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Abstract

We consider the problem of constructing a complete set of parameters that account for all of

the degrees of freedom for point-biserial variation. We devise an algorithm where sort as an

intrinsic property of both numbers and labels, is used to generate the parameters. Algebrai-

cally, point-biserial variation is represented by a Cartesian product of statistical parameters

for two sets of R1
data, and the difference between mean values (δ) corresponds to the

representation of variation in the center of mass coordinates, (δ, μ). The existence of alter-

native effect size measures is explained by the fact that mathematical considerations alone

do not specify a preferred coordinate system for the representation of point-biserial varia-

tion. We develop a novel algorithm for estimating the nonoverlap proportion (ρpb) of two sets

ofR1 data. ρpb is obtained by sorting the labeled R1 data and analyzing the induced order in

the categorical data using a diagonally symmetric 2 × 2 contingency table. We examine the

correspondence between ρpb and point-biserial correlation (rpb) for uniform and normal dis-

tributions. We identify theR2, P1, and S1

þ
representations for Pearson product-moment corre-

lation, Cohen’s d, and rpb. We compare the performance of rpb versus ρpb and the sample

size proportion corrected correlation (rpbd), confirm that invariance with respect to the sam-

ple size proportion is important in the formulation of the effect size, and give an example

where three parameters (rpbd, μ, ρpb) are needed to distinguish different forms of point-biser-

ial variation in CART regression tree analysis. We discuss the importance of providing an

assessment of cost-benefit trade-offs between relevant system parameters because ‘sub-

stantive significance’ is specified by mapping functional or engineering requirements into

the effect size coordinates. Distributions and confidence intervals for the statistical parame-

ters are obtained using Monte Carlo methods.

1 Introduction

This work began when we noticed that results from classification and regression tree (CART)

analyses did not correspond well with statistical associations in genome-wide association stud-

ies (GWAS) [1]. Then, we discovered the extensive research literature discussing confounding

properties of effect size measures used in our analyses. Statistical components of our bioinfor-

matics system came from open source software packages that are widely used for research. In
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data analysis, there are two important requirements for obtaining reproducible results. First,

statistics methodology is subject to the general physical principle that it is necessary to account

for all of the degrees of freedom when studying a quantitative phenomenon. Second, analysis

protocols must correct for dependence on data acquisition parameters including unbalanced

sample sizes, in order to obtain interpretable results for effect size. Our work on proportional

variation and the phi coefficient for 2 × 2 contingency tables was recently published in this

journal; we refer to this as Paper1 [2]. There, we demonstrate that odds-ratio or relative risk as

standalone effect size measures, do not account for all of the degrees of freedom and are there-

fore subject to ambiguity. Using matrix factorization for the marginal sums, we identified the

four alternative forms of proportional variation which serve as the basis for specifying the

effect size. There is also an elementary discussion of projective geometry for fractional varia-

tion that might be helpful to the reader. Here, we study similar problems in the formulation of

effect size for point-biserial variation and the associated correlation coefficient, rpb. First, the

term ‘point-biserial’ comes from psychology statistics, and we explain its use as a general refer-

ence for the two groups data analysis problem. The difference between mean values for two

sets of R1
data, d ¼ �yA � �yB, serves as the basis for specifying effect size for system response to

perturbation. Statistically, analysis of δ corresponds to measuring the relation or association

between a continuous variable and a binary categorical variable obtained by individually label-

ing theR1
data. The standard procedure is to replace the labels with numeric {0, 1} indicators.

The Pearson product moment correlation coefficient (r) calculated from these numeric data is

known as the point-biserial correlation coefficient (rpb) [3]. This connection between rpb and δ
explains our use of the term ‘point-biserial’. It is standard terminology in the effect size litera-

ture. We provide a short discussion of the literature which gave us much inspiration, and note

that there are several books on effect size methods as well [4, 5]. In their discussion of physical

principles in the formulation effect size, Kelly & Preacher recommend that an effect size should

serve as a sample size independent estimate of a system parameter [6]. The existence of alterna-

tive effect size measures, and their classification as relationship, group difference, and group

overlap is discussed by Huberty [7]. A recently proposed group overlap measure is nonpara-

metric but requires the use of kernel density estimators to produce an approximate representa-

tion of the unknown densities [8]. McGrath and Meyer give a nice review of research into the

limitations of rpb, and points out that different measures can “lead to different conclusions

about the size or importance” of an effect [3]. Various researchers have already noted that

there are two complications that can limit the range of rpb. The first difficulty arises from the

definition of rpb, requiring the {0, 1} representation to allow the calculation of r. The {0, 1}

representation corresponds to binary groupings of the data, comprising a pair of many-to-one

mappings. The latter are incompatible with r as a measure of the degree to which two variables

are linearly related [9] and raises questions about the interpretation of rpb. It has been shown

that when the {yA, yB} data are obtained by a dichotomy of a normal distribution, rpb has a

maximum value of 0.79 [3, 10]. In contrast, when each R1 set corresponds to a normal distri-

bution, rpb still ranges from −1.0 to 1.0 [11, 12], with the proviso that the extremal values are

reached in the limit as |δ| approaches infinity. Secondly, rpb is subject to confounding from

unbalanced sample sizes for the {yA, yB} data; in the effect size literature, the sample size pro-

portions are usually referred to as ‘base rates’. Then, variation in the sampling proportions

between data sets leads to irreproducibility, which complicates the interpretation of rpb. The

machine learning community has rediscovered the problems associated with unbalanced sam-

ple sizes, creating the new term “classification imbalance” [13].

