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Abstract

Positioning of the mitotic spindle through the interaction of astral microtubules with the cell boundary often determines
whether the cell division will be symmetric or asymmetric. This process plays a crucial role in development. In this paper, a
numerical model is presented that deals with the force exerted on the spindle by astral microtubules that are bent by virtue
of their confinement within the cell boundary. It is found that depending on parameters, the symmetric position of the
spindle can be stable or unstable. Asymmetric stable equilibria also exist, and two or more stable positions can exist
simultaneously. The theory poses new types of questions for experimental research. Regarding the cases of symmetric
spindle positioning, it is necessary to ask whether the microtubule parameters are controlled by the cell so that the bending
mechanics favors symmetry. If they are not, then it is necessary to ask what forces external to the microtubule cytoskeleton
counteract the bending effects sufficiently to actively establish symmetry. Conversely, regarding the cases with asymmetry,
it is now necessary to investigate whether the cell controls the microtubule parameters so that the bending favors
asymmetry apart from any forces that are external to the microtubule cytoskeleton.
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Introduction

Cells often divide symmetrically to produce two daughter cells

that are of at least approximately equal size. Cell lines on which

experiments are conducted in cell culture typically exhibit this kind

of division. Asymmetric divisions that produce daughter cells of

unequal size also abound, particularly during development and

differentiation. Examples include single-cell embryos of the mussel

Unio [1], roundworm Caenorhabditis [2], and leech Helobdella [3],

Drosophila neuroblasts [4], and mammalian oocytes [5]. In the

roundworm, for example, the first unequal division creates the

larger cell that is the first somatic cell and the smaller cell that is

the germline cell.

In addition to the significance of size as such, for example

between the large stem cell and its small progeny [6] the division

into daughter cells of unequal size may lead to an unequal

distribution of specific components of the mother cell cytoplasm

between the progeny. Such components may include cell fate

determinants [7]. In this connection, the general notion of

asymmetric cell division includes cases where the daughter cells

are of equal size, yet differ in the complement of components that

they inherit. For a broader review of such cases, in addition to the

cited work by McCarthy and Goldstein [4], see, e.g., Knoblich [8],

and Siller and Doe [9]. In this paper, the term ‘‘asymmetric

division’’ is used exclusively in reference to the division that

generates daughter cells of unequal size. This case presents an

obvious challenge for biomechanical explanation.

Generally, cells divide through the middle of the mitotic spindle

[10]. The spindle proper consists of microtubule bundles that

connect the two spindle poles. Precise terminology is needed to

formulate the theoretical question posed by the symmetric and

asymmetric cell division. The line segment connecting the two

poles shall be called the physical spindle axis. In the geometrical

sense, this axis can be extended to define a coordinate axis that

passes through the cell. The instance of the (extended) spindle axis

passing through the cell center can be considered first. The

paradigmatic cases, e.g. the HeLa cultured cells and the first

division in Caenorhabditis, seem to be of this nature. The

fundamental question posed by the symmetric and asymmetric

cell division can then be formulated as follows. What determines

coincidence of the center of the spindle proper with the cell center?

What determines its shift from the cell center along the spindle

axis?

Besides the microtubules of the spindle proper, additional so-

called astral microtubules radiate from the two centrosomes at the

spindle poles. As reviewed below (see also, e.g., Pearson and

Bloom [11]), it is generally believed that the spindle is positioned

through the astral microtubules’ interaction with the cell

boundary. Three kinds of effects are considered: the bending

elasticity of microtubules that are deformed by their contact with

the cell boundary, the stochastic assembly and disassembly of the

microtubules, and pulling on the microtubules by molecular

motors that are anchored on the cell boundary. It must be

observed that the bending elasticity is an intrinsic property–all

microtubules possess it. In contrast, the stochastic assembly and

molecular motors may or may not play a role, depending on the

specific intracellular conditions. Therefore, the latter two mech-

anisms will always influence the spindle position in combination

with the effects of bending elasticity. This natural hierarchy makes

it imperative to understand the effects of bending elasticity for the
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success of integrated biomechanical understanding of symmetry

and asymmetry of cell division.

The pioneering theory by Bjerknes [12] explained the salient

features of spindle positioning in amphibian blastomeres. It dealt

exclusively with bending elasticity, but microtubule deformations

were not computed explicitly. It was assumed that straight astral

microtubules radiate in all directions equally from the spindle

poles. Each microtubule by assumption contacted the cell

boundary with its distal end and developed the Euler buckling

force that corresponded to its length. In addition to reproducing

the orientations in the changing cell geometry of the progressively

dividing embryo, it was demonstrated that the spindle orientation

exhibited bifurcations. Alternative equilibrium orientations ap-

peared with the elongation of the spindle relative to the cell size.

The centers of the spindles, however, corresponded with the cell

center. An eccentric equilibrium required that the two asters be

unequal, for example, in the bending rigidity of their microtubules.

The adequacy of the straight-line and buckling-force approxima-

tions and the stability of the calculated equilibria to perturbations

were not assessed.

Subsequently, in a model by Théry et al. [13], the orientation of

the spindle in a circular cell was treated as resulting from pulling

on astral microtubules by postulated force-generating elements

anchored on the cell boundary. Only situations with central

symmetry were considered. Microtubule deformations and bend-

ing elasticity were not included in the model. Force-balance

models of pole separation and spindle morphogenesis [14] had

treated the astral microtubules similarly. The model by Grill et al.

