coverage with a 95% efficacy vaccine would result in less than one WAI as long as CIR is 10 or fewer 
through 480 PW but not the 4,800 PW (480 PW 1˚ = 0.027, ⍺ = 0.103, ∆ = 0.670; 4,800 PW 1˚ = 0.302, ⍺ 
= 1.067, ∆ =10.815). These trends, and other effective no testing, no masking combinations can be 
appreciated visually in Figures 1 and 3, given individual site-specific parameters.  

Optimal Testing Strategies. Overall, more frequent testing plus isolation strategies decreased the 
probability of infection. For example, when routinely testing all employees, without concurrent masking, 
the daily Monday-Tuesday-Wednesday-Thursday-Friday (MTWTF) testing strategy resulted in fewer 
WAI than the MWF, which was superior to a Monday only method, which was better than no testing.  As 
an example, looking at utilizing a PCR test with a 90% sensitivity or true positive rate and a community 
infection rate of 15 new daily cases of the original variant per 100,000, and no vaccination coverage, the 
WAI expected with MTWTF testing is 0.34 after 480 PW, while for MWF 0.48, for M only 0.99, and 
1.69 for no testing + quarantine interventions. This trend held whether for antigen versus polymerase 
chain reaction (PCR) testing, with or without masking, and for each viral strain. 
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Further, we report an observed trend that, comparing within a testing frequency, testing and 
isolation with an antigen-based testing method resulted in the same or fewer WAI than testing with 
polymerase chain reaction (PCR) methods. Despite the decreased sensitivity, we report that with no 
masking and no vaccination coverage, a community infection rate of 15 for the original strain, and a 
MWF testing strategy, the WAI when testing with an 80% sensitive antigen test is 0.22 per 480 person 
weeks but 0.48 with a 90% sensitive PCR test. In the same setting except a CIR of 15 for the alpha variant 
the expected infections are 0.59 for the 80% sensitive antigen test, and 2.33 for the 90% PCR. Finally, in 
the same scenario with CIR of 15 for the delta variant with MWF testing, expected WAI are 4.22 with 
80% sensitive antigen test and 14.35 with 90% sensitive PCR test. This trend holds for other testing 
frequencies and community infection rate scenarios.  

Vaccination Status Based Testing. We report on the efficacy of only routinely testing and 
isolating non-vaccinated individuals in the workforce. When the community acquired infection rate is 5 
new confirmed cases per 100,000 or fewer, and at 50% of the workforce is vaccinated with a 95% 
efficacious vaccine, then testing daily with an antigen-based test in only unvaccinated workers will result 
in less than one WAI (480 PW 1˚ = 0.010, ⍺ = 0.025, ∆ = 0.05; 4,800 PW 1˚ = 0.123, ⍺ = 0.264, ∆ 
=0.872) without the need for workplace masking. Similarly, a MTWTF testing regimen in only 
unvaccinated workers with a 80% sensitive antigen test yielded one WAI independent of variant 
predominance in situations of no vaccination coverage (480 PW 1˚ = 0.017, ⍺ = 0.041, ∆ = 0.111; 4,800 
PW 1˚ = 0.221, ⍺ = 0.441, ∆ =1.416) when the CIR is 2.5 or fewer.  

One day a week testing regimens (Monday only) with an 80% sensitive test only in unvaccinated 
populations results in less than one case, and are superior to no test strategies, in specific scenarios. These 
include when the CIR is less or equal to 2.5 and 55% of workers are vaccinated with a 95% efficacious 
vaccine (480 PW WAI 1˚ =0.02, ⍺ = 0.06, ∆ =0.42). Several other unvaccinated only testing strategies 
with different test types were observed to result in less than one infection per scenario at higher 
community infection rates than mentioned as vaccine coverage, efficacy and NPI interventions were 
introduced. These specific findings may be appreciated in Figures 1-4.  