It is accepted practice to report a single effect size such as Cohen’s d as the basis for deciding

the outcome of an experiment. However, d is associated with an implicit parameterization that
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does not account for all of the degrees of freedom for point-biserial variation, which results in

ambiguity. Consequently, our objective is to construct a computational framework for a com-

plete parameterization of the variation (vpb). We use an inductive approach based on connec-

tions between rpb, Cohen’s d, and the mean squared error information gain (IGMSE). These

measures play an important role because of their connections with elementary statistical con-

cepts. We show that Cohen’s d is a perspective function of center of mass coordinates (δ, μ) for

the mean value vector ð�yA; �yBÞ. We also identify a novel association measure, ρpb, which mea-

sures the degree of nonoverlap between two sets of R1 data.ρpb is calculated directly from the

data and is therefore nonparametric because the underlying densities are unspecified. A partic-

ular goal is to examine the dependence of rpb on unbalanced sample sizes because of concerns

about the effect on reproducibility. We address other problems as well including the use of

Monte Carlo methods to estimate the joint distribution for statistical parameters. As in

Paper1, we use CART association graphs to compare the performance of various effect size

measures. However, in this work we are particularly interested in the case where the target var-

iable is a quantitative variable, which corresponds to the regression tree implementation

(rCART) [14]. We show that ρpb and the sample size proportion corrected correlation (rpbd)

serve as effect size measures for rCART while avoiding complications associated with rpb. The

main novel contributions of this work are as follows: 1) a computational model for generating

statistical parameters for point-biserial variation vpb, which corresponds to the Cartesian prod-

uct of parameters for two sets of R1
data, and identification of the fact that pure mathematics

alone is not sufficient to specify a preferred effect size, 2) a sorting algorithm to estimate the

nonoverlap proportion, ρpb, of two sets of R1 data using a diagonally symmetric 2 × 2 contin-

gency table, 3) identification of theR2
, P1

, and S1

þ
representations for Pearson correlation, 4)

demonstration of the equivalence between rpb and IGMSE, and 5) demonstration of the impor-

tance of adjusting for unbalanced sample sizes in impurity measures in rCART analysis.

2 Methods

The specification of a complete set of parameters for point-biserial variation, vpb, is a prerequi-

site for the rigorous formulation of effect size. Then, a measure for effect size is asociated with

a perspective function of vpb. We begin with an examination of limitations of rpb in section 2.1.

Then, we use an inductive approach to construct an algebraic framework for point-biserial var-

iation in four sections 2.2–2.5.

2.1 The effect of unbalanced sample sizes on rpb

The derivation and limitations of rpb are reviewed by McGrath and Meyer [3]. Two

sets, yA 2 R
NA and yB 2 R

NB , are combined to form a set of paired values,

fðci; yiÞjci ¼ 0A0 _ 0B0; yi 2 R
1
; 1 � i � N;N ¼ NA þ NBg, where ci is a group membership

label, and the {(ci, yi)} data correspond to the vectors, (c, y). The standard practice is to invoke

a numeric {0, 1} representation for c to obtain an indicator vector, Ic 2 R
N . Then, application

of the Pearson product-moment formula produces the point-biserial correlation coefficient [3]

rpb ¼
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
2
þ
S2

p

pApB

s
; ð1Þ

¼

ffiffiffiffiffiffiffiffiffi
pApB
p

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pApBd2 þ 1

p ; ð2Þ
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where pA = NA/(NA + NB) and pB = 1 − pA are sample size proportions, Cohen’s d is defined as

d ¼
d

Sp
; ð3Þ

and the pooled variance is the weighted average of the sample variances, S2
p ¼ pAS

2
A þ pBS

2
B.

Thus, |rpb| approaches unity as |d|!1 [11, 12] for 0< pA < 1. Rearranging Eq 2, we obtain

the quadratic relation

d2ð1 � r2pbÞ �
r2pb
pApB

¼ 0: ð4Þ

For a fixed value of rpb, there is a range of (d, pA) values (Fig 1). Alternatively, the variation in

(rpb, pA) for fixed d becomes a source of irreproducibility in rpb because pA can vary between

experiments depending on the data acquisition protocol. This ambiguity explains why

researchers have expressed concern about the confounding effect of unbalanced sample sizes

on rpb, and effect size in general [3, 6]. Furthermore, the binomial pA pB dependence originates

Fig 1. Quadratic dependence of the point-biserial correlation coefficient, rpb. For the fixed value rpb = 0.2, there is a range for Cohen’s d
and the sample size proportion, pA. This ambiguity complicates the interpretation of rpb as an effect size measure.

https://doi.org/10.1371/journal.pone.0244517.g001
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from the covariance

CovðIc; yÞ ¼ Icy � Ic�y; ð5Þ

¼ pApBð�yA � �yBÞ; ð6Þ

and variance, Var(Ic) = pA pB. Therefore, the criticism about pA pB dependence applies more

broadly to the use of the numeric {0, 1} indicator variable. Various researchers have already

recommended that the proportions should be equalized, pA = pB = 1/2, in Eq 2 to give [3]

rpbd ¼
d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4
p : ð7Þ

This ‘attenuation-corrected’ coefficient is denoted as rc in [4]. The rpb and rpbd curves in Fig 2

provide an illustration of this correction. The one-to-one projective relation between rpbd and

Cohen’s d is discussed in section 2.4, and the application of rpbd in rCART is discussed in sec-

tion 2.5.