[15] that addressed the question of the asymmetric first division of

Caenorhabditis similarly did not include microtubule bending. It was

concluded that the shift of the spindle was caused by unequal

distribution of the pulling elements on the cell boundary, which

therefore exerted unequal force on the two poles. A different

model by Grill et al. [16] dealt with the spindle-pole oscillations

that are observed in the Caenorhabditis embryos. In this model,

bending of astral microtubules against the cell boundary was

included in addition to the pulling. The microtubule deformations

were not explicitly computed. The force associated with it was

computed using the linear Hookean dependence of the force on

the distance between the pole and the boundary. The resulting

oscillations of the pole in this one-dimensional model were about

the middle (symmetric) position. A different model for the

oscillations [17] computed the microtubule deformations explicitly

in three-dimensions. The deformations were caused by the viscous

drag in the cytoplasm and instantaneous pulling by the pulling

elements on the ends of the microtubules that were coming in

contact with the boundary. Upon contact with the boundary, the

microtubules in this model disassembled, preventing development

of a durable deformation of bending against the boundary.

It should be noted that in contrast with the reviewed

simplifications of the treatment of the astral microtubules in

spindle models, the deformations of the microtubules in the spindle

proper (those that connect the two poles) have been treated with

the precision of the standard bending elasticity theory [18,19].

Thus, a general analysis of the effects of the microtubule

elasticity on spindle positioning is still lacking, despite the

fundamental role of this force. The present paper aims to extend

and complement the reviewed approaches. The focus is on the

question of symmetric vs. asymmetric positioning of the spindle, as

it was posed in precise terms above. Deformations of astral

microtubules are computed explicitly, and the stability of the

equilibria to perturbations is assessed. The treatment proceeds

from an overview of the different theoretical regimes to calculation

of some sample structures that may be deemed realistic. This

approach is motivated by the presently insufficient experimental

data pertaining to the quantitative descriptors of mitotic spindles,

and by the desire to establish the theoretical context in which the

experimentally observed structures may subsequently be placed.

Methods

In terms of its construction and numerical solution, the model is

a minor extension of our previous model for the interphase [20].

Instead of one microtubule aster around the single centrosome in

the interphase model, there are now two asters around the two

rigidly coupled centrosomes at the spindle poles, and these asters

may now be partial in the sense that microtubules may not radiate

in all directions. There are no other changes from the previous

model, to which the reader is referred for details that are not

deemed essential to repeat here. The essential details are given

below, and the new model elements described fully.

As is well known, the material spindle poles are small compared

with the cell size, and the spindle proper which connects them

contains a large mass of crosslinked microtubules [10]. In view of

this, in the model the spindle proper is an absolutely rigid segment

that connects two points in space that represent the poles

(centrosomes). In this respect, the model is similar to the discussed

models by Bjerknes [12], Kozlowski et al. [17], and Théry et al.

[13]. The length of the spindle proper (the interpolar distance) is

denoted S.

To address the problem as posed in the introduction, only

axially symmetric situations will be considered, in which the axis of

symmetry coincides with the spindle axis (i.e. passes through the

poles). In the Cartesian coordinate system of the model, the x axis

is collinear with the spindle axis. When isolated spindle poles are

considered, and unless otherwise noted, the pole on the right is

meant. The pole coordinate is denoted xp; the coordinate of the

middle of the spindle proper is xs. Fp is the projection on the x axis

of the total force acting on an isolated pole. Fs is the projection on

the x axis of the total force acting on the spindle (i.e. on both

poles). Both forces are collinear with the x axis due to the axial

symmetry. Fig. 1 illustrates the model and notation.

Like the microtubules in the earlier interphase model [20], the

astral microtubules are assumed to be rigidly clamped at the

centrosomes, and their contact with the spherical cell surface is

frictionless. The bending of the microtubules is calculated

according to the standard beam-bending equation, as described

in detail in the earlier paper [20]. The lowest-energy equilibrium

solution is calculated, because the alternative equilibria are

unstable in three dimensions. The standard beam-bending

equation is generally adequate in application to microtubules

[21]. Examples of more advanced models for bending of single

microtubules can be found in the work of Brangwynne et al. [22]

and Gu et al. [23]. Microphotographs in the papers cited in the

introduction will confirm that microtubules in mitotic cells do not

converge on spindle poles at sharp angles in a fan-like

arrangement. This rules out the alternative hinged boundary

condition on the centrosome. The smooth bending forms argue in

favor of equilibrium flexure and against additional constraints.

As in the earlier interphase model [20], microtubules are

assumed to be clamped on the centrosome in equally spaced

directions. To obtain the total force acting on the centrosome, the

force calculated for each direction is integrated with the constant

density of microtubules per unit solid angle at the centrosome.

Unlike in the fully isotropic centrosome in the interphase model,

the spindle model takes into account the fact that the more

inward-pointing microtubules at the spindle poles become part of

the spindle proper, and the more outward-pointing ones are the

Mitotic Spindle Positioning
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astral microtubules. Accordingly, the angle h between the clamped

direction and the outward direction of the spindle axis does not

exceed hmax.

The microtubule bending rigidity is denoted EI, and the total

number of microtubules that radiate from the pole is N. The

microtubule length is L, and the cell radius is R. Intrinsically, the

model cytoskeleton structure is centrally symmetric (EI, L, N, and

hmax are equal for both poles). No assumptions are made a priori

about parameter values. As demonstrated below, the model

behavior as it concerns the problem posed in the Introduction is

controlled entirely by three compound parameters (L/R, S/R,

hmax), in the space of which the presented analysis is, for practical

purposes, exhaustive.