Total Acquired Infections. With a threshold of less than or equal to one total infection per cohort, 
no testing or masking was needed when CIR was 15 or less with 100% coverage of a 95% efficacy 
vaccine occurred in the cohort (TAI expected after 480 PW 1˚ = 0.036, ⍺ = 0.051, ∆ = 0.126; 4,800 PW 
1˚ = 0.351, ⍺ = 0.526, ∆ =1.044). With no vaccination coverage, less than one TAI was only observed 
when CIR is less than or equal to 1, masking was implemented, and a MWF or more frequent testing 
strategy with an 80% sensitive antigen test was used (TAI expected 480 PW 1˚ = 0.044, ⍺ = 0.034 ∆ = 
0.055; 4,800 PW 1˚ = 0.376, ⍺ = 0.383, ∆ =0.6125). At least one CAI can be expected at 4,800 PW 
independent of masking, testing strategies or vaccination coverages when CIR is 60 or greater.  
 
Discussion 

We used a population-based simulator that imitates the spread of SARS-CoV-2 virus in a 
dynamic and heterogeneous population, to demonstrate the impact of testing, vaccination rates, variant 
representation, and community infection rates to provide a quantitative analysis of workplace associated 
infections. We estimated relevant SARS-CoV-2 parameters from the clinical literature for viral 
transmission dynamics and used the simulator to observe parameter specific viral outbreak outcomes in 
feed-forward time simulations. We included vaccination coverage and vaccination efficacy as new model 
parameters to provide estimates of effectiveness of SARS-CoV-2 outbreak mitigation measures. In 
practice our 95% vaccine efficacy can be used to represent individuals who have received two doses of 
the Pfizer or Moderna Vaccine, 70% efficacy would be for individuals who received two doses of 
AstraZeneca, and 50% efficacy would be individuals who have received one dose of Pfizer or 
AstraZeneca vaccines against the delta B.1.617.2 variant.17 However, reports on efficacy of vaccines 
against specific variant are incomplete and often inconsistent. For example, more recent reports showed 
that the efficacy of the Pfizer vaccine is lower than initially reported (42%), so results from VAC50 could 
be used for Pfizer in communities with infections dominated with the delta variant. 
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Our 33,462 simulations identified pertinent thresholds. Several scenarios exist in which 
preventative measures taken to prevent SARS-CoV-2 spread, including masking, and testing plus 
quarantine strategies can safely be relaxed. These thresholds were found to vary substantially based on 
local variant predominance. Where the alpha or original variant predominate the CIR thresholds, the 
limits at which no masking or routine testing would be necessary were often more than double than what 
would be sufficient to have no cases of the delta variant. For example, with 100% coverage of a 95% 
effective vaccine in a workplace, the CIR at which no testing or masking would be required was 150+ for 
the original strain but 30 for the delta variant through 4800 PW. There are specific plausible scenarios 
where neither masking nor testing are needed to operate safely in a workplace, contingent on CIR, 
vaccination coverage, and vaccination efficacy metrics. We view that the quantitative and granular 
estimates we present can serve to benchmark disease mitigation performance that will be needed to 
maintain acceptable risks in workplace environments. 

We also quantify the efficacy of testing + isolation strategies in the context of a sliding scale of 
increasing vaccination coverage and varied vaccine efficacies. The main finding regarding testing showed 
that using antigen testing with 80% sensitivity three times per week compared to PCR testing with a 90% 
sensitivity three times per week regimen gives the same or better results. Despite the lower sensitivities of 
the antigen testing methods, antigen testing yields similar or superior results to PCR testing likely due to 
quicker turnaround. Finally, we report the specific finding that in workplaces implementing routine mask 
wearing, daily testing of only unvaccinated members is effective to prevent 1 workplace acquired 
infection per 480 PW when the CIR is 30 or fewer. Similarly, less than one WAI is predicted through 
4800 when the CIR is 2.5 or fewer, independent of workplace vaccination coverage and or local strain 
predominance.  

While we view these individual findings to be useful, we feel a broader and more immediate 
utility of this work may be a realized through publication of these expected infection heatmaps to a public 
audience. Figures 1-4, and accompanying online interactive dashboard 
https://public.tableau.com/app/profile/rowland.pettit/viz/COVID-19Heatmaps/COVID-19Simulations, 
afford realistic and quantitative projections of viral spread based on relevant parameters. These estimates 
clearly present exactly how changes in relevant parameters will lead to acceptable or unacceptable case 
count projected risks. By presenting our results in this manner, we hope that workplace clinical and 
administrative teams could precisely set their policies, accounting for parameter changes in their 
workplace environment and community as they occur immediately. For example, one can identify their 
community infection rate, their employee vaccination coverage and vaccine type efficacy and then 
benchmark what they feel is an acceptable level of risk for their employees. A specific testing strategy, 
occurring in all employees or just in vaccinated individuals, with a certain test type/sensitivity, with or 
without the use of masking can be identified to meet specific workplace needs. As CIR or other 
parameters shift, our aim is for such heatmaps to allow for quantitative justification of increasing or 
relaxing SARS-CoV-2 protocols optimally.  