2.2 Statistical parameters for point-biserial variation

In this section, we consider the question of how to generate a set of parameters for statistical

variation in point-biserial data. The fact that rpb is subject to confounding effects suggests that

replacing categorical labels with {0, 1} numeric values is an improper procedure, because the

labels acquire arithmetic properties in an ad-hoc way. Instead, we propose a new framework

where sort is used as an intrinsic property of both numbers and labels. Suppose there is a

machine which generates numbers with labels, (ci, yi), in no particular order, placing them in a

data table to produce a point-biserial data set. Then, the table can be sorted using either c or y,

to obtain orderings denoted as yc and cy, respectively. As we discuss next, these orderings are

associated with statistical parameters, vc and vy, respectively. However, there is no rule that

Fig 2. Nonoverlap proportion and point-biserial correlation. Theoretical curves and estimated values for point-biserial correlation, rpb, nonoverlap

proportion, ρpb, and sample size adjusted correlation, rpbd, for simulated data with unequal sample sizes (NA :NB = 15000 : 500) and the difference

between mean values, �yA � �yB. Compared to rpbd, rpb is attenuated due to the confounding effect of the binomial sampling factor. A: Uniform unit width

ðs ¼ 1=
ffiffiffiffiffi
12
p
Þ distributions. B: Standard normal (σ = 1) distributions.

https://doi.org/10.1371/journal.pone.0244517.g002
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specifies which parameterization, vc or vy, might be preferred. Therefore, we make the follow-

ing proposition,

Proposition 1. Point-biserial variation is parameterized by the Cartesian product of statisti-
cal parameters for the yc and cy orderings,

vpb ¼ ðvc; vyÞ: ð8Þ

The yc ordering corresponds to sorting the y data into two sets, yc$ {yA, yB}. Then, the statis-

tical parameters for the two sets are associated with a two-component Cartesian product struc-

ture, yielding the familiar effect size measures, Cohen’s d and rpb as discussed in section 2.3.

The cy ordering is associated with a new nonoverlap measure, ρpb. The two types of y-sort,

ascending or descending, produce orderings where either {(ci, yi)|yi� yi+1} or {(ci, yi)|yi� yi
+1}, respectively. Then, the c-column corresponds to a y-ordered string, cy. The induced order

from the y-sorting is reflected in the degree of mixing of As and Bs in cy. Next, we sort the data

with respect to c obtaining a maximally ordered string, cy, where the As and Bs are completely

separated. cM corresponds to the condition where yA and yB are disjoint inR1
, which has been

characterized as “perfect correlation” [11]. Our cy-sorting algorithm requires equal sample

sizes, NA = NB. When the sample sizes are unequal, a preprocessing step is required. Suppose

NB < NA. Then, the yB data are replicated to create a new data set, yBrep, such that NBrep = NA.

If the difference in sample size is small, 0< NB − NA < NB, then a subset of yB uniformly

spaced by rank is replicated. The yBrep and yA data are combined to obtain the (cy, cM) strings.

They constitute a set of joint observations for two categorical variables, which are summarized

in a diagonally symmetric 2 × 2 contingency table of the form [[a, b], [b, a]]. The symmetric

form results from the equal sample size condition, which requires that the rows and columns

each sum to NA. Then, the nonoverlap proportion is given by the difference in proportions

rpb ¼ pa � pb; ð9Þ

where pa ¼ a
aþb, and pb = 1 − pa. When yA and yB are disjoint, |ρpb| = 1. The sign of ρpb is arbi-

trary because the order of the columns (or rows) of the 2 × 2 table depends on the direction of

the sort in y or cM. In our implementation, the sign is chosen to be consistent with Cohen’s d.
The ρpb values in Fig 2 were obtained using this sort algorithm. The overlap between uniform

unit width ðs ¼ 1=
ffiffiffiffiffi
12
p
Þ distributions is an important pedagogical case because the expres-

sions for Cohen’s d, rpbd, and ρpb take a simple form. Geometrically, the overlap (θU) is given

by a rectangle with area θU = 1 − δ for the difference between mean values, with 0� δ� 1, and