The task of finding the equilibrium conformation of the

microtubule cytoskeleton is divided into finding the equilibrium

forms of microtubules and finding the equilibrium position of the

centrosome. The following equations specify the model for the

single microtubule. They consist of the standard equilibrium beam

equation, and of the boundary conditions of clamping on the

centrosome and frictionless contact with the cell boundary. x and z

are the Cartesian coordinates in the plane of the microtubule. s is

the axial coordinate in the microtubule, h is the angle of the

microtubule. b is the angular coordinate of the microtubule end,

and P is the contact force. D is the deviation of the centrosome

from the center of the cell.

d

ds
x(s)~ sin h(s),

d

ds
z(s)~ cos h(s), ds~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2zdz2

p

d

ds
h(s)~

M(s)

EI
, M(s)~Pv(s), v(s)~{x(s)cosbzz(s) sin b

x(0)~0, z(0)~D, h(0)~h0, x(L)~R sin b, z(L)~R cos b

Since

x(L)~x(L,D,h0,P,b), z(L)~z(L,D,h0,P,b),

the contact conditions specify the unknown parameters P and b
as the functions.

P~P(L,D,h0), b~b(L,D,h0)

In three dimensions there is only one stable solution [20], and,

correspondingly, one (P, b) pair. With the known parameters (P,

b), the differential equations of bending determine the deformed

shape of each microtubule and the stresses in it. In particular, the

action of each microtubule on the centrosome will be known. For

each microtubule, we will have the component of the force.

f (h0)~{P(h0) cos b(h0)

that contributes to the total force on the centrosome.

Introducing the angular density of microtubules, p, the total force

on the centrosome is found as.

Fi~

ð
f (h0)pdV,

where the integration is over the solid angle of the microtubule

emanation from the spindle pole i. The equilibrium condition for

the spindle is.

Figure 1. Model and notation.
doi:10.1371/journal.pone.0038921.g001
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F1zF2~0

The previously derived [20] analytical approximation is used as

a starting guess for the equilibrium solution corresponding to the

central position of the pole. This solution is then refined

numerically using the ballistic method. The same method is then

used to continue the solution with respect to D. Variable step sizes

are used to accurately account for the singularity associated with

the microtubule contact with the cell boundary.

Results

The model computes forces acting on the individual pole and on

the spindle as a whole that arise from bending of the astral

microtubules against the cell boundary, as described in detail and

defined rigorously in the Methods section. The numerical results

are presented graphically by plotting the force on the pole (Fp)

against the position of the pole (xp). Similarly, the results pertaining

to the entire spindle are presented graphically by plotting the force

on the spindle (Fs) against the position of the middle of the spindle

xs. The functions so plotted, Fp(xp) and Fs(xs), are referred to as the

pole and spindle force functions. To present the results in their

parameter-independent form, the position coordinates are nor-

malized by presenting them as a fraction of the cell radius R.

Similarly, the forces are normalized by dividing by the force that is

characteristic of the cell with the given parameters. As established

by the model (Methods), the relevant parameters are the number

of astral microtubules N and the bending rigidity of a single

microtubule EI. The characteristic force is then N EI/R2. The

plots of the force functions are at a glance revealing of the static

equilibria, because in an equilibrium, the force equals zero.

Limiting Case hmax = 0
It is expedient to consider first some limiting cases that set the

theoretical context for the mechanics of the more biologically

relevant regimes. The simplest behavior is exhibited by the

structural case of astral microtubules that emanate from the pole

exclusively along the axis of the spindle (hmax = 0). As the pole

moves collinearly with the spindle axis, the microtubules will abut

on the cell boundary, buckle, and bend, exerting force on the pole.

A sample calculation is presented in Fig. 2. When the axial

distance of the pole from the boundary is greater than the length of

the astral microtubules, the force is zero. When the distance is

equal to the length, the magnitude of the force can take any value

between zero and the buckling force. For shorter distances, the

force decreases, as the increasingly bent microtubules become less

efficient at resisting the displacement of the pole. When the

movement of two such poles is coupled through the spindle

proper, three regimes are possible. If the spindle proper is short,

the astral microtubules may not come in contact with the

boundary, and the symmetric position will be a neutral

equilibrium. This is only possible with short microtubules, whose

length L satisfies the following relation to the spindle length S and

cell radius R: L+S/2,R. The special case of the entire structure

just fitting in the cell without deformation (L+S/2 = R) is unlikely to

be realized. When L+S/2 is greater than R, microtubule

emanating from one pole or from both must be bent.

Consider the symmetric case, in which both sides are bent

equally. This, obviously, is an equilibrium. However, the

magnitude of the force exerted on the pole is in this situation a

locally decreasing function of the pole’s distance from the

boundary (Fig. 2). Therefore movement of both poles to the right

will decrease the magnitude of the force exerted by the boundary

on the right pole. By symmetry, the magnitude of the force exerted

on the left pole will be increased. The symmetric equilibrium

proves unstable. The coupled poles will continue moving

spontaneously, until the new equilibrium is reached. In this other

equilibrium, the force of the bent microtubules acting on one pole

will be balanced by the force of the straight microtubules acting on

the other pole. This is always possible, because the magnitude of

the force of a bent microtubule is always lower than the buckling

force. The asymmetric equilibrium is stable. Indeed, movement in

the direction of the bent microtubules will leave the opposite pole

unsupported, as the straight microtubules lose contact with the

boundary. Movement in the opposite direction will place the

system in a state it already passed during its spontaneous

movement from the unstable symmetric equilibrium.