We view this simulation and dissemination of information to be unique, and a complement to 
resources already available. Currently several national level and state/regional level dashboards exist for 
assessing global risk. A similar yet non-overlapping concept has been published by Chhatwal et al. as a 
preprint33 whose team hosts a COVID-19 simulator application. This application provides national and 
regional analysis which allows for relevant viral transmission parameters to be modulated and 
intervention strategies to be implemented for set durations, and in combination. While useful, we view 
our model fills a gap not addressed with their model, or other models we have identified, in that it 
provides quantitative estimates at the institutional level, not as the state level. Estimates of workplace 
infections can be made per establishment based on highly local and company specific parameter input.  

Our study has some limitations. We describe the output of a simulation of two cohorts, 60 
individuals commuting to a common workplace for a 80-week period (480 PW) and 200 workers meeting 
together for 24 weeks (4,800 PW). Certainly, individual workplace environments vary in size ranging 
from very small groups to very large groups. Interestingly the per person per week simulated infections 
were highly similar between our 480 PW and 4,800 PW simulated workgroups, indicating our modelling 
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study can be helpful in providing an evidence-informed projection to medium to large workgroups. 
However, our results do not represent what may happen to small environments due to the well observed 
phenomenon that workplace outbreaks are often started by super spreader events rather than the steady 
continued transmission of one infected member to another.36 Additionally, more nuanced dynamics exist 
in which the probability of interaction for some team members may be less than for others, such as when 
simulating an administrative office versus a warehouse operations cohort all in the same workplace but 
not as frequently interacting.  

We also assume that none of the team members are infected at the beginning of simulations.  In 
practice, this reflects that a negative PCR test is required before members can join the workplace to 
ensure an uninfected team. We start the simulations from a Saturday so team members will be subject to 
two days of community infection before starting to work (and probably get tested) on Monday. Our 
recommendations have factored in these conservative assumptions; however, any implementation of a 
revised testing strategy should be informed by prospective monitoring of workplace-associated infection 
rates. We use the CIR or the actual community rate of infection as a parameter to model the probability 
that anyone in the community will be infected per day prior to coming to the workplace.  This number is 
usually greater than the reported “confirmed” daily test number of cases.  The actual number will differ 
from the confirmed numbers to varying degrees due to reporting delays and the sufficiency of testing37. 
CIR reflects an average infection rate in a region and will vary among people with different occupations, 
ethnicity, living conditions, educational levels, etc.  For many workplace teams, members may have a 
lower infection rate than the public due to their observance of the disease mitigation protocols.  

In our simulations we assumed that 40% of all infected individuals will remain asymptomatic for 
the original variant and 30% for alpha and delta variants.38 This and other viral transmission parameters 
could be updated as further information is published on each variant. We note that the sensitivity and 
specificity of SARS-CoV-2 tests will vary by manufacturer, and by region, and a wide range of 
sensitivities and specificities have been reported from the literature.  We modeled a PCR test and an 
Antigen test with varying sensitivities. We consider the PCR90 as a representative RT-PCR test 
performed by a typical US clinic39; Ag80 as an example for high performance Antigen test such as Abbott 
BinaxNOW.40 However, sensitivity of Antigen tests vary, especially when they are applied to samples 
with low viral loads. For example, the Innova SARS-CoV-2 antigen rapid lateral flow test that is widely 
used in England has high sensitivity on samples with higher viral load (91% for samples with Ct < 18.3, 
69% for samples with Ct < 24.4) and poor sensitivity otherwise (9.7% for samples with Ct < 24.4).41 Our 
model for antigen test matches the sensitivity of this test for moderate to high viral loads as we generally 
expect for carriers with the delta variant, but may not represent real-world scenarios for other antigen 
tests. In a low prevalence situation, both PCR and antigen testing can yield a substantial number of false 
positive results.   