θU = 0 for δ> 1. The nonoverlap is given by ρpbU = 1 − θU = δ, with 0� δ� 1. Similarly,

dU ¼
ffiffiffiffiffi
12
p

d; ð10Þ

rpbdU ¼
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
2
þ 1=3

q : ð11Þ

For the overlap of standard normal (σ = 1) distributions, we obtain

dN ¼ d; ð12Þ

rpbdN ¼
d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2
þ 4

p ; ð13Þ

rpbN ¼ 2Fðd=2Þ � 1; ð14Þ
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where F is the cumulative normal distribution function [8]. In Fig 2, we observe that at a large

enough δ, rpbd is attenuated compared to ρpb, as expected [11]. However, for small δ, the

inequality is reversed, i.e., rpbd > ρpb. Nevertheless, there is close correspondence between rpbd

and ρpb for both the uniform and normal distributions. This is particularly true for highly cor-

related data where both rpbd and ρpb are near 1, and are therefore equivalent. However, in sec-

tion 3 we demonstrate that when the data are not well correlated, both rpbd and ρpb are needed

in order to distinguish different forms of point-biserial variation. We conclude that rpbd and

Cohen’s d serve as measures of the nonoverlap of distributions but are not necessarily equiva-

lent to ρpb.

2.3 Coordinates for a two-component system of distributed effects

In this section, we discuss the fact that d and ρpb are only two elements of a minimal set of

parameters for representing point-biserial variation. The one-to-one correspondence, d$
rpbd, will be discussed in section 2.4. Algebraically, vc corresponds to the Cartesian product of

statistical parameters for two sets of R1 data, vc ¼ ð�yA; S2
A;NAÞ � ð�yB; S2

B;NBÞ. Introducing the

center of mass parameter, m ¼ ð�yA þ �yBÞ=2, the mean values vector is expressed as

ð�yA; �yBÞ ¼ ðmþ d=2; m � d=2Þ; ð15Þ

¼ mð1; 1Þ þ
d

2
ð1; � 1Þ; ð16Þ

where (1, 1) and (1, −1) comprise the center of mass basis. We note that the generalization for

a weighted average is straightforward. A similar decomposition holds for variances

S2
A; S

2
B

� �
¼ S2

m
ð1; 1Þ þ

S2

d

2
ð1; � 1Þ; ð17Þ

where S2
m
¼ ðS2

A þ S
2
BÞ=2 and S2

d
¼ S2

A � S
2
B. A further reduction is obtained if the variances are

homoscedastic, S2
A ¼ S

2
B, yielding S2

p ¼ S
2
m
, and S2

d
¼ 0. Finally, we obtain

vpb ¼ ðd; m; S
2
m
; S2

d
; rpb; pA;NA þ NBÞ; ð18Þ

as a minimal set of parameters for point-biserial variation. However, we observe that vpb is not

unique because functions of the components, {fi(vpb,i)}, including linear fractional transforma-

tions can be introduced to obtain alternative representations. Mathematics alone is not suffi-

cient to specify a preferred vector basis, which explains why there are alternative effect size

measures [6, 7]. Furthermore, rpb and Cohen’s d correspond to perspective functions [15] of

vpb and do not account for all of the degrees-of-freedom. Consequently, the practice of using

one of these measures to serve as a one-parameter summary of experimental results will be

subject to irreproducibility.

The term ‘substantive significance’ has been used to refer to the magnitude of an effect that

would be regarded as practically important in a given application [6]. Suppose functional or

engineering requirements are expressed in terms of a vector, h, of system parameters. Then,

the utility of an effect would be specified as a mapping, u : h 7!R1. The specification of u(h)

would account for differences in cost-benefit trade-offs for variation in the {hi} components.

The substantive significance for the effect size would be determined by the mapping, u(h)! u
(vpb). Without this information, it is difficult to reach a consensus on the merits of an effect

size. This explains the criticism of Cohen’s thresholds for small, medium, and large effects as

“somewhat arbitrary” [16] and suggestions that the significance of the magnitude of an effect

size depends on the research question [3, 17, 18].
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A fundamental limitation arises from the fact that the (δ, μ) center of mass decomposition

does not extend to higher dimensions in a straightforward way. Consider the group means

vector for three sets, i.e., ð�yA; �yB; �yCÞ. The default center of mass parameter is defined as

m ¼ ð�yA þ �yB þ �yCÞ=3. However, there is no standard procedure for choosing the two addi-

tional deviation parameters needed to specify a complete basis. Consequently, the formulation

of an effect size measure for multiple group variation is not a well-posed problem, i.e., there is

no unique solution [19]. This explains why Cohen’s d does not generalize to schemes involving

more than two groups [20] and provides support for previous recommendations to break

down ‘complicated hypotheses’, p. 526 [21], and ‘reduce any multiple-level or multiple-vari-

able relationship’ into a set of two-variable effect size relationships [17]. This provides the

raison d’être for the development of exploratory methodologies such as CART in high-dimen-

sional data analytics [22, 23].

2.4 Homogeneous coordinates for Pearson correlation

In the effect size literature, it is accepted practice to distinguish three different types of effect

size measure, ‘relationship’, ‘group difference’, and ‘group overlap’ [3, 7]. In this section, we

discuss the fact that this classification is misleading. We have already discussed the fact that

Cohen’s d, rpbd and ρpb all serve as measures of nonoverlap (section 2.2). Now, we point out

that rpbd and Cohen’s d are two sides of the same coin because relationship and group differ-

ence correspond to different coordinate systems for representing fractional variation. Such

correspondences are quite useful in exploring statistical dependence in high-dimensional data.