Thus, in this special case, we observe instability of symmetry,

stability of asymmetry, and the possibility to predict the stable

conformation from the structural parameters that include the

length of the spindle S and the length of the astral microtubules L,

relative to the cell radius R. The forces are proportional to the

microtubule bending rigidity EI and to the number of the

microtubules N, but the positions and stability of the equilibria do

not depend on these parameters. The more biologically relevant

cases that are considered below exhibit more complex behavior

but retain the fundamental aspects illustrated here.

Limiting Case hmax = p
The opposite extreme case is also revealing–the special case of

complete, intrinsically spherical asters at each pole (hmax = p). Now

the behavior depends on whether the astral microtubules are

longer or shorter than the cell radius. The case of short

microtubules is simple. After the aster comes in contact with the

boundary, the force exerted on the pole increases gradually with

xp. The graduality is due to the number of the microtubules in

contact with the boundary increasing gradually in this case, as

compared with the case of hmax = 0. In addition, only the axial

microtubules (h= 0), whose contribution to an aster with hmax?0 is

infinitesimal, go through developing the buckling force during the

axial movement of the spindle; all others deflect on contact in a

continuous manner. The bending leads to the decrease in stiffness,

as can be seen in Fig. 3. The decrease in stiffness of the aster (the

progressively shallower slope of the force curve) is, however,

different from the above-considered case, where the very

magnitude of the elastic force decreased with the progressing

deformation. The numerical results (Fig. 3) indicate that the

softening effect of the deformation (Fig. 2) in the case of the

complete aster is more than offset by the increasing numbers of

microtubules that come in contact with the boundary: Although

each progressively bending microtubule exerts a progressively

lower force, the number of the bending microtubules grows so

rapidly that the total force is incresing. Even though the total force

is a nonlinear function of the pole position, the force resisting the

outward movement of the pole is monotonic. In this sense it is

similar to simple linear (Hookean) elasticity. Thus, a spindle with

two complete asters of short microtubules exhibit stability of

symmetry. In addition, the monotonicity means that there is only

one equilibrium conformation of the mitotic microtubule cyto-

skeleton, insofar as the latter is large enough to maintain contact

with the cell boundary.

The positioning of an isolated complete aster with compara-

tively long microtubules was considered in our interphase model

[20]. In this case, considered now in application to the isolated

spindle pole, the pole force function has a root at approximately

xp = 2(L–R): a more centrally positioned pole is attracted to the cell

Mitotic Spindle Positioning
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margin, while a more eccentrically positioned one is repelled.

Considering now the spindle with such an aster at each pole, one

can observe that the presence of the root does not affect the

stability of symmetry. Like in the case of short microtubules (Fig. 3),

the pole force function is still monotonically decreasing for xp.0,

albeit it now changes sign (Fig. 4A). Thus, the symmetry of the

spindle will be stable.

Overall, however, the pole force function now is not monotonic

(Fig. 4A), opening the possibility of additional equilibria if both poles

are on the same side of the cell. The system remains attracted to the

symmetric equilibrium until the spindle proper is moved entirely into

one half of the cell. Then the conformational transition described in

the earlier article [20] occurs in the more central aster and places the

system on the other branch of the spindle force function (Fig. 4B). The

discussed monotonicity of each half of the single pole force function

ensures that the spindle now spontaneously continues in the

previously forced direction. Indeed, even if the more distal pole is

already in the region where it is repelled by the boundary, the more

central pole upon crossing the center always experiences a greater

forcerepelling it fromthecenter.Thenewequilibriumwillbereached

when the two forces become equal in magnitude. This strongly

asymmetric equilibrium will also be stable. This is due to the piece-

wise monotonicity: whether the poles are on different sides or on the

same side of the cell, the force function (Fig. 4A) is locally decreasing

for each pole. A centripetal movement of the spindle from the

asymmetric equilibrium increases its repulsion from the center and

decreases its repulsion fromthenearestboundary,andviceversa.The

spindlewill therefore return to theasymmetricequilibrium,unless the

forcedmovementbringsoneof thepoles to theoppositehalfof thecell,

in which case it will spontaneously move to the symmetric

equilibrium.

Transitions between Limiting Cases
Let us first consider the case of short microtubules. We have seen

that as hmax increases from 0 to p, stability of symmetry and

nonexistenceofasymmetricequilibriareplace instabilityof symmetry

and stability of asymmetry. Computations demonstrate that increas-

inghmax from zero first makes the development of the extremum pole

force smooth (Fig.5A, solidcurve; cf.Fig.2).The finite intervalof xp in

which the pole force function (Fig. 5) is decreasing emerges

immediately when hmax exceeds zero. The range of values of S that

place the symmetric poles in these intervals will correspond to stable

symmetry. Unlike in the extreme case of hmax =p, however, the pole

force function is increasing beyond the extremum (Fig. 5A). Let us

denote the pole position that corresponds to the extremum xp’. For S

exceeding 2xp’, the behavior seen with hmax = 0 is retained, and

symmetry is unstable (Fig. 5B). The corresponding stable asymmetric

equilibrium is derivative from the one described in the case of

hmax = 0: one pole occupies a position that lies toward the cell center

Figure 2. Limiting case of hmax = 0. (A) Pole force function. (B) Spindle force function. (C) Symmetric equilibrium. (D) Asymmetric equilibrium. B–D:
L = 0.8 R, S = 0.65 R. For clarity, only two microtubule forms are plotted. These microtubules lie in the (x,y) plane that passes through the spindle axis.
The circumference is the section of the cell surface, and the thicker line segment depicts the spindle proper.
doi:10.1371/journal.pone.0038921.g002
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from the pole force function extremum, and the other occupies a