We constrained vaccine coverage in the workplace to be 0 (no vaccination), 25%, 50%, 75%, or 
100%. For simplicity, we assume full vaccination according to CDC definition and do not consider 
variation of efficacy and the increase (e.g., between first and second shots) and loss of immunity (e.g., out 
of protection period). Finally, The model does not account for the impact of quarantining of close contacts 
to the index case which would occur in the real world in accordance with public health guidance.42  The 
impact of quarantining contacts would be further reduce workplace acquired infections. It would be 
difficult to model quarantining as the number of contacts would be dependent on the workplace 
interaction behavior of the index case as well as the ability to successfully identify all close contacts.    

With these limitations in mind, we feel we present an evidence based, realistic assumption driven 
simulation study of SARS-CoV-2 outbreak in a variety of settings. From these analyses we report specific 
findings including applicable scenarios safely supporting no masking + no testing policies, antigen testing 
superiority, and unvaccinated only testing strategies. We also present our full heatmaps of expected 
outbreak outcomes dependent on community infection rate, vaccination coverage, vaccination efficacy, 
testing strategies, and population masking. These can be utilized by employers and policy makers to 
predict infection expectations, allowing for data-driven and community specific SARS-CoV-2 
preventative strategies. Future investigations will be warranted, and we therefore make all of our 
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algorithms and approaches readily available. As newer strains emerge, updating these heatmaps to reflect 
the continuing mix of viral strains, with strain specific reproduction numbers should be pursued. Further, 
expanding these heatmaps to more broadly represent viral transmission outside of a workplace but on a 
macro city or state level is also justified. For future investigations we invite readers to precisely model 
their own environment using the https://ictr.github.io/covid19-outbreak-simulator/.34 We have provided 
the baseline parameters to reproduce our work, and several site-specific tutorials exist for modifying our 
code for site specific constraints.  
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Tables and Figures: 
 

Table 1. Sensitivity and Specificity of simulated SARS-CoV-2 testing methods 

Test Method Clinical 
Sensitivity  Specificity Turnaround 

Time 
Test 

Frequency Test Target 

NOTEST       
PCR90 ~ 90% 99.90% 1 day Daily All or unvaccinated 
PCR90 ~ 90% 99.90% 1 day MWF All or unvaccinated 
PCR90 ~ 90% 99.90% 1 day M All or unvaccinated 

Ag80 ~ 80%  98% 1 hour Daily All or unvaccinated 
Ag80 ~ 80%  98% 1 hour MWF All or unvaccinated 
Ag80 ~ 80%  98% 1 hour M All or unvaccinated 

 
 

Table 2. Permutations of Vaccination Efficacy in Workplace Interventions 

Name Vaccine 
alpha Efficacy for preventing 

infection 
Efficacy for preventing 

further infection 
delta Asymptomatic Symptomatic Asymptomatic Symptomatic 

VAC95 
2 doses of 
Pfizer or 
Moderna 

alpha 86%17 93%17,43,44 91% 95% 

delta 80% 88%43 83% 89% 

VAC70 2 doses of 
AstraZeneca 

alpha 63% 70%16 76% 77% 
delta 54% 60% 57% 61% 

VAC50 
1 dose of 

Pfizer, 
AstraZeneca 

alpha 45% 50%17 64% 61% 

delta 30% 33%17 34% 34% 
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Figure 1. Heatmap of simulated workplace acquired infections through 480 person weeks with testing 
performed in all workplace members and with no masking intervention.  
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Figure 2. Heatmap of simulated workplace acquired infections through 480 person weeks with testing 
performed in all workplace members with consistent mask wearing. 
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Figure 3. Heatmap of simulated total acquired infections (CAI + WAI) through 480 person weeks with 
testing performed in all workplace members and with no masking intervention.  
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Figure 4. Heatmap of simulated workplace acquired infections through 4,800 person weeks with testing 
performed in all workplace members and with no masking intervention.  
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Figure 5. Heatmap of simulated workplace acquired infections through 4,800 person weeks with testing 
performed in all workplace members with consistent mask wearing. 
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Figure 6. Heatmap of simulated total acquired infections (CAI + WAI) through 4,800 person weeks with 
testing performed in all workplace members and with no masking intervention.  
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