Consider a vector ða; bÞ 2 R2. Division by the y-component produces the ratio vector,

fa ¼ ða; 1Þ 2 P1ja ¼ a=b; b 6¼ 0g. Ratios can be distinguished by their representations as

points in the projective line, P1. However, normalization of a ratio vector by the Euclidean

length, kak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

, produces the unit vector â, which is a point in the positive half-circle

S1

þ
. Thus, a fractional quantity can be represented as a point in either P1

or S1

þ
. Algebraically,

the P1
and S1

þ
representations are related by linear fractional transformations. In the terminol-

ogy of projective geometry, a ratio corresponds to a perspective function, P(u, t) = u/t, for vec-

tor u [15]. The scaling invariance property of α is represented by the equivalence relation

a
b
t
�
a
t
¼ 0;

with t 6¼ 0. Geometrically, this relation specifies points on the line passing through the origin,

(a, b) and (α, 1). The points, (a, b)t, constitute the homogeneous coordinates [24] for the line.

The homogeneous coordinates concept shows that there is a natural correspondence between

‘relationship’ and ‘group difference’ effect size. Expressing the Pearson product-moment cor-

relation coefficient as the rescaled covariance [9]

r ¼
Covðx; yÞ
SxSy

;

the corresponding projective geometric structure is as summarized in Table 1. Vector repre-

sentations for rpb and rpbd are also listed, and a geometric visualization for rpb is shown in Fig

3. Consequently, rpbd, Cohen’s d, and ρpb each possess P1
and S1

þ
representations and serve as

measures of group overlap, as described in section 2.2. Therefore, we conclude that the general

classification of effect size as a ‘relationship’, ‘group difference’, or ‘group overlap’ index is mis-

leading. We also observe that the question of the merits of Cohen’s d versus rpb in [3] is com-

plicated by the fact that these measures correspond to points in different spaces, P1
and S1

þ
,
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respectively. The limitations of rpb are more easily understood by considering its representa-

tion as the vector, ð
ffiffiffiffiffiffiffiffiffipApB
p d; 1Þ 2 P1

. The binomial factor has a confounding effect, particularly

since base rates are determined by the experimental protocol. This is analogous to the con-

founding effect of the marginal sums on the ϕ coefficient for a 2 × 2 contingency table

(Paper1). Therefore, neither rpb nor ϕmeet the criterion for a well-behaved effect size of serv-

ing to quantify ‘some phenomenon that addresses a question of interest’ [6]. In section 2.5, we

give an example where rpb gives nonintuitive results in rCART analysis.

2.5 Point-biserial variation in regression tree analysis

The CART association graph was introduced in Paper1 as a new method for analyzing statisti-

cal association in point-biserial data. In this section, we investigate the role of point-biserial

variation in rCART, particularly the connection between IGMSE and rpb, and introduce the

rCART graph as a new method for analyzing association for (x, y) data. The CART decision

tree algorithm creates a decision tree by recursive partitioning of the association between

response and independent variables [2, 14]. Each node of the tree corresponds to a binary par-

tition of the range of an independent variable. In standard implementations, the partition

Table 1. Homogeneous coordinates for Pearson correlation.

Effect size R2 S1

þ
P1

Pearson correlation ðCovðx; yÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
xS2

y � Cov2ðx; yÞ
q

Þt r ¼
Covðx; yÞ
SxSy

r
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

Point-biserial correlation ð
ffiffiffiffiffiffiffiffiffipApB
p

ð�yA � �yBÞ; SpÞt rpb ¼
ffiffiffiffiffiffiffi
pApB
p

dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pApBd2þ1

p
ffiffiffiffiffiffiffiffiffipApB
p d

rpbd ð�yA � �yB; 2SpÞt rpbd ¼ dffiffiffiffiffiffiffi
d2þ4

p d
2

The representations for Pearson product-moment correlation as homogeneous coordinates in R2
, the vector ðr;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

Þ 2 S1

þ
, and the vector ðr=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

; 1Þ 2 P1
.

Corresponding representations for the point-biserial correlation, rpb, and sample size adjusted correlation, rpbd, are also listed. Cohen’s d ¼ ð�yA � �yBÞ=Sp, f�yA; �yBg:

mean values, Sp: pooled variance, {pA, pB}: sample size proportions for ‘A’ and ‘B’ data, t 2 R1.

https://doi.org/10.1371/journal.pone.0244517.t001

Fig 3. Projective spaces for the representation of point-biserial correlation. The point-biserial correlation

coefficient, rpb, corresponds to the point ðrpb;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2pb

q
Þ on the positive half-circle, S1

þ
, and the point ð

ffiffiffiffiffiffiffiffiffipApB
p d; 1Þ on

the projective line, P1
. The homogeneous coordinates ð

ffiffiffiffiffiffiffiffiffipApB
p d; 1Þt for t 2 R1

correspond to points on the line

through the origin. {pA, pB}: sample size proportions, d: Cohen’s d.