position toward the cell margin from that pole’s extremum. With

furthergrowthofhmax, theaster increases resistanceatmoreeccentric

pole positions (Fig. 5A, dashed curve). This eventually erases the

nonmonotonicity of the pole force function. Fig. 5A shows that for

sufficiently large hmax the function becomes monotonic as in the case

of hmax = p (cf. Fig. 3). The spindle now possesses only one

equilibrium, which is symmetric and stable. Thus with short astral

microtubules, there is an abrupt transition at some intermediate hmax

to the behavior that is qualitatively like that seen with hmax =p.

With long microtubules, the increase of hmax first leads to the

changes observed with the short microtubules, namely the

smoothing of the pole force function extremum (Fig. 6A, solid

curve; cf. Fig. 2). In addition, the function in this case develops a

discontinuity. It is caused by the conformational transition

between the lowest-energy conformations that differ on the two

sides of xp = 0 and were described in the previous paper [20]. The

transition was non-observable in the case of hmax = 0 because the

alternative conformations in that degenerate case were equivalent.

A more consequential difference from the case of the short

microtubules is that the long microtubules are more deformable,

and the drop of the force magnitude past the buckling-force

maximum that they exhibit is much deeper. Because of this, the

increase in resistance at large pole displacements in this case

cannot erase the nonmonotonicity efficiently. Instead, at around

hmax =p/2 the pole force function develops two descending

branches (Fig. 6A). The difference from the already considered

limiting case of complete asters (Fig. 4A) is that the pole force

function with the intermediate hmax may not change sign across

the discontinuity. This reflects the comparatively simple behavior

of asters with hmax,p/2: the individual pole would find

equilibrium when all microtubules that are emanating from it

are straight, unlike in the more complete asters, in which bending

is unavoidable. Despite this difference in the individual behavior of

separate poles, poles coupled by the spindle will behave in the

same way as with the more complete asters of long microtubules,

because of the fundamental similarity of the pole force function

with the two descending branches. The symmetric position is now

stable, as is the asymmetric equilibrium (Fig. 6B, dashed curve).

Special Case L = R
The intermediate case of L<R presents special interest.

Theoretically, it connects the qualitatively different types of

behavior already described for long and short microtubules.

Biologically, astral microtubules seem to be comparable in length

with the cell radius in the morphogenetically important instances

of large cells of early embryos [1–3,15]. Evidently, the case of

L = R is by itself unrealistic, because the two quantities cannot be

exactly equal. This special case, however, establishes a useful

reference in the space of the model parameters and regimes of

behavior.

Calculations show that a complete (hmax =p) aster with L = R

develops the peak force just before its pole reaches the cell center

(Fig. 7A). This force is associated with the buckling force of the

microtubules that all straighten when the pole reaches the center.

When the pole is in the center, the elastic force can take any value

between the positive and negative extremum, and will be zero for

an aster not subjected to any external force. Thus, an individual

separate aster exhibits a special kind of stability of the central

position, in which a finite restoring force develops upon an

infinitesimal perturbation.

However, the magnitude of the restoring force decreases with

the magnitude of the perturbation (Fig. 7A). A pole that is closer to

the center therefore experiences a higher centripetal force than a

pole farther away from the center. This is a condition for

instability of symmetry of the spindle. One pole’s centripetal

movement will be completed at the expense of the increasingly

eccentric position of the coupled pole. This is demonstrated by the

spindle force function (Fig. 7B). In the asymmetric equilibrium,

Figure 3. Limiting case of hmax = p, short microtubules. (A) Pole
force function. (B) Spindle force function. (C) Equilibrium conformation.
L = 0.8 R, S = 0.65 R. For clarity, few microtubule forms are plotted.
These microtubules lie in the (x,y) plane that passes through the spindle
axis. Their values of h are sampled uniformly between 0 and hmax.
doi:10.1371/journal.pone.0038921.g003
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which is stable, the force on the eccentric pole is balanced by the

equal force supported by unbuckled microtubules of the centrally

positioned pole.

The described behavior is observed for spindles with interpolar

distances not exceeding a certain value. Inspection of the pole

force function (Fig. 7A) shows that the stiffening of the aster at

large eccentricities of the pole creates a range of extreme pole

positions where the magnitude of the force is increasing with the

distance from the center. This creates conditions for stability of

symmetry of sufficiently long spindles (Fig. 7C).

Overview of Parameter-space Domains
The domain of instability of the spindle symmetry in the three-

dimensional space of the structural parameters (hmax, S/R, L/R) is

outlined in Fig. 8. The behavior described in the preceding

sections can be seen in its outline alongside some additional

features that have not been described in the text. The boundaries

of the domain show how the continuity between the regimes

characteristic of the short and long microtubules is achieved

through the special case of L = R. Specifically, for both long and

short microtubules, the (hmax, S/R) cross-sections of the symmetry

instability domain are restricted to hmax,p/2.

For shortmicrotubules, longerspindlesexhibitunstable symmetry.