https://doi.org/10.1371/journal.pone.0244517.g003
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parameters for a node are determined by maximizing the information gain (IG) for the

response variable in an exhaustive search of associations over all independent variables. The

rCART implementation is of particular interest because it involves the analysis of point-biser-

ial variation. In each iteration, the set of statistics obtained for partitions of an independent

variable constitutes a CART association graph [2]. For the partition value xj 2 R
1, the data for

a node (V) are divided into two subsets, i.e., VA = {(xi, yi)|xi� xj} and VB = {(xi, yi)|xi> xj},
from which data vectors {yA, yB} are obtained. Alternatively, if xj is categorical, the subsets

are specified using matching criteria VA = {(xi, yi)|xi = xj} and VB = {(xi, yi)|xi 6¼ xj}. The

standard rCART impurity measure is the mean square error for the response,

MSEðyÞ ¼
P

ið�y � yiÞ
2
=NV , where NV is the sample size and �y is the mean [14]. Then, IG is

defined as the parent node impurity minus the weighted impurities for the subsets

IGMSEðyA; yBÞ ¼ MSEðyÞ �
X

k¼A;B

pkMSEðykÞ; ð19Þ

where pA and pB are the sample size proportions. Partitioning the sum of squares, MSE(y),

gives [3, 21]

MSEðyÞ ¼
X

k¼A;B

pkð�yk � �yÞ2 þ
X

k¼A;B

pkMSEðykÞ;

¼ pApBð�yA � �yBÞ
2
þ
X

k¼A;B

pkMSEðykÞ:

Substitution for MSE(y) in Eq 19 gives

IGMSEðyA; yBÞ ¼ pApBð�yA � �yBÞ
2
: ð20Þ

Thus, IGMSE(yA, yB) is equivalent to r2pb with Sp = 1 (Table 1); IGMSE does not account for the

variation in Sp. To the best of our knowledge, this connection between IGMSE and rpb has not

been reported previously. We conclude that the analysis of point-biserial variation serves as

the basis for rCART, and we use the terms ‘effect size’ and ‘information gain’ interchangeably.

The xj partition produces subsets with sample sizes, j and NV − j for xj 2 R
1
. An association

graph is obtained by searching over all partitions where the sample size proportions, pj and

(1 − pj), vary over their entire range, producing a large parabolic variation in the pj(1 − pj) fac-

tor. Thus, an association graph is a convenient way to compare the sample size proportion

dependence of effect size measures. In the next section, we demonstrate that rpb gives mislead-

ing results in rCART, while rpbd and ρpb produce more intuitive results. However, when the

(x, y) data are highly correlated and Pearson r(x, y)! 1, the rCART graph becomes a horizon-

tal line or nearly so, because rpbd� ρpb� 1 for all xj partitions. Then, the rCART graph and

Pearson r are equivalent representations. Thus, CART methodology is most useful when the

data are poorly correlated, which includes population studies where system performance is

determined by trade-offs between multiple factors. Typical applications include GWAS, and

other high-dimensional search problems such as nursing home performance as discussed in

the next section.

3 Data analysis and results

In Paper1, we used the publicly accessible Nursing Home Compare (NHC) data [25] in CART

analysis to demonstrate the importance of adjusting for the dependence on marginal sums for

2 × 2 contingency tables [2]. In this section, we use a similar NHC data set for a discussion of

point-biserial variation and the rCART algorithm. Our objective is to provide a practical
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demonstration of the limitations of rpb due to the confounding effect of unbalanced sample

sizes and to compare the behaviors of rpbd and ρpb. We also discuss the importance of account-

ing for three degrees of freedom, (rpbd, μ, ρpb), and the use of Monte Carlo methods to estimate

the joint distribution of statistical parameters.

3.1 rCART association graphs for NHC quality measures

NHC data of the fourth quarter of 2018 were retrieved for 20 quality measures (Qi) for 15341

nursing homes; detailed descriptions of these continuous variables can be found on the NHC

website [26]. A histogram of the nursing home occupancy is shown in Fig 4A. Since perfor-

mance estimates for nursing homes with low occupancy would be less reliable, a minimum

occupancy criterion of at least 50 ‘Average number of residents per day’ was applied to obtain

a restricted data set of 11053 nursing homes for further analysis [27]. Pearson correlation coef-

ficients, r(Qi, Qj), and association graphs were calculated for all pairs of quality measures, {(Qi,
Qj)|i 6¼ j}. On average, the information gain for the rCART partition is larger when the (Qi, Qj)
variables are highly correlated (Fig 5A); the r(Qi, Qj) correlations are distributed with 95% less

than 0.16 and a maximum of 0.65. The distribution for ‘Number of outpatient emergency

department visits per 1000 long-stay resident days’ (‘Emergency visits’) versus ‘Number of hos-

pitalizations per 1000 long-stay resident days’ (‘Hospitalizations’) with correlation r = 0.37 is

skewed, with a long tail towards larger values (Fig 4B). rCART association graphs are shown

for the ‘Hospitalizations’ response and ‘Emergency visits’ partition variables (Fig 6A and 6B),

and for the reverse, i.e., ‘Emergency visits’ response and ‘Hospitalizations’ partition variables

(Fig 6C and 6D). The high correlation between rpb and
ffiffiffiffiffiffiffiffiffipApB
p