Note, however, that the stability of spindles that are particularly short

(S,2(R–L)) is only neutral in this case, because in their symmetric

position, the astral microtubules do not contact the boundary. For

longmicrotubules,onthecontrary, shorter spindlesexhibit instability

of symmetry. In this case, it is of note that the longer spindles exhibit

bistability between the symmetric and asymmetric equilibria, as was

illustrated in Fig. 6B (dashed curve).

For L<R, the range of instability of symmetry extends through

hmax =p. This behavior, which has been illustrated in the special

case of L = R, is retained for L taking values between approxi-

mately 0.9 and 1.05 R. Although this range is narrow in absolute

terms, it seems to be particularly relevant, because inspection of

images in the literature suggests that L is often similar to R in the

morphogenetically important instances of large cells in early

embryos (1–3,15).

Interpretation of Parameter-space Domains: Length
Distributions

It can be seen that if each microtubule length from a set

supports stability of symmetry, any distribution of lengths over that

set will also support stability of symmetry. Conversely, if each

length by itself supports instability, any distribution will also

support instability. Additionally, if any subset supports neutral

stability, the outcome is dictated by the complementary subset.

With this in mind, inspection of the parameter-space domains

Figure 4. Limiting case of hmax = p, long microtubules. (A) Pole force function. (B) Spindle force function. (C, D) Equilibrium conformations.
L = 1.1 R, S = 0.3 R. Plotting conventions as in Fig. 3.
doi:10.1371/journal.pone.0038921.g004
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makes predictions about the stability of symmetry that will be

obtained with microtubule length distributions.

As described in the preceding section, in the (hmax, S/R, L/R)

space the instability domain is bounded and embedded in the

domain of stability (Fig. 8). Furthermore, it lies above the domain

of neutral stability (S/R ,2L/R). At large hmax, there is a

considerable separation between the domains of instability and

neutral stability; at small hmax, they almost touch.

The support of a microtubule length distribution is represented in

the said parameter space by a vertical segment. If such a segment lies

entirelywithinoroutside the instabilitydomain, thecentral symmetry

will correspondingly be unstable or stable. For example, any

distributions whose support falls entirely to the right of the L/R = 1

isoline in Fig. 8B will predict stable central positioning of the spindle.

Further, unless the distribution is unusually sharply concentrat-

ed at the intermediate values, the instability domain can be

considered as touching the neutral stability domain for smaller

hmax. Therefore, distributions whose support falls below the upper

bounding surface of the instability domain (Fig. 8B) predict

instability of symmetry, if hmax is not large.

In the likely case of descending exponential distributions [24],

the contribution of the few exceptionally long microtubules may

prove negligible. In that case, the prediction can be further

simplified: For larger hmax and S/R, stability is predicted, and for

smaller hmax and S/R, instability is predicted.

Sample Equilibrium Structures
Among the theoretically possible structures and equilibria,

several can be considered paradigmatic, based on qualitative

examination of images of spindles in the experimental literature.

Firstly, there is the case of a long spindle with short astral

microtubules that radiate from the poles in a wide solid angle. The

equilibrium conformation is plotted in Fig. 9A. According to the

preceding analysis, in this regime (large S/R, small L/R, large

hmax), the symmetric equilibrium is the only equilibrium, and it is

stable. Awaiting measurements motivated by this theory, it

appears that this regime is common among the variety of equally

dividing cells. The HeLa cultured cells are one example [13].

The second instance demonstrating applicability of the theory is

the structure with long astral microtubules that radiate in a wide

angle. This regime exhibits the bistability between the symmetric and

asymmetric equilibria. The alternative conformations are illustrated

in Fig. 9 B and C. This example is characterized by a comparatively

small S/R and large L/R. In this respect it is reminiscent (in the

asymmetric conformation) of the first division in the invertebrate

Figure 5. Transition between hmax = 0 and hmax = p in the case of
short astral microtubules. L = 0.8R. (A) Pole force function. (B)
Spindle force function, hmax = p/5.
doi:10.1371/journal.pone.0038921.g005

Figure 6. Transition between hmax = 0 and hmax = p in the case of
long astral microtubules. L = 1.1 R. (A) Pole force function. (B)
Spindle force function. S = 0.3 R. The line styles correspond to values of
hmax as in panel A.
doi:10.1371/journal.pone.0038921.g006
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Figure 7. Special case of L = R, hmax = p. (A) Pole force function. (B) Spindle force function, S = 0.4 R. (C) Spindle force function, S = 0.75 R. (D)
Unstable symmetric equilibrium, S = 0.4 R. (E) Stable asymmetric equilibrium, S = 0.4 R. (F) Stable symmetric equilibrium, S = 0.75 R. Plotting
conventions as in Fig. 3.
doi:10.1371/journal.pone.0038921.g007
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models of development that include the mussel Unio and the

roundworm Caenorhabditis (1–3,15). For comparison, Fig. 9D displays

the only stable equilibrium that exists in the regime with L < R and a

spindleofmediumlength,whichisasymmetric. Intermsof thespindle

proportions and position, it is reminiscent of the mouse oocyte (where

the positioning involves F-actin [5]).

The example of bistability in particular raises the question of the

absolute magnitude of the collective spindle forces. The natural

unit of force, N EI/R2, equals 22 pN when N = 100,

E = 26 pN mm2, and R = 10 mm. The barrier for switching from

the symmetric to asymmetric state in the case plotted in Fig. 6B

(dotted curve) is then 65 pN. Note that the barrier for switching

from the asymmetric state is higher, 156 pN. The above estimates

were order-of-magnitude for N and R in a generic cell, and a mid-

range experimental value [25] for EI. Equally relevant may be

N = 1000, and R = 5 mm, in which case the two barriers will be 2.6

and 6.2 nN. Targeted measurements are needed to determine if

such barriers (,0.1–1 nN) can be overcome in a given cell.

Accepting the experimental estimate of the force that can be

developed, for example, by a single dynein motor as 2.6 pN [26],

the barriers calculated here could be overcome by 25–2000 dynein

molecules, which is not an unrealistic number.

Discussion

The presented theory derives the static equilibria of the spindle

from the considerations of bending of the astral microtubules

against the cell boundary, and assesses the stability of the

equilibria. In this respect, it is an extension of the pioneering

model by Bjerknes [12]. The distinctive method of the new theory

is explicit computation of the bent microtubule forms. The chief

new prediction is that an intrinsically symmetric mitotic microtu-

bule cytoskeleton may spontaneously adopt asymmetric confor-

mations, when constrained within the cell. In this respect, the

model is conceptually derivative from our earlier treatment of the

interphase microtubule cytoskeleton [20] and from the pioneering

work of Holy [27] on the interphase microtubule asters. The

different subject of the present work is the mechanics of two

coupled asters of microtubules that are found at the two poles of

the mitotic spindle. The individual confined asters in the

interphase models always break the symmetry with respect to

the cell center. The mitotic model, at least under certain

conditions, exhibits stable equilibria that are centrally symmetric,

as well as bistability between the symmetric and asymmetric

equilibria.

The novel theoretical possibility of the spontaneous develop-

ment of asymmetry through bending of astral microtubules, and

the uncovered special requirements of stability of symmetric

conformations, pose new types of questions that can be asked

when designing and interpreting experiments. In particular, the

new theory urges not to consider symmetric spindle positioning a

‘‘default’’ state of the system. Just as importantly, it urges not to

seek the source of the asymmetry necessarily outside the basic

structure of the mitotic microtubule cytoskeleton.

When studying a case of symmetric positioning, it may be worth

investigating what makes it symmetric. Do the parameters such as

the length of the astral microtubules (L) and of the spindle proper

(S) have values that support the stable symmetry? If they do not,

what forces external to the microtubule cytoskeleton act against

the collective bending forces and actively establish the symmetry?

When studying the case of asymmetric spindle positioning, it

may be worth investigating the possible contribution of the

collective bending effects of the astral microtubules to the

generation of asymmetry. In fact, in the light of the theory this

question may acquire priority. Although the quantitative nature of

the collective bending that breaks symmetry is complex, the

hypothesis that the source of asymmetry resides in the basic

cytoskeleton structure itself is simple, compared with hypotheses

that involve asymmetric regulation or asymmetric external forces

applied to the structure.

The spontaneous development of asymmetry through unequal

bending does not by itself have a preferred direction: Each

asymmetric equilibrium in the model has a counterpart, which is

mirror-symmetric about the cell center. External forces and

regulation mechanisms may be responsible for biasing the

spontaneous symmetry-breaking, even if they are not responsible

in the specific instance for the generation of the asymmetry.

Similarly, the action of the external forces, even transient, may be

responsible for the selection between the symmetric and asym-

metric equilibrium in the cases of multistability.

In view of the stochastic assembly of microtubules, exact

symmetry is impossible. Yet it is the symmetry of the microtubule

growth from the two poles that is often so striking under the

microscope, whether or not the bending is symmetrical. This

underscores the necessity to assess the stability of the symmetric

conformations, because apart from any external forces, the small

Figure 8. Symmetry instability domain. In the three-dimensional
space of structural parameters (hmax, S/R, L/R), L/R is understood as the
vertical dimension in this figure. Isolines corresponding to the indicated
values of L/R are shown. (A) Surface bounding the domain from below.
(B) Surface bounding the domain from above. (These contour plots may
be viewed as topographic maps. In A, symmetry is stable when the
point representing the conditions of the individual cell lies below the
mapped surface, and unstable otherwise. In B, symmetry is unstable
when the point lies below the mapped surface, and stable otherwise.).
doi:10.1371/journal.pone.0038921.g008
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intrinsic asymmetries will always take the system out of the exact

symmetric equilibrium.

The presented model deals with the collective mechanical

behavior of a large number of long microtubules, which are

capable of bending strongly without pivoting on their attachment

points at the spindle poles. These conditions are not met in yeast,

where there is only a small number of short microtubules or

bundles, which may pivot [28]. Attempting to isolate the effects of

the microtubule bending, the model purposefully disregards the

deformability of the cell cortex within which the microtubules are

confined. The complete system of the deformable cortex and the

interphase microtubule cytoskeleton was analyzed in our earlier

numerical model [29,30]. It similarly exhibited the emergence of

asymmetry. Future models should address such difficult problems

as the astral microtubule bending with force-dependent microtu-

bule assembly [31,32] and with microtubule-based motors [11],

whose action on the microtubule cytoskeleton depends on the

microtubule conformation [33]. Spindle positioning likely depends

on the quantitative effects of the interaction between these forces.

The model deals with equilibria only, not with dynamics.