(r = 0.99) is typical and indicates

that variation in the binomial sampling factor overrides the smaller variation in Cohen’s d (Eq

2). We also note that the graphs for rpb and IGMSE (not shown) are superimposable, as

Fig 4. Skewed distributions for NHC quality measures. A. Histogram of ‘Average number of residents per day’ for 15341 nursing

homes. B. Two-dimensional Gaussian kernel density estimate of the distribution of ‘Number of outpatient emergency department

visits per 1000 long-stay resident days’ (‘Emergency visits’) versus ‘Number of hospitalizations per 1000 long-stay resident days’

(‘Hospitalizations’), with correlation r = 0.37.

https://doi.org/10.1371/journal.pone.0244517.g004
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expected from Eq 20 and because the variation in Sp is small. Thus, rpb and IGMSE mainly cor-

respond to the variation in sample size proportion. In general, we observe that the association

curves for rpbd and ρpb can be categorized as monotonically increasing or decreasing, or even

U-shaped (concave up), depending on how the (Qi, Qj) data are distributed. Here, the U-

shaped dependence of rpbd correlates well with δ (r = 0.999) and contrasts sharply with the con-

cave down variation for rpb. Consequently, rpb and rpbd produce very different rCART parti-

tions (Table 2). In Fig 6A, the rpb partition for the split value, xj = 0.8, produces subnodes with

comparable sample sizes, NA = 5742 and NB = 4890 (Table 2). It is useful to view this partition

from a statistical perspective. As a first approximation, we expect that the majority of nursing

homes belong to a broad distribution for average performance. Then, the rpb partition with a

split value close to the median, 0.85, is analogous to splitting a normal distribution nearly in

half, producing subsets with different mean ‘Emergency visits’ values {0.5, 1.4} that neverthe-

less correspond to entities with average performance. Thus, rpb and IGMSE produce rCART

subsets that are not well distinguished from a functional perspective. In comparison, for rpbd,

there are two possible rCART partitions at either low (xj = 0.3) or high (xj = 2.5) split values.

Each partition produces a large subset corresponding to a broad distribution for average per-

formance and a much smaller subset for either above- or below-average performance. Thus,

rpbd produces more functionally relevant classifications.

The importance of accounting for variation in both degrees of freedom, (rpbd, μ), is illus-

trated in Fig 6B and 6D. Here, μ is monotonically increasing, and one of the rpbd partitions

might be preferred depending on μ. However, this requires an assessment of the cost-benefit

trade-offs for (rpbd, μ) variation, which will depend on the particular application. A close corre-

spondence between rpbd and ρpb is observed in many cases, with r(rpbd, ρpb)� 0.8 in 68% of

the association graphs (Fig 5B), but there are many cases where they differ depending on how

the (Qi, Qj) data are skewed. Fig 6C shows an example of the difference between the ρpb and

rpbd curves with r(rpbd, ρpb) = 0.49. The rpbd partition for the lower split value might be pre-

ferred because it is associated with higher ρpb, depending on how the cost-benefit trade-off is

Fig 5. The relation between rpbd and ρpb in rCART. These graphs display data obtained from association graphs for 380 pairs of quality measures, {(Qi,
Qj)|i 6¼ j}. A. rpbd effect size for rCART split versus correlation r(Qi, Qj). On average, the largest information gain is obtained when the response and

partition variables are highly correlated. B. Correlation r(rpbd, ρpb) between effect size and r(Qi, Qj) for association graphs. There is good correlation

between rpbd and ρpb in many cases, but there are exceptions.

https://doi.org/10.1371/journal.pone.0244517.g005
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assessed for (rpbd, ρpb) variation. Consequently, three coordinates (rpbd, μ, ρpb) are needed to

distinguish different forms of point-biserial variation. These observations provide support for

previous remarks stating that interpreting the magnitude of an effect size as a measure of sub-

stantive significance depends on the particular application [6, 18]. A more precise approach

would take into account the multidimensional nature of point-biserial variation and involve

the specification of functional or engineering requirements for a relevant vector basis. Then,

Fig 6. rCART association graphs for effect size. A,B: ‘Hospitalizations’ response versus ‘Emergency visits’ partition variables, with

correlation r(rpbd, ρpb) = 0.93. C,D: ‘Emergency visits’ response versus ‘Hospitalizations’ partition variables, with correlation r(rpbd, ρpb) =

0.49. Bar plot histograms are shown for ‘Emergency visits’ (B inset) and ‘Hospitalizations’ (D inset). rpb: point-biserial correlation coefficient,

{pA, pB}: sample size proportions, rpbd: sample size corrected correlation coefficient, ρpb: nonoverlap proportion, (δ, μ): center of mass

parameters ð�yA � �yB; ð�yA þ �yBÞ=2Þ.

https://doi.org/10.1371/journal.pone.0244517.g006

Table 2. rCART subnode parameters.

Response variable Partition variable Split value Subnode A Subnode B

Hospitalizations Emergency visits rpbd: 0.3 1.8, 0.7, 9909 1.2, 0.7, 723

” ” rpb: 0.8 2.0, 0.7, 5742 1.5, 0.7, 4890

” ” rpbd: 2.5 2.5, 0.8, 320 1.7, 0.7, 10312

Emergency visits Hospitalizations rpbd: 0.7 1.0, 0.6, 10137 0.5, 0.4, 495

” ” rpb: 1.7 1.2, 0.7, 5318 0.8, 0.5, 5314

” ” rpbd: 3.3 1.5, 1.0, 330 1.0, 0.6, 10302

Summary of the rCART partition values and subnode statistics ð�y;s;NÞ for the association graphs in Fig 6. rpb: point-biserial correlation coefficient, rpbd: sample size

corrected correlation, ð�y; s;NÞ: mean value, standard deviation, sample size.

https://doi.org/10.1371/journal.pone.0244517.t002
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an analysis of the effect size for the system response could involve separate thresholds for each

coordinate. The ability to account for all relevant degrees of freedom is also important in

assessing reproducibility. A one-parameter representation using an effect size such as rpbd or

Cohen’s d gives an incomplete picture and leads to ambiguous results because of the loss of

information.

3.2 Distributed effects in point-biserial variation

The reproducibility of nursing home performance data depends on stochastic effects in the

measurement of patient outcome. Then, the observed data are associated with a distribution of

data sets, PðyÞ, and corresponding distributions of the statistical parameters PðvpbÞ and effect

size. The specification of PðyÞmust be based on a realistic assessment of all sources of error

and uncertainty to form an error model for the data, EðyÞ. Then, the determination of the dis-

tribution for the effect size requires propagation of the error in PðyÞ. For fractional quantities

such as Cohen’s d and rpbd, it is necessary to account for stochastic effects in both the numera-

tor and denominator. However, analytical methods for estimating distributions for ratios [28,

29], proportions [30, 31], and correlation coefficients [32] are complicated by fractional trans-

formation, a bounded range, and discreteness. Thus, iterative procedures are needed for the

analysis of noncentral effect size distributions and estimating confidence intervals for devia-

tions above and below the effect size estimate [5, 18]. Alternatively, Monte Carlo (MC) meth-

ods [2, 33, 34] provide a more practical approach to estimating the distribution for the effect

size. In an MC simulation, EðyÞ specifies error parameters for each observed value in the origi-

nal data. Then, a point-biserial MC data set is obtained by random sampling to produce MC

instances for yA and yB. The MC sampling process is repeated many times to obtain a collec-

tion of MC data sets to form an estimate, PiðyÞ. Statistical parameters are calculated for the

data sets in PiðyÞ to obtain estimates of distributions and histograms for point-biserial effects.

Many MC runs are performed to obtain a set, fPiðyÞj1 � i � NMCrunsg, which allows the deter-

mination of the degree of convergence for the MC simulation. However, the information

needed to construct an error model is not included in the NHC quality measures data. For this

demonstration, we provided a rudimentary ‘Emergency visits’ error model, where σi = yi/5.

MC simulations for (rpbd, μ) and (rpbd, ρpb) for ‘Emergency visits’ response with ‘Hospitaliza-

tions’ rCART split value, 3.3 (Table 2), are shown in Fig 7. The discrete structure of the ρpb dis-

tribution is due to stochastic effects in the cy sorting. The separate confidence intervals in Fig 6

for positive and negative deviation from the observed effect size estimate were estimated from

the MC distributions. In practical applications, the advantage of the MC method is that it

allows detailed simulation of the data acquisition process, including heterogeneity within

groups, and specifications for EðyÞ can include heteroscedasticity, measurement error, and

misclassification [17, 35, 36].

4 Discussion

In this work, we use sort as an intrinsic property of both numbers and labels to generate a

complete set of parameters for point-biserial variation, vpb. We demonstrate that Cohen’s d is

associated with the center of mass representation for a two-component system of normal dis-

tributions. However, a parameterization can also be constructed for skewed distributions. We

do not attempt to incorporate requirements for ‘substantive significance’ because this depends

on the particular application, which might require different or additional parameters. The

specification of performance criteria for all of the parameters in vpb is also required. The (δ, μ)

effect size representation does not generalize because there is no standard center of mass

parameterization for a multicomponent system. However, this does not constitute a
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fundamental limitation in the application of effect size for high-dimensional data analytics.

Instead, the (δ, μ) coordinates serve as a minimal framework for analyzing dependency using

exploratory methodologies such as rCART. CART methodology is useful in population studies

where the performance or system response is distributed due to complex interactions. Then, a

decision tree for identifying outperforming individuals can help in the determination of pre-

dictive criteria for improved performance, and the construction of a functional model. We

also demonstrate the use of replication as a nonparametric method for equalizing sample sizes

in the estimation of ρpb. This replication protocol can be used in other classification algorithms

where adjustment for unbalanced sample size is needed. We also demonstrate that the Monte

Carlo method is a practical way to estimate the distribution of a fractional statistical quantity

from the detailed specification of an error model for the data. Then, the assessment of substan-

tive significance must take into account the distribution in effect size parameters. We conclude

that a better understanding of the applied algebraic foundations and an improved methodol-

ogy are important for the application of effect size in data analytics.
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