Although the elastic force can be calculated using this model for

every intermediate conformation, the velocity of movement under

the action of these forces will depend on the resistance to the

movement. The cited work [18,33] computed the dynamics of

movement of explicitly modeled, deformed microtubule cytoskel-

etons driven by molecular motors, assuming viscous resistance

with certain effective viscosity coefficients. The likely order-of-

magnitude similarity of the collective elastic forces and ones

produced by molecular motors (see above) argues that depending

on the actual resistance, either both should fail to produce a

Figure 9. Sample equilibrium conformations. For clarity, only few microtubule forms are plotted. These microtubules lie in the (x,y) plane that
passes through the spindle axis. Their values of h are sampled uniformly between 0 and hmax. The circumference is the section of the cell surface, and
the thicker line segment depicts the spindle proper. In all examples, hmax = 0.6p. (A) L = 0.7 R, S = 1.2 R. (B) and (C) represent the alternative
conformations that exist with L = 1.1 R and S = 0.4 R. (D) L = 0.95 R, S = 0.7 R.
doi:10.1371/journal.pone.0038921.g009
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reasonable displacement speed or both should succeed. The

microtubule lifetime in mitotic cells is ,1 min [34,35], indicating

that the collective bending force is not shared between a fixed set

of microtubules. Rather, this force should be sustained by the

steady-state structure consisting of rapidly renewed individual

microtubules.

Summarizing, the explicit numerical treatment of bending of

astral microtubules indicated existence of new types of collective

mechanical behavior in mitotic cytoskeletons, which include

symmetry-breaking and multistability. The goal of this publication

is to identify new types of questions that can be asked in

experimental work and establish a quantitative framework that can

guide experiment design. Interpretation of new experimental

results, and, possibly, re-interpretation of those previously

obtained, will require generalization of the numerical model and

its rigorous adaptation to the structural features of each specific

cell type.
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13. Théry M, Racine V, Pépin A, Piel M, Chen Y, et al. (2005) The extracellular

matrix guides the orientation of the cell division axis. Nat Cell Biol 7: 947–953.

14. Cytrynbaum EN, Scholey JM, Mogilner A (2003) A force balance model of early

spindle pole separation in Drosophila embryos. Biophys J 84: 757–769.
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16. Grill SW, Kruse K, Jülicher F (2005) Theory of mitotic spindle oscillations. Phys

Rev Lett 94: 108104.

17. Kozlowski C, Srayko M, Nedelec F (2007) Cortical microtubule contacts

position the spindle in C. elegans embryos. Cell 129: 499–510.

18. Nedelec F (2002) Computer simulations reveal motor properties generating

stable anti-parallel microtubule interactions. J Cell Biol 158: 1005–1015.

19. Rubinstein B, Larripa K, Sommi P, Mogilner A (2009) The elasticity of motor-

microtubule bundles and shape of the mitotic spindle. Phys Biol 6: 016005.

20. Maly VI, Maly IV (2010) Symmetry, stability, and reversibility properties of
idealized confined microtubule cytoskeletons. Biophys J 99: 2831–2840.

21. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sunderland:
Sinauer. 380 p.

22. Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, et al. (2006)

Microtubules can bear enhanced compressive loads in living cells because of
lateral reinforcement. J Cell Biol 173: 733–741.

23. Gu B, Mai YW, Ru CQ (2009) Mechanics of microtubules modeled as
orthotropic elastic shells with transverse shearing. Acta Mech 207: 195–209.

24. Gliksman NR, Parsons SF, Salmon ED (1992) Okadaic acid induces interphase

to mitotic-like microtubule dynamic instability by inactivating rescue. J Cell Biol
119: 1271–1276.

25. Mickey B, Howard J (1995) Rigidity of microtubules is increased by stabilizing
agents. J Cell Biol 130: 909–917.

26. Ashkin A, Schütze K, Dziedzic JM, Euteneuer U, Schliwa M (1990) Force

generation of organelle transport measured in vivo by an infrared laser trap.
Nature 348: 346–348.

27. Holy TE (1997) Physical aspects of the assembly and function of microtubules.
Dissertation, Princeton University.

28. Segal M, Bloom K, Reed SI (2000) Bud6 directs sequential microtubule
interactions with the bud tip and bud neck during spindle morphogenesis in

Saccharomyces cerevisiae. Mol Biol Cell 11: 3689–3702.

29. Arkhipov SN, Maly IV (2006) Contribution of whole-cell optimization via cell
body rolling to polarization of T cells. Phys Biol. 3: 209–219.

30. Baratt A, Arkhipov SN, Maly IV (2008) An experimental and computational
study of effects of microtubule stabilization on T-cell polarity. PLoS ONE 3:

e3861.

31. Hill TL (1987) Linear aggregation theory in cell biology. New York: Springer.
305 p.

32. Janson ME, de Dood ME, Dogterom M (2003) Dynamic instability of
microtubules is regulated by force. J Cell Biol 161: 1029–1034.

33. Kim MJ, Maly IV (2009) Deterministic mechanical model of T-killer cell
polarization reproduces the wandering of aim between simultaneously engaged

targets. PLoS Comput Biol 5: e1000260.

34. Wadsworth P, Salmon ED (1986) Analysis of the treadmilling model during
metaphase of mitosis using fluorescence redistribution after photobleaching.

J Cell Biol 102: 1032–1038.
35. Hayden JH, Bowser SS, Rieder CL (1990) Kinetochores capture astral

microtubules during chromosome attachment to the mitotic spindle: direct

visualization in live newt lung cells. J Cell Biol 111: 1039–1045.

Mitotic Spindle Positioning

PLoS ONE | www.plosone.org 12 June 2012 | Volume 7 | Issue 6 | e38921


